Transitions Newsletter Header

Community Connections: The Common Community Physics Package (CCPP) Visioning Workshop

Autumn 2023

The Common Community Physics Package (CCPP) Visioning Workshop, which took place virtually on August 15-17 of 2023, convened discussions focused on the current status and future direction of the CCPP. The workshop was organized by a multi-institutional committee composed of representatives from DTC (Grant Firl, Lulin Xue, Dustin Swales, Ligia Bernardet), NCAR’s Mesoscale and Microscale Meteorology (Laura Fowler) and Climate and Global Dynamics (Courtney Peverley) Laboratories, University of Oklahoma Center for Analysis and Prediction of Storms (Ming Xue), and NOAA’s Environmental Modeling Center (Fanglin Yang). Participants from four NCAR labs and six NOAA labs and centers comprised approximately two-thirds of the participants. The remaining participants were from the U.S. Department of Energy Pacific Northwest National Laboratory, the Joint Center for Satellite Data Assimilation, the United States Naval Research Laboratory, the Brazilian National Institute for Space Research, the Stevens Institute of Technology, the University of Maryland, the Central University of Rajasthan, and the Norwegian Meteorological Institute.

The growth of the CCPP community, the ongoing progress in Earth System Model science, and the advancements in computational technology demand continuous CCPP development.

Workshop participants recognized that the CCPP is now a mature product, used operationally at NOAA as part of the Hurricane Analysis and Forecast System v1, slated for all future Unified Forecast System (UFS) application implementations, and in different stages of integration within models under the purview of the U.S. Navy Research Laboratory and the National Center for Atmospheric Research. The growth of the CCPP community, the ongoing progress in Earth System Model science, and the advancements in computational technology demand continuous CCPP development.

High-priority items identified by participants that are needed to facilitate exchange and enable collaborative development are: unification of the CCPP Framework development being conducted at NOAA and at NCAR, generalization of existing parameterizations for higher interoperability, and development of a vision for how the multiple sets of CCPP-compliant physics will be managed and served to the community.

Additional recommendations drawn from the workshop can be classified in two categories. The first one is the improvement of existing practices. Highlights include changes in the directory structure of the CCPP Physics repository for ease of use, issuing additional tags to record important code snapshots (such as those associated with UFS prototypes for upcoming operational implementations), establishing a formal governance for the repository of CCPP Standard Names, and documenting the limitations of schemes and suites regarding the scales and processes they were developed for and tested on.

The second category is development needed to be prepared for the future. Highlights include continuing engagement with the aerosol and chemistry community to devise optimal solutions for the interface between atmospheric chemistry and host models, looking ahead toward three-dimensional physics, developing a module for common atmospheric physics functions (such as saturation vapor pressure) to ensure greater consistency amongst schemes within a suite, and ability for all schemes to return tendencies to enable studies in physics-dynamics coupling. On the computational front, the use of fine-grain platforms with graphical processing unit (GPU) compute architectures has become a priority. 

In summary, the cross-institutional engagement with the CCPP and the openness of the community to collaborate on physics development were evident in this workshop. Next steps include the submission of a meeting summary to the Bulletin of the American Meteorological Society and the prioritization of development topics.

Contributed by Ligia Bernardet and Grant Firl