A NGGPS modeling workshop and meetings of the Strategic Implementation Plan (SIP) Working Groups were held in August of 2017 at the National Center for Weather and Climate Prediction in College Park, Maryland, to finalize the SIP document that describes projects for the development of the Unified Forecast System (Link to SIP document). The future of physics parameterization development, as described in this report, listed many of the current DTC tasks. A possible DTC priority could be to test (at multiple resolutions), evaluate, and maybe even assist in tuning scale-aware and stochastic parameterizations for processes such as microphysics, cumulus convection and gravity wave drag.
To achieve the goal of involving the broader community in the development, testing, and assessment of physical parameterizations, the GMTB was established as a new task area in the DTC. The GMTB, led by Ligia Bernadet and Grant Firl, is an ambitious project to make model development much more user-friendly, catalyzing partnerships between EMC and research groups in national laboratories and academic institutions. The GMTB aims to implement transparent and community-oriented approaches to software engineering, metrics, documentation, code access, and model testing and evaluation.
The initial charge to GMTB was the development and community support of the Common Community Physics Package, a software and governance framework to facilitate Research to Operation (R2O) transitions of community contributions. Additionally, the GMTB is tasked with defining a hierarchy of tests (model configuration, initial conditions, etc.), iteratively exercising each candidate physics configuration over the tests, and providing assessments in an open manner – tasks which are also needed for the development of unified metrics. GMTB already was of great help to implement the Grell-Freitas convective parameterization into the GFS physics package, now running in versions of FV3 and GFS.
The second essential project defined by the SIP physics working group is the design of unified metrics (or at least standardized metrics, dependent on application). The development of the Model Evaluation Tools (MET) is another component of DTC work. MET is designed to be a highly-configurable, state-of-the-art suite of verification tools. The development of the Model Evaluation Tools (MET), which is designed to be a highly-configurable, state-of-the-art suite of verification tools, is another component of DTC work. Current MET development efforts are focused on expanding its capabilities to capture the full range of EMC’s multiple verification packages.
With the existing task areas spanning ensemble work, stochastics, verification software development, community support, data assimilation, and GMTB, DTC will be able to play an increased role in assisting R2O transfer with respect to development and improvements in physical parameterizations. Once the advanced physics suite is selected, this will require gaining expertise in the different parameterizations that are chosen. DTC can conduct carefully controlled, rigorous testing, including the generation of objective verification statistics, and provide the operational community with an increased amount of guidance for selecting new NWP technologies with potential value for operational implementation.