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1. Introduction 

The new frontier for improvement in NWP models from the point of view of 

defining the model initial state is the full use of available satellite and ground-based data, 

including cloud and precipitation-affected observations. Current satellite-based 

observations are rich in global cloud-related information. New sensors such as the 

Moderate Resolution Imaging Spectroradiometer (MODIS) on board the Terra and Aqua 

satellites, the cloud profiling radar (CPR) on board CALIPSO are revealing the complex 

two-dimensional and three-dimensional structures of clouds. The challenge now is to 

extract the largest amount of information about the cloudy atmosphere from this wealth 

of data by using state-of-the art modeling and assimilation systems. 

The assimilation of cloud observations, using global or regional numerical 

weather prediction (NWP) systems, has been hampered by several factors (Errico et al., 

2007). To date, a large percentage of satellite observations affected by clouds and 

precipitation are not included in global or regional analysis systems mainly because of 

the difficulties in defining background error statistics for cloud control variables. As a 

result, cloudy areas are less constrained by observations than cloud-free areas. 

In this study we attempt to demonstrate that the prototype ensemble-based data 

assimilation system is technically ready to assimilate cloud observations in TC core area, 

thanks to the inclusion of a simplified moist physics schemes. As a first step, the AMSU-

A radiances are directly assimilated. It is recognized that dealing with the raw radiance 

measurements through the appropriate observation operators allow for both a more 

consistent treatment of the observations within the model framework and a full utilization 

of the model sensitivity to observations (Vukićević et al. 2004; Moreau et al. 2004). 

Thus, one of the objectives of this project is to examine the performance of the direct 

assimilation of AMSU-A radiances in TC core area. The next section describes the 

general methodology and briefly provides details about the HVEADS system. Section 4 

introduces the components of inclusion of cloudy radiances, Section 4 presents the 

outcome of the cloudy radiance assimilation experiment with respect to a reference run. 

The background error covariance from the HVEDAS (i.e., MLEF-HWRF) will be 
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examined in this effort. Several measures of analysis performance are presented, 

including the standard assessment of an improved model fit to the assimilated 

observations. The impact of the cloud observations on key atmospheric parameters such 

as temperature, humidity, and cloud water content is also shown. A summary and 

conclusions are given in the final section. 

 

2.Data assimilation algorithm 

a. Basic equations 

We employ the maximum likelihood ensemble filter (MLEF) data assimilation 

approach, developed at Colorado State University (Zupanski 2005, Zupanski and 

Zupanski 2006, Zupanski et al. 2008). The MLEF seeks a maximum likelihood solution 

of the posterior probability density function (PDF), which is equivalent to seeking a 

minimum of the following cost function (under the standard assumption of Gaussian 

PDFs for the observation and forecast errors): 

J(x) 
1

2
(x  x f )T Pf

1(x  x f )
1

2
[y H(x)]T R1[y H(x)] (1)  

The cost function (1) measures the differences between the model and the 

observations, where vector y  of dimension Nobs (number of observations) is the 

observation vector, vector x  of dimension NS  (model state dimension) is the model state 

vector, non-linear operator H  is an observation operator, matrix R  is the observation 

error covariance and matrix Pf  is the forecast error covariance. The index ‘f’ refers to the 

forecast (used as a first guess). Superscript ‘T’ denotes transpose. The matrix Pf  is 

defined in a subspace spanned by ensemble forecast perturbations as 

Pf
1/ 2  (p1

f p2
f  pNE

f ), pi
f  M(xa  pi

a )  M(xa) (2) 

where M denotes the non-linear forecast model, the superscript ‘a’ refers to the 

analysis and NE  is the number of ensembles. The vectors pi
a  and pi

f  represent columns 



DTC visitor project 

3	|	P a g e 	
	

of the square roots of the analysis and forecast error covariances, respectively. The square 

root of the analysis error covariance is defined at the analysis solution xa  as  

Pa
1/ 2  Pf

1/ 2[INE
 (Z(xa ))T Z(xa)]1/ 2 (3) 

where INE
 is an NE  NE  identity matrix and the matrix Z(x a )  is the observation 

perturbation matrix at the analysis solution, defined by the following equation: 

Z(xa )  [z1(xa ) z2(xa ) ... zNE
(xa )]

zi(xa )  R1/ 2[H(xa  pi
f ) H(xa )] (4)

 

The inverse square root calculation in equation (3) is obtained via eigenvalue 

decomposition of the matrix INE
 Z(xa)T Z(xa). It is calculated as a symmetric square 

root, which is unique (e.g. Wang et al. 2004, Zupanski 2005, Wei et al. 2006). 

We also calculate, as a diagnostic, the so-called information matrix C, of 

dimensions NE  NE , defined in ensemble subspace as  

C  Z(xa )T Z(xa ) (5) 

which we use to calculate information measures, such as degrees of freedom for signal 

(DFS) defined as d  (e.g. Shannon and Weaver 1949, Rodgers 2000, Zupanski et al. 

2007) 

d 
i

2

(1 i
2)i1

NE

 (6)  

where index ‘ i ’ denotes an ensemble member and i
2 are eigenvalues of the information 

matrix C. 

The 2 validation diagnostics (e.g., Menard et al. 2000), developed to validate the 

Kalman filter performance, can also be used in the context of ensemble-based data 

assimilation. This diagnostics evaluates the correctness of the innovation (observation 

minus forecast) covariance matrix R, and the MLEF-computed forecast error covariance
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fP . We adopt the definition used in Menard et al. (2000) - 2 is defined in observation 

space, normalized by the number of observation, 
obsN : 

  
2 

1

Nobs

yk H(xk ) T (HPfH
T R)1 yk H(xk ) 

 

In the MLEF algorithm, the above formula is rewritten as  

  
2 

1

Nobs

R-1/2 yk H(xk )  T

G1 R-1/2 yk H(xk )  
 

Where the matrix G-1 (e.g., its square root) is defined in appendix B in Zupanski (2005), y 

denotes observations, and x is the model forecast. Because of an iterative estimation of 

optimal analysis in MLEF, the forecast x denotes the forecast from the last minimization 

iteration, and the matrix C is calculated about the optimal state. For Gaussian distribution 

of innovations, and linear observation operator H, the conditional mean of 2 should be 

equal to 1. As in Menard et al. (2000), the conditional mean is substituted by a time 

mean. In this effort, the instant values of 2 is calculated at each assimilation cycle. 

Because of the use of a nonlinear model in calculation of Pf, and a statistically small 

sample (i.e., relatively few observations per cycle), one can expect only values of 2 close 

to 1 and not necessarily equal to 1.
 

b. Covariance localization 

Covariance localization (e.g. Houtekamer and Mitchell 2001, Whitaker and 

Hamill 2002, Ott et al. 2004) is an effective way to account for the ‘missing degrees of 

freedom’ in ensemble-based data assimilation systems. By ‘missing degrees of freedom’ 

we mean that the number of degrees of freedom in the model state variable is much larger 

than the affordable ensemble size on a given computer. This often happens in 

applications to complex weather forecast model where the size of the model state variable 

could easily reach the order of 107-108, while the computationally feasible ensemble size 

can hardly be increased beyond the order of 102. In our experiments the size of the model 
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state vector x  is NS  3107 , thus it is several orders of magnitude larger than the 

ensemble sizes employed (32 members). 

We adopted the covariance localization approach based on the so-called ‘local 

domains’, first proposed by Ott et al. (2004). In this approach, the entire model domain is 

partitioned into smaller local domains and the analysis solution is defined independently 

for each local domain. Due to the use of the globally defined forecast error covariance 

( Pf ), overlapping local domains and/or some kind of smoothing, the assumption of 

‘independent local domains’ is only partially enforced (e.g. Ott et al. 2004, Yang et al. 

2009). The size of the local domains typically reflects the spatial scales of the processes 

being analyzed (e.g. extratropical or tropical cyclones, ocean currents, carbon transport), 

thus the assumption that the local domain are, to a degree, independent is considered 

appropriate. This covariance localization approach was successfully used, in slightly 

different variants, in many applications (e.g. Hunt et al. 2007, Miyoshi and Yamane 2007, 

Yang et al. 2009, Zupanski 2009a,b). We use the variant explained in Zupanski (2009a,b). 

Unlike the original Ott et al. (2004) approach, we use non-overlapping local domains, 

which ensure a well-posed minimization problem in each local domain and provide a 

straightforward definition of information measures, since each observation belongs to a 

single local domain and thus contributes to the information measures uniquely (Zupanski 

2009a). A disadvantage of using non-overlapping local domain is in possible creations of 

discontinuities at the boundaries between local domains. To reduce these discontinuities, 

smoothing of the analysis weights is applied (e.g. Yang et al. 2009, Zupanski 2009a, b). 

The use of non-overlapping local domains, in conjunction with the smoothing, provided a 

satisfactory solution to the two contradictory requirements: to define a well-posed 

minimization problem over each local domain and to reduce discontinuous transitions 

from one local domain to another. 

However, vertical error covariance localization is not used in this application of 

the MLEF, since it can also destroy the true vertical correlations and dynamical balances 

that exist in a hurricane (or any other well-formed cloud/precipitation system), and 

possible interfere with optimal use of microwave radiance observations due to the fact 

that there is no explicit vertical position. 
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It is worth mentioning that in the current implementation of the GSI-hybrid 

(Wang, 2010), the ensemble covariance is incorporated in the variational framework 

through the extended control variable method (Lorenc 2003; Buehner 2005; Wang et al. 

2007, 2008), and the ensemble covariance localization is conducted in the model state 

variable space (i.e., model space localization); therefore, no assumption about the explicit 

position of the observation is required during this procedure of the covariance 

localization. For widely used EnKFs, explicit positions of the observations are needed to 

apply covariance localization (so-called observation space localization; Hamill et al. 

2001). For satellite radiances, for which there is no explicit vertical position, such 

observation space localization is thus inappropriate.  

c. Ensemble generation 

How to generate an initial ensemble for regional application of EnDA system 

remains an open question because of the lack of accurate error statistics. The MLEF-

HWRF may be initialized from an existing global or larger-scale ensemble. If a global 

ensemble forecast is not readily accessible, the most common alternative is to derive 

random perturbations from a static variational background error covariance of an existing 

3D/4DVar system (e.g., Barker 2005; Meng and Zhang 2008), or to randomly sample the 

climatological uncertainties of the initial state (Aksoy et al. 2006). For our regional 

application of MLEF in TC vortex scale, random sampling may not be applicable because 

of its balance constraint and large scale. 

To generate the first set of model states, the initial ensemble were generated by 

the time-shifted forecast technique as described in Zupanski et al. (2008). The initial 32-

member ensemble is integrated for 6-h for evolve a flow-dependent forecast error 

covariance matrix before cloud-affected AMSU-A radiances are assimilated using the 

Maximum Likelihood Ensemble Filter. Compared with the commonly used random 

perturbation technique, the time-shifted ensemble perturbations reflect the model 

dynamics more realistically. Notice that the ensembles are initialized by time-shifted 

forecasts only in the first assimilation cycle. In all subsequent cycles the ensemble 

perturbations were defined by the standard ensemble-based covariance update. 
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The region of interest for this study lies within the vicinity of the hurricane inner 

and outer core, where large gradients in pressure, wind velocity, temperature, and 

moisture contribute to most of the forecast uncertainty. With this in mind, all calculations 

are performed in the region of HWRF (2011) inner domain that encompassed the eye, 

eyewall, and outer rainbands. 

 

3. Inclusion of cloud-affected radiances 

a. Cloudy radiance simulation. 

A technique for the assimilation of AMSU-A radiance in the National Centers for 

Environmental Prediction’s (NCEP’s) global data assimilation is described in Zhang et al. 

(2013). Because the radiative transfer model used in the operational GSI does not yet 

allow for cloud/rain effects, it is crucial to properly identify cloud/rain-affected radiances 

using quality control (QC) and bias correction procedures. Both procedures require an 

accurate estimate of the total column cloud water. 

We first define the fraction of ice and liquid cloud as: 

Fraction of ice cloud (F):    F  (0C T) /20, 0  F 1  

Liquid Cloud = Cloud Water  (1-F) 

Ice Cloud = Cloud Water  F 

We take advantage of a prognostic cloud scheme, which use explicitly determined 

condensate to compute cloud radiative properties. For liquid cloud, cloud optical depth, , 

single scattering albedo, , and asymmetry factor, g, are defined as: 

w  LWP(a0w
 a1w

/rew
)

1w  b0w
 b1w

rew
 b2w

rew

2

gw  c0w
 c1w

rew
 c2w

rew

2








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where LWP  is cloud water path in unit of g/m2, and re  is the effective radius of water 

droplet in unit m. The coefficients a , b,  and c  are prescribed using LUT. For ice 

clouds,  ,  , and g are defined as: 

 i  IWP(a0 i
 a1i

/rei
)

1 i  b0 i
 b1i

rei
 b2 i

rei

2

gi  c0 i
 c1i

rei
 c2 i

rei

2









 

where IWP is cloud ice path, and coefficients a, b, and c  are prescribed using LUT. 

The parameterization of effective radius, re , of water droplet is similar to the 

method used by Kiehl et al. (1998) in the NCAR CCM3. We fix re  to a value of 10m 

over the oceans. Over the land, re  is defined as: 

re  5.0 0.25Tc 

Thus, the effective radius of cloud water droplets will reach to a minimum value of 5m 

when temperature Tc  is above 0C, and to a maximum value of 10m when Tc  becomes 

colder than -20C. 

For ice clouds, following Heymsfield and McFarquhar (1996), we have made the 

effective ice droplet radius to be an empirical function of ice water concentration (IWC) 

and environmental temperature as: 

 

where IWC and IWP satisfy: 

IWPZ  IWCdZ
Z

  

rei


(1250 /9.917)IWC0.109 T  50C
(1250 /9.337)IWC0.080 50C  T  40C
(1250 /9.208)IWC0.055 40C  T 30C
(1250 /9.387)IWC0.031 30C  T










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al. 2002). The Met office system already employs a total water control variable in both 

4D-Var and 1D-Var systems. 

c. Inclusion cloud profiles in the first guess fields 

Over open ocean, a retrieved CLW from AMSU-A algorithms provided by Grody 

et al. (2001) are used. First, cloud liquid water (CLW) is derived using (o-g) brightness 

temperature of AMSU measurements at 23.8 and 31.3 GHz (channels 1 and 2). 

    )(ln)(lncos 22110  BsBs TTDTTDDCLW   

Where sT is the surface temperature, and BT , the brightness temperature at frequency at 

 , can be obtained using the radiative transfer equation with absorption models for 

oxygen and water vapor (Rosenkranz, 1998). To ensure that )(Bs TT   under all 

condition KTs 285 is chosen. The coefficients are given as 

265.2

754.0

)cos()]cos(846.1622.2[240.8

2

1

0






D

D

D 
 

The AMSU CLW compares well with ground-based sensors and other satellite 

measurements, although a bias exists between AMSU and TMI when the CLW exceeds 

0.5 mm (Grody et al. 2001). 

d. Bias correction and quality control 

The radiance bias correction procedure may be one of the most important aspects 

of satellite radiance assimilation. In general, satellite channels may be prone to systematic 

errors due to instrument or radiative transfer problems, and these biases need to be 

corrected either before data enters into minimization procedure (statistical-based method, 

Harris and Kelly, 2001) or during minimization procedure (variational-based method, 

Dee and Uppala, 2009). Many research papers deal with the removal of these biases and 

most of them are based on global models and cloud-cleared radiances. Since direct 

assimilation of satellite radiances with the regional application is still in its infancy, our 
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strategy is to take advantage of the radiance bias correction scheme described by Derber 

and Wu (1998), in which predictor coefficients are already generated for cloud-cleared 

AMSU-A data using the NCEP Global Forecast System (GFS) model.  

In NCEP operational GSI, a multi-step quality control (QC) procedure is applied 

to AMSU-A radiance data before data assimilation. First, AMSU-A radiances affected by 

cloud and precipitation are rejected. The cloud and precipitation screening procedure for 

microwave radiance observations in GSI is summarized as follows. The degree of non-

precipitating cloud effect is determined by channel 4 related parameter, factch4, from an 

empirical relationship: 

factch4  clw2  (tbo
ch4  tbc

ch4 )  3 2 

Similarly, the degree of precipitating cloud affect is determined by channel 6 related 

parameter, factch6, from another empirical relationship: 

factch6  dsval2  (tbo
ch6  tbc

ch6)  0.1 2 

where (tbo  tbc)  is the observed minus background brightness temperature after bias 

correction. The gradient of scattering index, dsval  is determined depending on the 

surface type: 

For sea surface: 

dsval  2.410.0098 (tbo
ch1  cbiasnadir

ch1 )  (tbo
ch1  tbc

tb1)0.454  (tbo
ch2  tbc

ch2)  (tbo
ch15  tbc

ch15)  0.1
 

For land surface: 

dsval  0.8 

To account for possible degradation of measurement quality, if factch61, the 

observation is considered affected by precipitation clouds and screened out. If 

factch4>0.5, the observation is considered affected by thick cloud and screened out. As 
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far as screening is concerned, observations in selected channels are rejected (see Table 

1a). 

Other QC steps include the following checks: (i) data over land are rejected due to 

the difficulties of modeling land surface emissivities and temperatures; (ii) all data 

located north of 40N are discarded to avoid the degradation due to sea ice; (iii) inflating 

prescribed observation errors in different situations, such as topography effect, 

transmittance at the top of the model, and surface temperature and emissivity. The final 

QC step includes a general gross check ( li var ) that eliminates any observation for which 

the observation minus background innovation exceeds three times the standard deviation 

of observation error or the prescribed maximum error. 

                              Table 1a. QC steps in subroutine qc_amsua (GSI3.0) 

Category Quality Control steps Action to observations 

qc1 Cloud affected profile (factch4 > 0.5) Toss channel 1-5, 15 

qc2 Inaccurate emissivity/surface temperature estimate 

over sea 

Toss channel 1-5, 15 

qc3 Cloud affected profile (Scattering index factch6  

1.0) 

Toss channel 1-6, 15 

qc4 Inflate observation error over high terrain (>2000m) Inflate channel 6 

observation error 

qc5 Inflate observation error over high terrain (>4000m) Inflate channel 7 

observation error 

        Table 2a. The tossed and assimilated observation for each QC step at 1800 UTC 24 Aug 2010 

 nobs qc1 qc2 qc3 qc4 qc5 ivarl assim 

ASR 75 13 9 21 0 0 158 270 
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CSR 75 1 7 28 0 0 127 321 

Taking the cloud-affected AMSU-A radiance assimilation configuration (ASR) as an 

example, we see there are 75 NOAA-18 AMSU-A profiles (or 759= 675 channel 

observations in channels 1-8, 15) in HWRF inner domain after data thinning, among 

which there are 158 channel observations that failed in the general gross check (ivarl). 13 

profiles were tossed because of cloud affect based on factch4; 9 profiles were tossed 

because of inaccurate emissivity / surface temperature estimate over sea; 21 profiles were 

tossed because of cloud affect based on factch6; 0 profiles have inflated observation error 

because of high terrain (for both > 2000m and > 4000m); There are 270 channel 

observations passed all qc process and were used in analysis. 

Obviously, there are two major factors leading to fewer observations assimilated 

in ASR configuration: qc1 and ivarl. First, in this study we used the prescribed 

observation errors in GSI, which was designed for cloud-cleared radiance application and 

make more observations rejected in the gross check in the ASR configuration. On the 

other hand, the default QC1 step treats more observations as cloud-affected (factch4>0.5) 

in ASR. Ideally, some well-designed observation handling, errors, quality control and 

bias correction may have to be undertaken to address the cloudy radiance assimilation 

related issues (Geer and Bauer, 2011) and provide a weaker observational constraint on 

cloud analysis compared to the operational practice, which is beyond the scope of the 

present study. Nevertheless, the use of the hybrid data assimilation method and cloudy 

observation forward models may help produce more realistic analysis innovation and 

information content than the CSR configuration using the same data assimilation method. 

 

4. Experimental design 

As an initial attempt to reveal the potential of hybrid data assimilation for the 

direct assimilation of satellite radiances in the TC core area, this methodology was 

applied for one major hurricane case, Hurricane Danielle (2010). Danielle spanned the 
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period of 21–30 August 2010 and maintained hurricane strength beginning at 1800 UTC 

23 August. In response to a new weakening in the subtropical ridge over the central 

Atlantic, a decrease in shear led to a gradual strengthening of the storm on 26 August. 

Danielle reached an intensity of 85 kt (1 kt = 0.5144ms-1) at 1200 UTC 26 August with 

minimum central pressure of 973 hPa. Danielle eventually recurved southeast of 

Bermuda, never posing a threat to land. High-resolution visible satellite images from the 

Geostationary Operational Environmental Satellite-13 (GOES-13) (no shown) show that 

the clouds in a mature stage of Danielle are dominated by upper-level cirrus and 

cirrostratus, and there are rough tops of convective clouds penetrating through the smooth 

cirrostratus. At 1215 UTC 26 August, Danielle is an increasingly well-organized storm. 

The most striking feature around that time are the organized cloud bands spiraling 

anticyclonically outward, with a visible eye in the central core. 

Since the aim of this study is to examine the impact of assimilating AMSU-A 

radiances in the TC core area, no other observations were assimilated. This approach 

provides an uncomplicated way to examine analysis increments of microphysical and 

thermodynamic variables induced by AMSU-A radiances. To evaluate the assimilation of 

cloud-affected AMSU-A radiances in the TC core area, two primary experiments are 

designed: 

(i) the control experiment (CTL), which corresponds to the current operational practice of 

no data assimilation in TC core, and 

(ii) sounding and window channel radiance assimilation (all channel radiances; ASR), 

which corresponds to a possible extension of the operational practice to assimilate both 

sounding and window channel radiances in the TC core with the proposed cloudy 

approach in previous section.  

Two sensitivity experiments were also conducted to evaluate the impact of modeling 

clouds, by including cloud-guess profiles, and of omitting cloud-relevant channels in 

observations: 
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(iii) clear-sky radiance (CSR) assimilation, which is similar to ASR, but uses forward 

models in cloud-cleared conditions as the operational setting (i.e., no cloud-guess profiles 

are incorporated in forward models) and 

(iv) sounding channels radiance assimilation (SND), which is similar to ASR, but 

excludes channels with weighting functions peaking below 700 hPa (i.e., channels 1–4 

and 15). Since the lower-level peaking channels are more sensitive to cloud liquid water 

than other temperature sounding channels, the intention of this experiment is to identify if 

the hybrid data assimilation method, by varying the total-column condensate to fit 

channels 1–4, and 15, will improve the exclusive use of the temperature sounding 

channels. Observation errors used in analysis are taken from NCEP statistics. 

Direct assimilation of satellite radiances using hybrid data assimilation with a 

regional model describing the TC core is fairly new and to the authors’ knowledge has 

not yet been evaluated in any of the peer-reviewed literature. This configuration makes it 

more difficult to assess the benefits of satellite radiances because the assimilation cycle 

and model integration time are usually no longer than 3–4 days due to the small domain 

sizes. It is important to include a sufficient number of cycles so that (i) the accumulated 

statistics on analysis–forecast performance are meaningful and (ii) representative storm 

features are sampled. The MLEF-HWRF cycling system provides enough cases and 

addresses both of these issues. A total of nine cycles for each experiment were conducted, 

starting at 1200 UTC 24 August 2010, and ending at 1800 UTC 26 August 2010. The 

assimilation cycle interval is 6 h. The HWRF initial conditions at 1200 UTC 24 August 

2010 are interpolated from the global analysis fields from GFS. The analysis is modified 

by the removal of the GFS vortex and the insertion of a bogus vortex based on theoretical 

considerations and HWRF climatology. This vortex is relocated and modified so that the 

initial storm position, structure, and intensity conform to the National Hurricane Center 

(NHC) storm message provided by the TC vitals. In the 2012 operational HWRF system, 

the storm is further modified using observations and the GSI system in the storm’s 

environment. In this study, our initialization scheme skips the GSI analysis step in the 

operational HWRF vortex initialization. Note that the modified HWRF vortex 

initialization is only used at the start time of MLEF-HWRF cycling runs to restrict the 
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simulated storm. Once the MLEF-HWRF cycling runs begin, the analysis increments are 

influenced only by AMSU-A radiance assimilation within MLEF. 

A 32-member ensemble is used in each experiment; thus, the ensemble size is 

several orders of magnitude smaller than the size of the control variable. To increase the 

number of degrees of freedom for the signal (DFS) in the assimilation, we employ error 

covariance localization (Yang et al. 2009) in the analysis, which includes the 

interpolation of observation weights in ensemble space. No vertical error covariance 

localization is applied in this study because of the possible interference with the optimal 

use of microwave radiances due to the fact that there is not explicit vertical position. 

Additionally, two minimization iterations of the nonlinear conjugate-gradient algorithm 

(Zupanski et al. 2008) were used in the data assimilation experiments. 

 

5. Results 

In this section, we first compare the simulated TBs with the measured 

observations under different forward model assumptions. Then, we investigate the 

structure of the MLEF flow-dependent error estimations and the implications for the 

cloudy satellite data assimilation. Finally, we show how different configurations can 

influence the accuracy of TC intensity and structure analyses, as well as short-range 

forecasts. We verify HWRF (2011) inner-domain forecasts through the 54-h forecasts 

period against various observations (e.g., NHC best-track data and satellite data), and 

examine information measures of AMSU-A radiances. Finally, we evaluate the 

sensitivity of the information content to channel selection and the forward model errors. 

a. Validation of the radiance simulations 

In Figs.1 and 2, the observed NOAA-18 AMSU-A radiances in the HWRF(2011) 

TC core area are compared to those simulated by the CRTM forward model with and 

without the inputs of cloud content profiles retrieved from the first guess. Since no bias 

correction is applied in this step, these comparisons allow for quantifying forward model 

biases based on different assumptions. Due to the low surface emissivity over the ocean 
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and the sensitivity to the surface temperature (or emissivity), TBs fields simulated from 

cloud-cleared CRTM at channels 1-3 and 15 (open black dots in Fig.1) appear to have a 

cold bias compared to the measured TBs. However, the inclusion of modeled clouds, 

which have higher emissivity, results in a significant “warming” for warmer atmospheres. 

Obviously, the overall agreement between the measured and simulated radiances with 

cloudy radiance simulation is more reasonable for cloudy and rainy conditions. Since 

channels 4-8 are responsive to average air temperature and atmospheric constituents at 

increasingly higher altitudes through the troposphere, the simulated TBs are less sensitive 

to the inclusion of modeling clouds (Fig.4) compared with those of window channels. It 

is also evident that some of the simulated cloudy TBs in channels 5 and 6 have cold 

biases, although these observations are not ingested into the analysis. The biases are 

presumably due to the effects of the scattering of large ice/liquid cloud particles that 

survived from the default quality control procedures. 

We further compare the TBs statistics after using cloud-cleared bias correction 

(BC) and quality control (QC) procedures. In Fig.3, we demonstrate that the prescribed 

BC scheme has a competitive degree of performance in the cloudy radiance simulation. 

Furthermore, the resulting distributions after BC and QC are Gaussian, with the 

maximum number of observations at or near zero, which further confirms that the 

agreement between the observed and simulated TBs are very good. Simulations without 

cloud profile inputs generally have low biases, and these errors are only marginally 

increased in cloudy simulations. Also notice that due to the use of operational QC 

procedures, the AMSU-A observations are removed if thick clouds or precipitation is 

detected, which is based on the retrieved cloud liquid water and a retrieved scattering 

index. Therefore, our assimilation results are valid only for nonprecipitating thin clouds, 

which are also evident in Fig.4. In Figs.4e-h, the areas of significant cloud absorption are 

highlighted by positive departures, since cloud-cleared radiative transfer simulation for 

these lower-level peaking channels underestimates the atmospheric contribution added by 

relatively warm clouds over the radiometrically cold surface. However, a colder 

temperature departure is evident in Figs.4a-d. It is worth mentioning that the main 

differences between the two simulations occur when thick clouds or precipitating 

conditions prevail, even though only nonscattering/nonprecipitating clouds are 
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Assimilation statistics in Table 2 shows that the observations minus the analysis 

(OMA) RMS errors over the whole data assimilation period are indeed lower than the 

observations minus the background (OMB) ones for almost all active channels in the 

ASR experiment, indicating a positive impact of analysis. Similar results can be found in 

other radiance assimilation experiments. The forecast tracks of Danielle obtained from 

the MLEF-HWRF 6-h cycling system are also compared with the NHC best-track data 

(Fig. 8). The forecast tracks generally agree with the observed track, in which the 

observed storm turned northwestward later on 25 August. 

To further demonstrate the system’s capability in reproducing rapid deepening of 

Danielle, the time series of the minimum mean sea level pressure (MSLP) 6-h forecasts 

are compared with the NHC best-track data (Fig.9). Since the 6-h forecast initialized with 

the analysis obtained by the radiance assimilation at a previous analysis time was used as 

a background field, the impact of AMSU-A radiance observations propagates gradually 

into the atmospheric levels, where no observations are available (e.g., the MSLP fields).  

The HWRF vortex initialization tends to overestimate the MSLP of Danielle at the start 

time of the data assimilation (i.e., 1200 UTC 24 August 2010) in this study. Although the 

CTL produced a deeper storm than was observed during the 54-h data assimilation period, 

the MSLP forecast trend is comparable to the observations. For both the ASR and CSR 

experiments, during the first 24-h period, the simulated MSLP decreased at a rate slower 

than the CTL experiment, and more similar to the observed. During the last 30 h, the 

storms in CSR and SND keep weakening, while the deepening trend of the ASR storm 

became closer to the observed after cycle 5, and eventually matched the best-track storm 

MSLP after cycle 8. The difference is apparently due to the unique information extraction 

capability of the ASR approach. 

Now let us shift our attention to the verification of the storm vortex-scale features, 

using the combined sum of the hydrometeor variables (i.e., CWM). The simulated 

column-integrated CWM indicates how well the model predicts the precipitation field 

and the rainfall rate. Figure 10a displays a MetOp-A AMSU-A-retrieved precipitation rate 

map valid at bout 1h later than those in Figs.10b-e. It is interesting to note that the 

precipitation pattern in Fig.10a generally agrees with the visible satellite imagery around 
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this time (not shown). In Fig. 10a, the eyewall with about 50-km radius is shown as a 

semicircular ring of heavy convective precipitation. The rainbands closest to the eyewall, 

about 200 km from the TC center, are dominated by stratiform precipitation, with broad 

uniform coverage and very little convective precipitation. In the outer region, organized 

rainbands spiraled outward in the northern quadrant of the storm. All of these features are 

asymmetric, with primary rainbands located on the downshear side. In the Fig.10c, the 

ASR-simulated storm size, the cloud condensate distribution, and the area of intense 

convection compare favorably to the distribution of observed precipitation. In particular, 

the ASR reproduced organized rainbands that spiraled outward along the north edge of 

the eyewall with an intense convective center embedded in the rainbands in the 

northeastern quadrant. The active convection center corresponds to the maximum rainfall 

core of greater than 20 mm h-1 in Fig.10a. Also well reproduced are weaker centers 

embedded within the stratiform precipitation on the inner side of the maximum rainfall 

center. Although the ASR experiment reproduces most of the significant cloud features, a 

detailed comparison shows a few deficiencies with the simulation. For example, the 

observed precipitation rate map displays an eyewall with a radius of about 50 km, which 

is not reproduced in any experiment. Additionally, the ASR experiment also 

underestimates the radius of the outer rainbands in the northeastern quadrant. These 

deficiencies are likely related to the relatively coarse horizontal resolution (i.e., 9 km) of 

the HWRF (2011) inner domain, which cannot resolve intense convective cells at a scale 

of a few kilometers within the eyewall. It is expected that the 2012 triple-nested HWRF 

system with 3-km horizontal resolution near the hurricane core can further address these 

shortcoming (Tallapragada et al. 2012). 
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is also obvious at cycle 7 that similar departures are seen in the CSR cloud and MSLP 

distributions (Fig.10d). It is worth noting that the SND experiment, to a certain extent, 

reproduced the horizontal distribution of the column condensate in the northeast quadrant, 

such as the intense convective center and the stratiform region on its inner side. However, 

the deficiency of the SND experiment in surface wind and MSLP intensity indicates that 

the reproduction to the realistic cloud structure is attributed to assimilating lower-peaking 

channels of cloudy satellite radiances. Overall, the ASR approach produced a storm that 

is most similar to the observed storm in many aspects, compared to the other experiments. 

In particular, the simulated asymmetry in the convective structure has important 

implications with respect to the improvement of quantitative precipitation forecasts 

(QPFs), wave height forecasts, and severe wind warnings if the storm is about to make 

landfall. 

Information content in ensemble subspace (Zupanski et al.2007) was developed 

using information theoretical concepts elucidated by Shannon and Weaver (1949) and 

through the application of their technique to atmospheric science by Rodgers (2000). In 

MLEF, the amount of information contained in the observations is quantified by 

comparing the effective signal to noise ratios. This is accomplished practically through 

the analysis of the information matrix in the ensemble subspace, of dimensions Nens×Nens, 

which holds the key to understanding and quantifying the differences between various 

forward models and the observations data. This study uses the same definition and 

formula as Zupanski et al.(2007). The overall features of the information content analysis 

(i.e., the spatial distribution of DFS) have been gathered together in Fig. 11, which shows 

the information content that is added through the combination of different forward 

models and channel selection (i.e., ASR/CSR/SND  experiments). In Fig.11, we plotted 

the DFS obtained in experiments with 10×10 subdomains (e.g., pixels). The DFSs are 

calculated for each of the 100 local blocks and quantify the impact of the observations in 

each local block. The flow-dependent DFS indicates the utility of AMSU-A radiances in 

the HWRF (2011) inner domain. In the first cycles, the correlated forecast differences 

imply a reduction of DFS in the information content or the forecast error covariance due 

to the utility of the time-shifted ensemble perturbations at the beginning of the data 

assimilation. However, the number of DFSs quickly increases given that there is 
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figures are plotted in an HWRF inner domain (i.e., with a scale of 6°×6°) centered at the simulated storm 
center. Larger values indicate a greater influence of the observation in the data assimilation. 
 

 

6. Summary 

Currently, no inner-core satellite radiances are directly assimilated in NCEP 

operational NWP models, including both GFS and HWRF systems. However, these 

observations of clouds and precipitation may hold the key to improving vortex 

initialization and ultimately TC intensity prediction. In this study, a prototype hybrid 

variational–ensemble data assimilation system (HVEDAS) is used to identify the impact 

of the direct assimilation of satellite radiances in the TC core area. The assimilation 

experiments are conducted using MLEF with NOAA operational codes that include the 

atmospheric component of the HWRF (2011) model and the forward components of the 

GSI analysis system and the CRTM. Specifically, the AMSU-A radiances from NOAA-

18 and MetOp-A are assimilated into Hurricane Danielle (2010) with the maximum 

likelihood ensemble filter (MLEF), which better addresses the nonlinearity of the 

observation operators than more common EnKF methodologies by employing an iterative 

minimization of a cost function. The new approach has additional components required 

for allowing cloud-affected radiance assimilation, such as augmenting the analysis 

control variables to include clouds and adding cloud-guess profiles in the forward 

models. The CRTM forward model biases are first calculated in the HWRF inner domain 

based on both cloud-cleared and cloudy radiance simulation assumptions, which are 

required for the assimilation of cloudy satellite radiances. The results suggest that the 

cloudy AMSU-A radiance simulation outperforms the cloud-cleared simulation across all 

NOAA-18 AMSU-A channels and that the operational data processing procedures are 

correctly adjusting for any remaining systematic differences on a TC core area basis. It is 

also shown that through the prescribed ‘‘cloud cleared’’ bias correction and quality 

control procedures, the simulated and observed TB fields show good agreement for all 

NOAA-18 AMSU-A channels.  
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The ensemble uncertainty analysis is found to be highly anisotropic and time 

dependent. The horizontal autocorrelation of a pseudo-AMSU-A channel 6 observation 

produces an isotopic, Gaussian-like shape as a function of distance. In turn, complex 

microphysical processes in the TC core area imply that hydrometeor mass variables will 

be cross correlated with temperature and produce different horizontal and vertical 

structure functions. The flow-dependent structures of error cross covariance between 

temperature and hydrometeor variables provide a means for observation information on 

temperature affected by nonscattering clouds to influence hydrometeor fields as well. 

Furthermore, our results demonstrate the necessity of gaining a better understanding of 

the error growth mechanism and the related storm dynamics for the TC core region. 

The performance of the HVEDAS and the value of cloudy radiance assimilation 

added to the analyses and forecasts of Danielle (2010) core area are assessed by a 

comparison with observations. In particular, we performed cycling data assimilation 

experiments at 6-h intervals for a length of 54 h to examine the performance when 

reproducing the observed storm track, intensity/MSLP, and vortex-scale structure. In 

general, the impact on the storm track was marginal. However, a particularly encouraging 

result was the improvement in the storm intensity forecasts over the operational control 

experiment. The proposed ASR approach tends to outperform the operational and cloud-

cleared radiance experiments. With the cloud affected AMSU-A radiance assimilated, the 

system reasonably captures the rapid deepening stage of Hurricane Danielle, and 

reproduces a measurable positive impact on the TC intensity prediction, as well as on the 

hydrometeor structures through multivariate correlations of microwave radiances and 

thermodynamical fields, and model integration. The results also show that the entropy-

based information content of the data, as measured by the degrees of freedom for signal 

(DFS), was significantly increased, implying a more efficient use of the observations in 

the ASR experiment. 

Although a case study, this study provides insights and potential solutions for 

future TC prediction, especially for the TC structure including intensity forecasts. Our 

results suggest that a hybrid data assimilation algorithm could provide an objective, 

observation-based way of incorporating a dynamically consistent vortex with reasonable 
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asymmetries into the initial conditions of the current triple-nested 2012 operational 

HWRF system operating at 3-km horizontal resolution near the hurricane core. This study 

paves the way for the assimilation of other data types in the cores of TCs. Data from new 

microwave sounders and scatterometers, as well as aircraft-based data, if used within this 

framework, offer even further opportunities to improve the TC vortex initialization of 

operational forecast models. 
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