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Summary  
This study evaluates the performance of two configurations of the Hurricane Analysis and Forecast System 
(HAFS), named HFSA and HFSB. While these configurations have several differences, one key distinction 
lies in their microphysics parameterization schemes. Using infrared brightness temperature data from 
GOES-R satellite observations as a proxy for cloud and hydrometeor characteristics, the study assesses 
the models' skill in simulating three 2023 Atlantic hurricanes: Idalia, Lee, and Ophelia. Statistical metrics 
including probability density functions, composite images, target diagrams, Taylor diagrams, Fractions 
Skill Score, and Equitable Threat Score are employed to compare the models' performance across various 
thresholds and forecast lengths. The results consistently demonstrate that HFSA outperforms HFSB, 
exhibiting lower biases, higher correlation coefficients, and better predictive skill. Both models capture 
the vortex structures and asymmetries of the hurricanes well. However, they tend to overestimate cloud 
coverage and height compared to observations, with HFSB showing a more pronounced bias. Despite 
HFSA's superior performance, there remains room for improvement in both models' forecasting skill, 
particularly at longer lead times and lower thresholds. The study highlights the importance of evaluating 
and refining microphysics parameterizations to enhance tropical cyclone prediction capabilities. Future 
research should focus on expanding the analysis to a larger sample of storms, exploring additional metrics, 
and conducting targeted diagnostics to guide the development of improved hurricane forecasting tools. 

Background and motivation 
The National Oceanic and Atmospheric Administration (NOAA) has developed the Hurricane Analysis and 
Forecast System (HAFS), a next-generation system designed to improve tropical cyclone prediction 
capabilities. At the time this project was initiated, two configurations of HAFS were being considered for 
operational implementation in 2023, differing primarily in their microphysics parameterization schemes. 
Since then, HAFS has been adopted into NOAA’s operational modeling suite and has been in use for over 
a year, replacing previous hurricane forecast models. 

While HAFS has demonstrated improved track and intensity forecasting over existing models (Dong et al. 
2020; Zhang et al. 2022; Bao et al. 2022), its ability to accurately predict precipitation from tropical 
cyclones remains unclear. Flooding from extreme rainfall is a major hazard, causing over a quarter of 
tropical cyclone deaths. However, model validation efforts have primarily focused on track and intensity 
rather than precipitation forecasts. This is problematic because rainfall impacts can occur far from a 
storm's center, even with accurate track predictions (Lonfat et al. 2007; Marchok et al. 2007). 

Regional hurricane models have shown better quantitative precipitation forecasting (QPF) skill than global 
models (Ko et al. 2020), underscoring the importance of evaluating HAFS's QPF performance. Previous 
analysis of an early HAFS version found an underestimation of lower rainfall percentiles and 



overestimation of higher percentiles (Green et al. 2022). To address this knowledge gap, the 
Developmental Testbed Center is undertaking a QPF evaluation of the two proposed HAFS configurations 
for operational implementation.   

The contrasting microphysics parameterizations are expected to significantly influence QPF skill 
differences between the configurations. A key distinction is that HFSA only has prognostic mixing ratios, 
while HFSB also includes prognostic variables for cloud properties, precipitation characteristics, and 
aerosols. Condensation, evaporation, and precipitation processes also differ between the schemes. 
Understanding how these microphysics differences impact QPF forecast skill is critical for selecting the 
optimal HAFS configuration. 

To diagnose this, we first need to evaluate the models' skills related to microphysics by comparing two 
different microphysics schemes with observations to see how well they model hydrometeors. However, 
since direct observations of hydrometeors are rare, we will convert the model forecasts into synthetic 
GOES satellite infrared channel images and compare them with actual GOES images. 

Goal and Objectives 
The study uses remote sensing and atmospheric reanalysis data, as well as diagnostic numerical 
experiments, to assess the effects of the GFDL and Thompson microphysics schemes on the QPF skills of 
the two HAFS configurations and make recommendations to model developers.  

Data  
1. Storm cases  

The study examined three 2023 Atlantic 
hurricanes: Hurricane Lee (September 5, 12:00 
PM - September 18, 3:00 PM), Hurricane Idalia 
(August 26, 6:00 PM - September 8, 12:00 AM), 
and Hurricane Ophelia (September 21, 12:00 
PM - September 24, 6:00 PM). The tracks of 
these hurricanes are shown in Figure 1. Note 
all times in this report are expressed in 
Coordinated Universal Time (UTC) 

2. GOES observation 
The study utilized GOES-R infrared 
observations at a wavelength of 10.3 µm (the 
"Clean" longwave window) Advanced Baseline 
Imager (ABI) images in full-disk mode. GOES-R, 
operated by NOAA, is a series of geostationary 
weather satellites designed for advanced imaging and atmospheric measurements. It captures images 
every 5 minutes with a resolution ranging from 3 to 5 km (Source: GOES-R ABI Bands Table (GOES-R) and 
GOES Rebroadcast (NOAAasis)). 

Figure 1 Tracks of the three hurricanes evaluated in the study 

https://www.goes-r.gov/spacesegment/ABI-tech-summary.html
https://noaasis.noaa.gov/GOES/GRB/grb.html


3. CRTM and synthetic images  
The Community Radiative Transfer Model (CRTM) is a tool used in atmospheric sciences to simulate the 
interaction of radiation with the Earth's atmosphere. It converts model simulation data into synthetic 
satellite images, including those from GOES-R. By generating synthetic images for various channels, such 
as infrared, CRTM facilitates direct comparisons with observed GOES-R images, aiding in the validation 
and refinement of simulation models. 

The simulation data required for CRTM includes atmospheric temperature, moisture profiles, surface 
properties, and hydrometeor characteristics like clouds, ice, snow, and rainwater. These parameters are 
crucial for accurately replicating the radiative properties observed by satellites. 

By comparing the synthetic GOES images with observed ones, we can evaluate the model's ability to 
simulate hydrometeors. This comparison provides insights into the model's accuracy in representing 
atmospheric elements, enabling further refinement of simulation processes and improving predictive 
capabilities. 

The GOES-R data were downloaded from AWS S3 buckets using the s3fs tool. The GOES-R data were 
spatially interpolated onto selected points of the model's high-resolution, storm-following output grid 
using a spline algorithm. The analysis was restricted to the region within a 6-degree radius of the storm 
center. Accordingly, both the input GOES-R observations and the target model grid points (defined by 

latitude/longitude coordinates) were limited to this 6-degree radius; data outside this region were 
excluded prior to interpolation. The storm center corresponds to the center of the model's storm-
following domain. The intervals for latitude (Δlat) and longitude (Δlon) are set at 0.06 degrees, creating a 
200x200 grid. An example of this re-gridded data is shown in Figure 2  

Statistics methods and Results  
The most direct way to compare model and observed satellite images is to visually examine each individual 
image. However, this method is time-consuming, and the model simulations contain random uncertainties 
(noise) that make it difficult to draw conclusions about the model's systematic performance and skill 
evaluation. 

Figure 2 Hurricane Lee at the valid time of 2023-09-13 06Z. The three panels show the brightness temperature for HFSA 
(left), HFSB (middle) and the Observed (right). The color bar scale ranges from 200 K to 280 K, where warmer colors 
(yellow) indicate cloud-free areas and cooler colors (purple) represent regions with clouds and hydrometeors. The tick 
mark labels are grid indices.  



Instead, we rely on statistical metrics for the evaluation, including probability density functions, target 
diagrams, Taylor diagrams, Fractions Skill Score, and Equitable Threat Score. Additionally, we use 
composite images, which help to mitigate random errors, revealing systematic biases. Below, we present 
the results of these statistical and composite evaluations. 

1. Probability Density Function (PDF) 
• Hurricanes Idalia and Ophelia  

The observed brightness temperatures exhibit a sharp 
peak around 285 K, suggesting that the majority of the 
observed brightness temperatures fall within this 
range, indicative of clear, non-cloudy areas. The peak 
at around 285K suggests that the storm size is 
relatively small and a considerable portion of the 
domain remains cloud free during the evolution of the 
storm . 

Both model simulations show peaks around the same 
brightness temperature region but differ in 
distribution shape and magnitude. HFSB exhibits 
notable deviations from observations at both the 
lower and higher temperature ranges. These 
differences are consistent with an overrepresentation 
of colder brightness temperatures, likely due to 
excessive or overly extensive cold cloud tops in the 
simulation. This leads to a corresponding 
underrepresentation in the warmer range, as the total 
probability must remain conserved. In contrast, HFSA 
aligns more closely with the observed distribution, 
particularly in the warmer temperature range, 
indicating a more balanced representation of cloud 
and surface temperatures. 

The models both show a broader distribution and 
higher frequency in the lower temperature range 
(around 200-220 K), suggesting that both HFSA and 
HFSB forecast more cloud and hydrometeor coverage 
than observed in the actual GOES data. The observed 
PDF for Ophelia exhibits a higher frequency of mid-
range BTs (~220-260 K) compared to Idalia, suggesting 
differences in cloud structure, such as more extensive 
anvil or mid-level clouds 

• Hurricane Lee  

The observed brightness temperatures exhibit a prominent peak around 220 K, suggesting a relatively 
large vortex with clouds and hydrometers and a small fraction of clear, non-cloudy areas.  

Figure 3 PDF for hurricanes Ophelia (upper), Idalia 
(middle) and Lee (bottom) 



The models both show higher frequency in the lower temperature range (around 200-230 K) compared 
to the observed data, suggesting that both HFSA and HFSB overestimated colder cloud and hydrometeor 
coverage than observed in the actual GOES data, and thus underestimated the cloud-free areas, a pattern 
consistent with the one shown in Idalia and Ophelia. 

Overall, the PDF figures indicate that both HFSA and HFSB overestimate cloud coverage and the height 
of cloud tops, resulting in larger regions of cold temperatures. This discrepancy is more pronounced in 
HFSB than in HFSA. 

2. Composite images 
Figure 4 shows composite infrared brightness temperature plots for HFSA, HFSB, and OBS for hurricanes 
Idalia, Lee, and Ophelia. The overall color patterns and distributions are quite similar among HFSA, HFSB, 
and OBS, indicating that both models are reasonably effective at matching the general pattern of the 
observed brightness temperature data. While the observed large-scale thermal structures differ notably 
between the three storms shown in Figure 4, both the HFSA and HFSB models generally succeed in 
capturing the spatial distribution of the key warm (bright yellow/orange) and cold (dark blue) features 



seen in the corresponding observations for each case. For example, the cold temperature areas are 
located in the northeastern quadrant for Idalia, the northwestern quadrant for Ophelia, and the 
northern half for Lee in all HFSA, HFSB, and OBS plots, suggesting that both models captured the 
asymmetric structures of the storms well. 

However, upon closer inspection, the HFSB plot (center panels) appears noticeably darker compared to 
the OBS plot, indicating a bias towards overestimating colder brightness temperatures. The HFSA plot 
(left hand panels) also looks slightly darker than OBS, but the difference is subtler. This suggests that 
both models, particularly HFSB, may systematically overestimate the coldness of the brightness 
temperatures, indicating higher, colder clouds/hydrometeors compared to actual observations. 

This conclusion aligns with the PDF evaluations, which show that both HFSA and HFSB overestimate 
cloud coverage and higher cloud tops, leading to larger regions of cold temperatures. This discrepancy is 

 
Idalia 

Ophelia 

Lee 

Figure 4 Composite images using HFSA, HFSB and OBS for hurricanes Idalia (1242 forecasts and 98 observed), 
Ophelia (180 forecasts and 27 observed), and Lee (1763 forecasts and 105 observed) 



more evident for HFSB than HFSA. Additionally, the HFSA and HFSB plots appear smoother, with more 
gradual color gradients compared to the patchier, more granular appearance of OBS. This smoothing 
effect results from averaging multiple model forecasts with different initialization times and forecast 
lengths. In contrast, for each valid time, there is only one observed GOES-R image. For Idalia, HFSA and 
HFSB are averaged from 1242 forecasts with 98 unique valid times, for Lee from 1763 forecasts with 105 
unique valid times, and for Ophelia from 180 forecasts with 27 unique valid times. 

3. Composites by valid time 

Comparing the individual valid-time plots (Fig. 5), the overall color patterns and distributions remain fairly 
consistent with the composite image analysis. The HFSA, HFSB, and OBS plots show broadly similar 

Figure 5 Infrared brightness temperature plots for Hurricanes Idalia, Ophelia, and Lee comparing HFSA, HFSB 
(multiple forecasts composites), and observed GOES-R (single observation) at specific valid times. The valid times 
are chosen when the hurricane vortex is relatively mature, well-structured, and at high intensity. 



locations of the warmest (bright yellow/green) and coldest (dark blue/purple) temperature regions for 
each storm. This indicates that both models capture the overall storm structures reasonably well at these 
specific times. 

However, some differences are more apparent in these individual plots. The HFSB images appear 
considerably darker and colder compared to the corresponding OBS images for all three storms. The HFSA 
images are also slightly darker than OBS but to a lesser extent than HFSB. This supports the previous 
conclusion that both models, particularly HFSB, tend to overestimate the extent and intensity of cold 
brightness temperatures, likely due to overestimating high, cold clouds and hydrometeors. 

In summary, the individual valid-time brightness temperature plots reinforce the conclusions drawn from 
the composite images. Both HFSA and HFSB models capture the overall storm structures and temperature 
patterns reasonably well but tend to overestimate the coldness. These differences are more pronounced 
for the HFSB model.  

4. Target diagram 
The target diagram is a graphical tool for assessing model performance by comparing a model's output 
(m) to reference data (r). It displays three statistical metrics: bias (B), unbiased root-mean-square 
difference (RMSD'), and total root-mean-square difference (RMSD). The diagram uses a Cartesian 
coordinate system, with the x-axis representing RMSD' and the y-axis representing B. The distance from 
any point to the origin equals the RMSD, which is related to B and RMSD' by the equation  
RMSD2 = 𝐵𝐵2 + RMSD′2. The target diagram enables the comparison of multiple models, with the best-
performing model being closest to the origin. 

The provided Hurricane Lee target diagrams (Figure 6) compare the predictive performance of models 
HFSA and HFSB over forecast lengths of ALL, 24, 48, 60, and 72 hours. Both models had a negative bias, 
indicating overestimating the coldness. HFSA (red crosses) consistently outperforms HFSB (blue circles) in 
terms of lower total RMSD across all intervals, suggesting it has superior predictive skill. The HFSB model 
has a larger negative bias and a larger variability, compared to HFSA. These diagrams visually and 
quantitatively demonstrate HFSA’s overall better accuracy and lower error compared to HFSB. The same 
conclusion can be drawn for Idalia (Figure 7) and generally for Ophelia (Figure 8), with a notable exception 
of the 48-hour forecast, where HFSA and HFSB performed essentially the same.  



 

 

 

 

 

 

 

Figure 7 Target-Diagrams 
for Hurricane Lee’s 
brightness temperature at 
different forecast lengths: 
ALL, 24h, 48h, 60h and 72h. 
red is HFSA and blue HFSB. 

Figure 6 Target-Diagrams for 
Hurricane Idalia’s brightness 
temperature at different 
forecast lengths: ALL, 24h, 
48h, 60h and 72h. red is HFSA 
and blue HFSB. 



 
5. Taylor diagram 

A Taylor diagram is a graphical tool used to evaluate the performance of different models by comparing 
their outputs to reference data using three key statistical metrics: the Pearson correlation coefficient 
(R), standard deviation (σ), and centered root-mean-square difference (RMSD'). The radial distance from 
the origin represents the model’s standard deviation, the azimuthal angle indicates the correlation 
coefficient between the model and the observations, and the green contours represents RMSD. Closer 
proximity to the reference point (typically labeled "Observation") indicates better model performance, 
with a shorter distance signifying lower error and an angle closer to the reference line indicating higher 

Figure 8 Target-Diagrams for 
Hurricane Ophelia’s brightness 
temperature at different forecast 
lengths: ALL, 24h, 48h, 60h and 
72h. red is HFSA and blue HFSB. 

Figure 9 Taylor-Diagram for 
Hurricane Lee’s brightness 
temperature at different 
forecast lengths: ALL, 24h, 48h, 
60h and 72h. red is HFSA and 
blue HFSB. 

 



correlation. Taylor diagrams offer a concise and intuitive way to compare the predictive skill of multiple 
models by visualizing their accuracy and variability relative to observed data. 

 

 

 

The Taylor diagram (Figure 9) compares the predictive performance of models HFSA and HFSB over 
forecast lengths of 24, 48, 60, and 72 hours for Hurricane Lee. Across all intervals, HFSA (red triangles) 
consistently outperforms HFSB (blue triangles). HFSA shows higher correlation coefficients, indicated by 

Figure 10 Taylor-Diagram for 
Hurricane Idalia’s brightness 
temperature at different 
forecast lengths: ALL, 24h, 
48h, 60h and 72h. red is HFSA 
and blue HFSB 

 

Figure 11 Taylor-Diagram 
for Hurricane Ophelia’s 
brightness temperature at 
different forecast lengths: 
ALL, 24h, 48h, 60h and 
72h. red is HFSA and blue 
HFSB. 



its closer proximity to the reference point (observations) along the x-axis reflecting more accurate 
variability in predictions. The green contours further highlight HFSA's lower RMSD’, demonstrating its 
superior error performance. Specifically, all-time and at 24, 48, 60, and 72 hours, HFSA remains closer to 
the origin, indicating better alignment with observed data. These consistent trends across all forecast 
lengths underscore HFSA's robust predictive skill and reliability over HFSB. 

The Taylor diagrams for Hurricanes Idalia (Figure 10) and Ophelia (Figure 11) show similar conclusions to 
those of Hurricane Lee. For both storms, HFSA consistently demonstrates superior performance compared 
to HFSB across all forecast lengths. HFSA maintains higher correlation coefficients and lower standard 
deviations, indicating more accurate and reliable predictions. The consistent trends across different 
storms reinforce HFSA's robustness and reliability as a predictive model, effectively summarized by the 
Taylor diagrams' visual representation of superior accuracy and consistency in model predictions 
compared to HFSB. 

6. FSS  
The Fractions Skill Score (FSS) is a spatial verification metric developed to evaluate the performance of 
high-resolution forecasts of precipitation or other spatially continuous fields. Traditional point-to-point 
verification metrics often struggle with the "double penalty" issue when applied to high-resolution 
forecasts, where small spatial displacements are harshly penalized. The FSS addresses this by comparing 
the forecast and observed fields over a neighborhood or region, rather than at individual grid points. 

The FSS compares the forecast and observed fractional coverages of an event (e.g., brightness 
temperature exceeding a threshold) within successively larger spatial scales or neighborhoods. It is 
calculated as: 

 

Where N is the number of neighborhoods, Fi is the forecast fraction, and Oi is the observed fraction for 
neighborhood i. The numerator represents the mean squared difference between forecast and observed 
fractions. The denominator is the largest possible value this could take. 

The FSS allows users to identify the spatial scales at which a forecast exhibits useful skill by examining the 
variation of FSS with neighborhood size. An FSS close to 1 at small scales indicates the forecast captured 
small-scale features well. 



The Fractions Skill Scores (FSS) shown in Fig. 12 illustrate the accuracy of two forecasting methods, HFSA 
(solid lines) and HFSB (dashed lines), over varying forecast lengths and thresholds for Hurricane Idalia. 
Initially, both methods exhibit high skill, but HFSA consistently demonstrates superior performance with 
higher FSS values across all thresholds. As forecast length increases, FSS generally declines for both 
methods, indicating reduced skill. This decline is more pronounced in HFSB, which shows lower initial FSS 
values and a steeper drop-off compared to HFSA. However, there are notable exceptions to this trend: 
HFSA at the 250 K threshold shows a modest increase in FSS between 20 and 35 hours, and HFSB at the 
260 K threshold exhibits a similar rise between 35 and 55 hours. These temporary improvements may 
reflect periods when storm structure became more organized or when synoptic forcing improved model 
coherence. They might also indicate transitions out of model spin-up phases or temporary alignment with 
observed mesoscale cloud evolution. However, it is hard to diagnose the exact cause without extensive 
analysis of the storm environment, model dynamics, and observational data during those periods. 

The performance difference is notable across all thresholds, particularly at higher ones (260 and 270), 
where HFSA maintains significantly better skill over longer periods. For the 230 K threshold, both methods 
exhibit no skill, with FSS values near zero across all forecast lead times. At 240 K, skill declines rapidly, 
approaching zero around 20 hours, though HFSA still outperforms HFSB. At the 250 K threshold, both 
methods maintain better performance, with FSS values remaining generally above 0.4 up to 50 hours, 
again with HFSA showing consistently higher skill. For thresholds 260 and 270, the best performance is 
observed, with HFSA maintaining FSS values above 0.8 initially and remaining relatively stable over time, 
whereas HFSB, while performing well, lags behind HFSA. Overall, HFSA exhibits more stable performance, 
particularly for forecast lengths beyond 80 hours, highlighting its superior long-term reliability. In contrast, 
HFSB shows more variability and a more significant drop in skill, especially at higher thresholds. This 
analysis underscores HFSA’s reliability over HFSB, demonstrating better skill retention and higher accuracy 

Figure 12 Fractions Skill Score (FSS) vs. Forecast Length for Different Thresholds for Hurricane Idalia brightness temperature. 



across various thresholds and forecast lengths. Therefore, for longer-term forecasts, particularly with 
higher thresholds, HFSA proves to be the more dependable method, consistently delivering better 
performance and maintaining higher skill levels over extended periods. This suggests that HFSA is more 
effective in capturing the spatial distribution of forecasted events, making it the preferred choice for 
accurate weather forecasting. 

The FSS figure for Hurricane Lee (Figure 13) corroborates the earlier findings, revealing a similar pattern 
of HFSA's superiority over HFSB. Initially, both methods exhibit high skill, but HFSA consistently shows 
higher FSS values across all thresholds, indicating greater initial accuracy. As forecast length increases, FSS 



values for both methods have a generally declining trend, but HFSA's decline is less steep compared to 

Figure 13 Fractions Skill Score (FSS) vs. Forecast Length for Different Thresholds for Hurricane Lee’s brightness temperature. 

Figure 14 Fractions Skill Score (FSS) vs. Forecast Length for Different Thresholds for Hurricane Ophelia’s brightness temperature. 



HFSB. For threshold 230, both methods see a gradual drop in FSS, nearing zero by 120 hours, with HFSA 
maintaining higher scores. At threshold 240, HFSA continues to outperform HFSB, and for threshold 250, 
both methods sustain better skill, with HFSA leading. Higher thresholds (260 and 270) again highlight 
HFSA's advantage, maintaining FSS values close to or above 0.8 initially and showing stable performance 
over longer periods. HFSB, while performing well at these thresholds, consistently trails HFSA. For forecast 
periods beyond 80 hours, HFSA demonstrates greater stability and less variability, particularly at higher 
thresholds. 

The previous FSS analyses showed HFSA consistently outperforming HFSB. However, the FSS figure for 
Ophelia (Figure 14) reveals a mixed performance. Initially, HFSA generally has higher FSS values, but as 
forecast length increases, the results vary by threshold. For the threshold of 240, HFSA maintains a slight 
edge before 60 hours. At thresholds above 250, both methods perform similarly. This mixed performance 
may be due to Ophelia's shorter duration — and hence a smaller sample size — as well as its weaker 
intensity compared to the other storms, resulting in a less organized vortex and a less conclusive FSS 
analysis. 

7. Equitable Threat Score  

The Equitable Threat Score (ETS), also known as the Gilbert Skill Score (GSS), is a widely used 
verification metric in the field of meteorology and climatology for assessing the skill of binary 
forecasts. It provides a means to quantify the performance of a forecast system by comparing 
the number of correctly predicted events (hits) against the number of expected hits due to 
random chance. The ETS is particularly useful when evaluating the accuracy of precipitation 
forecasts, as it considers the climatological frequency of the event being predicted. The score 

ranges from -1/3 to 1, with 0 indicating no skill and 1 representing a perfect forecast. 

Figure 13 Equitable Threat Score vs. Forecast Length for Different Thresholds for Hurricane Idalia’s 
brightness temperature. 



Figure 15 shows Hurricane Idalia’s ETS plotted against the forecast length (in hours) for different 
precipitation thresholds. Each color represents a specific threshold value, ranging from 230 to 
260 in increments of 10. For each threshold, there are two lines: a solid line representing the 
HFSA model and a dashed line representing the HFSB model. As the forecast length increases, 
the ETS generally decreases for all thresholds and both models, indicating that forecast skill 
deteriorates with increasing lead time. Similar to Figure 12, there are exceptions to this trend—
for instance, the ETS shows a modest increase for the HFSA threshold of 250K between 20–35 
hours and for the HFSB threshold of 260K between 30–50 hours. Furthermore, both models 
exhibit near-zero forecast skill for brightness temperatures below 230K. The ETS values are higher 
for higher thresholds (e.g., 260) and decrease as the threshold decreases (e.g., 230). This suggests 
that both models perform better at predicting higher infrared brightness temperatures 
compared to lower temperatures. 

The HFSA model (solid lines) generally outperforms the HFSB model (dashed lines) for most 
thresholds and forecast lengths, as indicated by the higher ETS values. The difference in 
performance between the two models appears to be more pronounced at shorter forecast 
lengths (up to around 40 hours) and for higher thresholds. At longer forecast lengths (beyond 80 
hours), the difference in performance between the two models diminishes, and their ETS values 
converge for most thresholds. The ETS values for both models and all thresholds are relatively 
low (below 0.6), suggesting that there is significant room for improvement in the infrared 
brightness temperature forecasting skill of these models. 

In summary, the HFSA model demonstrates better overall performance compared to the HFSB 
model as measured by ETS, particularly for higher infrared brightness temperature thresholds 

Figure 14 Equitable Threat Score vs. Forecast Length for Different Thresholds for Hurricane Lee’s brightness 
temperature. 



and shorter forecast lengths. However, both models struggle to maintain high ETS values at 
longer forecast lengths and lower thresholds. 

Hurricane Lee (Figure 16) exhibits higher ETS values than Hurricane Idalia, across all thresholds 
and forecast lead times for both models, indicating that the forecasts for Lee were generally more 
skillful.  The HFSA model continues to outperform the HFSB model, particularly at shorter lead 
times and higher thresholds. However, the performance gap between the two models appears 
to be less pronounced for Hurricane Lee than for Idalia. 

Hurricane Ophelia ETS (Figure 17) were generally lower than those in the Lee plot (Figure 16)  but 
higher than those in the Idalia plot (Figure 15). The HFSA model tended to outperform the HFSB 
model across most thresholds and forecast lengths, although the difference in their performance 
was less pronounced and there are forecast times and thresholds where HFSB slightly exceeded 
HFSA.  

Conclusion 
 

Based on the comprehensive analysis of the HFSA and HFSB models' performance in predicting infrared 
brightness temperatures for Hurricanes Idalia, Lee, and Ophelia, several key conclusions can be drawn. 
The statistical metrics employed, including the Probability Density Function (PDF), composite images, 
target diagrams, Taylor diagrams, Fractions Skill Score (FSS), and Equitable Threat Score (ETS), generally 
demonstrate that the HFSA model outperforms the HFSB model across various thresholds and forecast 
lengths. 

Figure 15 Equitable Threat Score vs. Forecast Length for Different Thresholds for Hurricane Ophelia’s 
brightness temperature. 

 



The PDF analysis revealed that both models tend to overestimate the cloud coverage and height, leading 
to larger cold temperature regions compared to the observed GOES-R satellite data. However, this 
discrepancy was more pronounced in the HFSB model than in the HFSA model. The composite images 
further corroborated these findings, with the HFSB plots appearing noticeably darker than the observed 
data, indicating a systematic bias towards overestimating the coldness of the brightness temperatures 
and, consequently, the extent of high, cold clouds and hydrometeors. 

The target diagrams provided a quantitative assessment of the models' performance, with the HFSA 
model consistently exhibiting lower total RMSD values across all forecast intervals, suggesting superior 
predictive skill. The HFSB model, on the other hand, showed larger negative biases and greater variability 
compared to the HFSA model. Similarly, the Taylor diagrams demonstrated that the HFSA model maintains 
higher correlation coefficients and lower standard deviations, indicating more accurate and reliable 
predictions. 

The FSS analysis further highlighted the HFSA model's superior performance. The HFSA model maintained 
higher skill levels over extended periods, showing less pronounced skill degradation over time compared 
to the HFSB model. This trend was consistent across Hurricanes Idalia and Lee, although the analysis of 
Hurricane Ophelia revealed a mixed performance, possibly due to the storm's shorter duration and 
weaker intensity. 

Finally, the ETS analysis confirmed the HFSA model's better overall performance compared to the HFSB 
model, particularly for higher infrared brightness temperature thresholds and shorter forecast lengths. 
However, both models struggled to maintain high ETS values at longer forecast lengths and lower 
thresholds, indicating room for improvement in their forecasting skill. 

In conclusion, the comprehensive evaluation of the HFSA and HFSB models' performance in predicting 
infrared brightness temperatures for three Atlantic hurricanes clearly demonstrates the superiority of the 
HFSA model. The HFSA model consistently outperforms the HFSB model across various statistical metrics, 
thresholds, and forecast lengths, exhibiting better predictive skill, lower biases, and higher reliability. 
However, both models show a tendency to overestimate cloud coverage and height, with this discrepancy 
being more evident in the HFSB model. Despite the HFSA model's better performance, there remains 
significant room for improvement in the forecasting skill of both models, particularly at longer forecast 
lengths and lower thresholds. Future research should focus on refining the models' parameterizations and 
algorithms to address these limitations and enhance their overall predictive capabilities. Additionally, 
extending the analysis to a larger sample of storms and exploring the models' performance in different 
basins and under varying environmental conditions would provide a more comprehensive assessment of 
their strengths and weaknesses, ultimately contributing to the development of more accurate and reliable 
hurricane forecasting tools 

Discussions 
1. Uncertainties 

While this study provides valuable insights into the performance of the HFSA and HFSB models in 
predicting infrared brightness temperatures for three Atlantic hurricanes, it is crucial to acknowledge and 
discuss the uncertainties associated with the analysis and results. 



An additional source of uncertainty arises from differences between the HFSA and HFSB configurations 
beyond the microphysics schemes. While our primary focus was on the impact of GFDL single-moment 
(HFSA) versus Thompson double-moment (HFSB) microphysics, other distinctions—such as the boundary 
layer parameterization settings (e.g., `tc_pbl=1` in HFSB) and tuning for entrainment in HFSA—may have 
contributed to the observed differences. Furthermore, both models were run with cycled data 
assimilation, which could influence the initial conditions and model performance. These factors introduce 
complexities in attributing differences solely to microphysics, and future studies should explore the full 
configuration space to better isolate individual contributions. Furthermore, uncertainty can arise from the 
compatibility between the microphysics schemes used in the models and the assumptions within the 
Community Radiative Transfer Model (CRTM). HFSA and HFSB use the GFDL and Thompson microphysics 
schemes, respectively, which differ in their representation of hydrometeors. While CRTM provides 
tailored optical property tables for each scheme, mismatches in particle size distributions, densities, and 
phase assumptions may still occur. These inconsistencies can affect the accuracy of the simulated 
brightness temperatures and lead to biases in model–observation comparisons, representing an inherent 
limitation in satellite-based model verification given the current state of the art. 

Uncertainty also stems from the limited sample size of hurricanes considered in the study. The evaluation 
focused on three specific storms: Hurricanes Idalia, Lee, and Ophelia. Although these storms provided a 
diverse set of conditions for assessing the models' performance, they may not be fully representative of 
the wide range of hurricane characteristics and behaviors observed in the Atlantic basin. Extending the 
analysis to a larger sample of storms across multiple seasons would help to reduce this uncertainty and 
provide a more robust assessment of the models' capabilities. 

Another source of uncertainty arises from the inherent limitations of the satellite observations used as 
reference data. The GOES-R satellite imagery, while providing high-resolution measurements of infrared 
brightness temperatures, may be subject to various sources of error, such as instrument noise, calibration 
uncertainties, and atmospheric attenuation. These errors can introduce discrepancies between the 
observed and simulated brightness temperatures, potentially affecting the evaluation of the models' 
performance. 

The study also relies on a set of statistical metrics to quantify the models' performance, including the PDF, 
composite images, target diagrams, Taylor diagrams, FSS, and ETS. While these metrics provide valuable 
information about the models' skill and accuracy, they may not capture all aspects of the models' behavior 
and may be sensitive to the choice of thresholds and forecast lengths. The use of additional metrics or the 
exploration of alternative evaluation frameworks could help to reduce the uncertainty associated with 
the choice of performance measures. 

Moreover, the study focuses on the evaluation of infrared brightness temperatures as a proxy for cloud 
coverage and height. While this approach provides valuable insights into the models' ability to simulate 
hurricane structure and intensity, it does not directly assess their performance in predicting other critical 
hurricane characteristics, such as wind speed, precipitation, and storm surge. Integrating additional 
variables and evaluation metrics could provide a more comprehensive assessment of the models' 
uncertainties and limitations. 

Finally, the study does not explicitly address the potential impact of uncertainties in the initial conditions 
and boundary conditions used to drive the HFSA and HFSB models. Errors in the input data, such as 
atmospheric profiles, sea surface temperatures, and wind fields, can propagate through the models and 



influence their predictive skill. Quantifying the sensitivity of the models' performance to these 
uncertainties would provide valuable information for guiding future model development and 
improvement efforts. 

In conclusion, while this study offers important insights into the performance of the HFSA and HFSB 
models in predicting infrared brightness temperatures for Atlantic hurricanes, it is essential to recognize 
and consider the uncertainties associated with the analysis and results. Addressing these uncertainties 
through expanded storm samples, additional evaluation metrics, and sensitivity analyses will strengthen 
the robustness of the findings and contribute to the ongoing efforts to improve hurricane forecasting 
capabilities. 

2. Connection to QPF T&E 
The conclusions obtained in this study, which focused on evaluating the HFSA and HFSB models' 
performance in predicting infrared brightness temperatures, can indirectly contribute to improving 
quantitative precipitation forecasting (QPF) for hurricanes. While the study does not directly assess 
precipitation forecasts, the insights gained from analyzing the models' ability to simulate cloud coverage 
and height can inform efforts to enhance QPF accuracy. 

One of the key findings of the study is that both the HFSA and HFSB models tend to overestimate cloud 
coverage and height compared to the observed GOES-R satellite data, with the HFSB model showing a 
more pronounced bias. This overestimation of cloud extent and coldness can have implications for QPF, 
as the presence and characteristics of clouds are closely linked to precipitation processes in hurricanes. 
By identifying and quantifying these biases, the study highlights areas where the models' 
parameterizations and algorithms could be refined to improve their representation of cloud physics and 
microphysics, which in turn can lead to better QPF performance. 

Moreover, the study demonstrates that the HFSA model consistently outperforms the HFSB model in 
predicting infrared brightness temperatures across various thresholds and forecast lengths. This finding 
suggests that the HFSA model may have a more accurate representation of the atmospheric processes 
governing cloud formation and evolution in hurricanes. By extension, the HFSA model's superior 
performance in simulating cloud characteristics could potentially translate to better QPF skill, as the 
accurate prediction of cloud structure and intensity is a crucial prerequisite for reliable precipitation 
forecasts. 

The evaluation metrics employed in the study, such as the FSS and ETS, provide valuable information 
about the models' ability to capture the spatial distribution and accuracy of predicted features. While 
these metrics were applied to infrared brightness temperatures in this study, they can also be used to 
assess the skill of QPF forecasts. The insights gained from analyzing the models' performance using these 
metrics can guide efforts to improve the spatial and temporal accuracy of precipitation predictions in 
hurricanes. 

Furthermore, the study highlights the challenges associated with maintaining high forecast skill at longer 
lead times and lower thresholds, which is a common issue in QPF as well. By identifying these limitations, 
the study underscores the need for continued research and development efforts to improve the models' 
ability to predict precipitation accurately over extended forecast periods and for a range of intensity 
thresholds. 



In conclusion, while the current study focuses on evaluating the HFSA and HFSB models' performance in 
predicting infrared brightness temperatures, the conclusions drawn from this analysis can indirectly 
contribute to improving QPF for hurricanes. The insights gained into the models' biases, relative 
performance, and limitations in simulating cloud characteristics can inform targeted efforts to refine the 
models' parameterizations, algorithms, and QPF capabilities. By addressing the identified issues and 
leveraging the superior performance of the HFSA model, researchers and forecasters can work towards 
enhancing the accuracy and reliability of quantitative precipitation forecasts for hurricanes, ultimately 
supporting better decision-making and preparedness efforts in the face of these severe weather events. 

Future plan  
Sensitivity to Microphysics Schemes and Diagnostics Studies: While the contrasting GFDL and Thompson 
microphysics schemes were evaluated, exploring the use of additional microphysics parameterizations 
could identify an optimal configuration for hurricane cloud/precipitation prediction. Conducting targeted 
diagnostics studies is recommended to gain deeper insights into how the different microphysics 
assumptions influence processes like condensation, evaporation, hydrometeor evolution, and 
precipitation efficiencies. Process-oriented diagnostics, such as analyzing the models' representation of 
convective/stratiform rainfall partitioning, ice/liquid hydrometeor profiles, and latent heating structures, 
could pinpoint strengths and deficiencies in the schemes. Such investigations may reveal compensating 
errors and provide guidance for microphysics scheme development tailored to tropical cyclone conditions. 
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