
WRF DTC Visitor Programme, January 2009:
EXPLORING CUT-CELLS

Sarah-Jane Lock

This short report is intended to summarise the work undertaken during my visit to NCAR in January 2009. It
is hoped that this report will prove useful to the continuing work on cut-cells in both the WRF group and the
group at Leeds University. It is intended as a working note rather than a formal report. If any relevant or useful
information has been omitted from the report, it is a simple oversight and not intentional. I hope this report
can form a basis for an on-going discussion on the potential of a cut-cell method.

Sarah-Jane Lock, July 2009

1 Introduction
During a 5-week visit to NCAR in January 2009, the cut-cell method already implemented in 2D “toy model”
codes by Joe Klemp, Bill Skamarock and Dave Dempsey were explored and compared with the method used
at Leeds University.

This report describes a number of models: “VHREM” refers to the code developed at Leeds University;
“scmc.Rev1.f90” is Dave Dempsey’s FORTRAN90 version of Joe’s “shavedcell” code; occasionally, the term
“WRF codes” is used to describe all three versions of cut-cell models being explored in the WRF group — the
“shavedcell”, “scmc.Rev1.f90” and Dave Dempsey’s extended “scmc.Rev2.f90” codes. All results presented
in this report from the “WRF codes” have been generated using the “scmc.Rev1.f90” version.

VHREM is a 3D model based on advection-form equations, which uses a time-splitting integration method
(acoustic and gravity modes solved on the short time-step, ∆τ) with leapfrog time-stepping and 2nd-order
centred spatial-differencing to compute model variables u, v, w, π′ (the perturbation of the Exner pressure) and
θ′ (the perturbation of the potential temperature). Integrations are fully explicit (since the model is designed
for microscale studies where ∆x ∼ ∆z). Model variables are stored on a grid staggered in both the horizontal
and vertical — π′ is stored at the centre of a grid-volume, with u, v and w stored on the grid-volume’s eastern,
northern and upper faces respectively; θ′ is co-located with w. The orographic boundary is represented by
piecewise continuous bi-linear surfaces, which connect at the interfaces between grid-columns (i.e. along
grid-faces storing u or v). The cut grid-face areas/volumes that result from the intersecting orographic surface
are computed approximately by summing over numerous very small rectangular surface areas/volumes. An
approximate finite-volume approach is used to solve for flow through the irregularly-shaped cut-cells. The
method is based on that proposed in Bonaventura (2000) for use with advection-form equations, such that only
the divergence term from the continuity equation (found in the π′ equation) takes account of the cut-cells, using
Gauss’s theorem. All other fluxes are treated just as they would be on a regularly-shaped mesh.
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The “scmc.Rev1.f90” code, based on the earlier “shavedcell” code, is a 2D model based on flux-form
conservative equations, solving for u, w, ρ and θ. The model is also based on a time-splitting integration
method with leapfrog time-stepping and 2nd-order centred spatial-differencing. Integrations are semi-implicit,
using a tri-diagonal solver in the vertical for w, ρ and θ. Model variables are stored on a staggered grid,
with ρ and θ co-located at grid-cell centres, and u and w on the eastern and upper grid-faces respectively.
Orography is represented with a piecewise continuous linear surface, connecting at the u interfaces between
grid-cells. The resulting cut cell-lengths and areas are computed exactly. A finite-volume representation using
Gauss’s theorem calculates all fluxes through ρ-centred cells. (The “scmc.Rev2.f90” code aims to extend the
finite-volume approach to include fluxes through u- and w-centred cells as well.)

2 Concerns/problems with the WRF codes
At the time of the visit to NCAR, there were a number of concerns and problems identified with the existing
WRF codes:

• Spurious disturbances can be seen in the flow-fields upstream of the hill — in the flow aloft as well as
near the boundary;

• Comparisons of the model results with either the linear solution or Long’s solution reveal differences,
which appear greater at higher vertical levels;

• The cut-cell formulation in “scmc.Rev1.f90” only uses a finite-volume approach to compute fluxes
through cut-cells centred on the density variable. For a complete finite-volume representation, the com-
putations should be extended to compute the fluxes through the cell-volumes around u and w points
as well (as described in Adcroft et al., 1997). The “scmc.Rev2.f90” code starts this extension, but is
currently failing to produce good results.

3 Model tests

3.1 Tests: hydrostatic flow “Base Case” — a comparison of WRF and VHREM codes
To better understand the problems with the WRF codes, a hydrostatic flow set-up was chosen and replicated
as closely as possible using the VHREM code. This set-up will be referred to as the “Base Case”, which later
tests were compared against.

The set-ups for the Base Case for the “scmc.Rev1.f90” code and for VHREM are summarised in Ta-
bles 1 and 2 respectively. The VHREM set-up aimed to replicate as closely as possible the set-up in the
scmc.Rev1.f90 code.

There are some basic differences between the VHREM and scmc.Rev1.f90 model codes:

• VHREM is a 3D code. To run a 2D test, the extent of the 3rd dimension (y-direction) is limited to just
a small number of grid-spaces, and the model variables remain invariant in the y-direction (no Coriolis
force is applied);

• VHREM only currently has the option for cyclic lateral boundary conditions. For the hydrostatic flow
tests, the domain was made wide enough that a steady flow has developed before the perturbed down-
stream winds complete a full cycle and disturb the upstream flow. For the set-up described above, the
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Model domain:
∆x 2000m horizontal resolution
∆z 250m vertical resolution
NZ 81 number of vertical levels
∆τ 5s small time-step
∆t 20s long time-step (i.e. ∆t = 4∆τ
Upper level damping layer:
ZD 8000m height of bottom of layer
XNUT 0.05 damping coefficient
Cut-cell parameter:
IDV 0 ⇒ DV P = [0,1]
Plotting parameter:
LONG 1 ⇒ plotted with Long’s solution

Table 1: Parameter settings for the Base Case for the “scmc.Rev1.f90” code.

Model domain:
∆x,∆y 2000m horizontal resolution
∆z 250m vertical resolution
L 81 number of vertical levels
∆τ 0.2s small time-step
∆t 20s long time-step (i.e. ∆t = 10∆τ
Hill dimensions:
ZH0 400m hill height
ZAM 10000m hill half-width
Background state:
IT H0 2 stably stratified
T H00 300K θ at model bottom
BV F 0.0001 buoyancy freqency, N
U00 10ms−1 mean wind
Upper level damping layer:
ZRDBT 8000m height of bottom of layer
ALPRAY 0.01 damping coefficient

Table 2: Parameter settings for the Base Case for VHREM.
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domain length in the x-direction was N = 200 (i.e. 400km). Results from VHREM are compared with
WRF code results at time t =24,000s (runs on larger domains suggest that the solution at t =24,000s is
approx. a steady state solution);

• VHREM uses a much shorter time-step than the WRF models. In VHREM, a stable ∆τ is computed from
the CFL condition for the smallest effective grid-length (defined to be the smallest ratio of cell volume
to cell face area, i.e. ∆Vp/∆Sx, or “DV P/DXW” in terms of the WRF codes) in the model domain, and
the long time-step is given by ∆t = N∆τ, where N=10. For this set-up, ∆τ=0.2s. In the WRF codes, the
long time-step is scaled by the hill dimensions and takes no account of the geometry of the cut-cells.
For this base case, the WRF codes use ∆τ = 5s, ∆t = 20s. VHREM could not produce stable results with
∆τ≥0.4s;

Figure 1 shows results for the Base Case from the scmc.Rev1.f90 code at model time t =36,000s and from
VHREM at model time t =24,000s. For both models, plots illustrate the computed fields for the potential
temperature (θ = θ + θ′), the perturbation in the horizontal wind field (U ′ = U −U0) and the vertical wind
field.

Results from the scmc.Rev1.f90 model reveal disturbances in the upstream solution, which are particularly
apparent in the vertical wind field. Plots (a) and (b) also include Long’s solution for comparison. Results
from scmc.Rev1.f90 generally compare well with Long’s solution in terms of magnitude and position; but, in
addition to the upstream disturbances, the model solutions appear to differ more from Long’s solution at higher
model levels.

There is no evidence of similar upstream disturbances in the VHREM results. To date, VHREM results
have not been plotted against Long’s solution (or the linear solution). However, it can be seen that the wave
in the u and w fields from VHREM is smaller in magnitude than that from scmc.Rev1.f90. (The contour lines
that appear to overlay the lower boundary in the u plot are a consequence of not mastering how to force NCAR
Graphics to only plot contour lines within the model domain, i.e. above the lower boundary!)

3.2 Tests: Thin-wall approximation (DVP=1.0)
The scmc.Rev1.f90 code includes a simple switch (IDV ) to compute the model solutions using the cell volumes
for uncut cells — the “thin-wall approximation” described in Steppeler et al. (MWR, 2002). The Base Case
outlined in Section 3.1 was repeated but applying the thin-wall approximation — in scmc.Rev1.f90, setting
IDV = 1 (⇒ DV P = 1.0 for all grid-cells); and with the equivalent alteration to the VHREM code.

Results for the thin-wall approximation test from the scmc.Rev1.f90 model at time t =36,000s and VHREM
at model time t =24,000s are displayed in Figure 2. For both models, the results from the thin-wall approxi-
mation show no discernible difference (by eye) from those for the Base Case.

The thin-wall approximation has recently been explored a little further using the VHREM code. The
advantage with exploiting the thin-wall approximation is that it should enable a longer stable time-step to be
used for ∆τ. By choosing a 2D hill case, VHREM has been run twice: once, with its default approach of using
the cut-cell volumes (labelled “orog2B” in the following results) and then, repeated with all volumes set equal
to 1.0 (labelled “orog2B DV1”. In each case, the model’s built-in algorithm for computing a stable time-step
has been used.

The model set-up is based on that for the case presented in Gallus & Klemp (2000) for a hill with half-width
1km and height 400m.

Results for the potential temperature and vertical wind fields at model time t =2,880s are shown in Figure
3. For both fields, plots are included for the case using the cut-cell volumes (“orog2B”) and for the thin-wall
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(a) (b) (c)

(d) (e) (f)

Figure 1: Results for the “Base Case” test: (a), (b) and (c) show the potential temperature field, horizontal
wind field U ′ as a perturbation from the mean wind and vertical wind field respectively, from scmc.Rev1.f90 at
model time t =36,000s (heavier lines in (a) and (b) are model solutions, fainter lines indicate Long’s solution);
(d), (e) and (f) show plots for the equivalent model fields from VHREM at time t =24,000s.
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(a) (b) (c)

(d) (e) (f)

Figure 2: Results for testing the “thin-wall approximation”: (a), (b) and (c) show the potential temperature
field, horizontal wind field U ′ as a perturbation from the mean wind and vertical wind field respectively, from
scmc.Rev1.f90 at model time t =36,000s; (d), (e) and (f) show plots for the equivalent model fields from
VHREM at time t =24,000s.
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approximation (“orog2B DV1”). In addition, the differences between the two plots are also displayed for
contour intervals of 0.1K and 0.1ms−1 for θ and w respectively.

(a) (b) (c)

(d) (e) (f)

Figure 3: Results from VHREM, exploring the “thin-wall approximation” for a hill of half-width 1km. Results
are displayed for model time t =2,880s: (a) shows the potential temperature field (θ) for model solutions based
on cut-cell volumes (experiment “orog2B”); (b) shows θ for the thin-wall approximation (“orog2B DV1”); and
(c) the difference between the two fields (“orog2B DV1” minus “orog2B”); (d), (e) and (f) show the equivalent
plots for the vertical wind field.

The differences in the vertical wind field between the two cases are less than 0.1 ms−1. In the potential
temperature field, the only significant differences (up to 0.6K) are at the lowest level(s) in the lee of the hill.
These are very early results which have not yet been investigated further.

Further exploration of the thin-wall approximation is intended with VHREM. In particular, the following
aspects will be considered:

• A coherent investigation of the limits on the length of stable time-step for using cut-cell volumes and
uncut volumes;

• A definitive check that the difference in time-step lengths between the two approaches can be directly
related to the difference in cut-cell geometries, i.e. that the stable time-steps can be related by the CFL
condition to the smallest effective grid-lengths in both cases;

• Further investigation of the resulting differences in model solutions between the two methods — why
are there significant differences in the THF field at the lowest model levels but nowhere else?

• An exploration of whether the small effect of adopting the thin-wall approximation observed for the
“orog2B” case can be expected for other orographic flow regimes.
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3.3 Tests: shorter time-step
As mentioned in the description of the model set-ups for the Base Case (Section 3.1), to obtain stable results,
VHREM must be run with a much shorter time-step than is used in the scmc.Rev1.f90 code. For the Base
Case, the short time-step used in VHREM was ∆τ=0.2s; whereas, in scmc.Rev1.f90 ∆τ=5s. VHREM was not
able to produce stable results for a short time-step ∆τ≥0.4s.

The CFL condition on the short model time-steps is determined from the ratio of the smallest effective
grid-length in the model domain to the speed of acoustic waves (∼ 300ms−1). In a cut-cell model, the smallest
effective grid-length is given by the smallest ratio of grid-cell volume to grid-cell face area, which will be
dependent on the shape and position of the hill with respect to the model grid (and could be arbitrarily small).

A major difference between VHREM and the WRF codes is that the WRF codes use an implicit solver for
the vertical motions, meaning that the CFL condition is limited by the smallest effective horizontal grid-length,
and need not take account of the smallest vertical grid-length. VHREM is fully explicit, so is limited by the
vertical grid-lengths as well.

For the Base Case, the grid resolutions were ∆x =2,000m and ∆z =250m. For such a grid, with no cut-cells,
the CFL condition would imply ∆τ∼2000m/300ms−1 ∼6s for the WRF codes, but 250m/300ms−1 ∼ 0.8s for
VHREM; i.e. it should be no surprise that for the Base Case grid resolutions, the stable time-steps for VHREM
and the WRF codes differ by about a factor of 10. However, it should be some surprise that the WRF codes
are able to use a time-step based on an un-cut grid, despite having cut-cells which will make the effective
horizontal grid-length smaller than ∆x =2,000m.

During the VHREM set-up of the cut-cells, the smallest effective grid-length is computed and is used
directly to determine the length of the short time-step. In the scmc.Rev1.f90 code, the length of the time-step
is determined from the hill dimensions and not the resulting cut-cell geometry.

To explore the potential effect of using a shorter time-step in the scmc.Rev1.f90 code, the long time-step
was reduced to 10% of its original value — i.e. ∆τ became 0.5s (∆t =2s) — and the Base Case was repeated.
Results for the θ, U ′ and w fields at model time t=36,000s are presented in Figure 4.

(a) (b) (c)

Figure 4: Results for testing a shorter time-step in the scmc.Rev1.f90 model: (a), (b) and (c) show the poten-
tial temperature field, horizontal wind field U ′ as a perturbation from the mean wind and vertical wind field
respectively at model time t =36,000s.

Comparing the results for the shorter time-step shown in Figure 4 to those from the Base Case, it is apparent
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that the disturbances upstream of the hill are greatly reduced in the velocity fields, with particular improvement
seen near the lower boundary in the U ′ field. In the θ field, the difference is less clear-cut — there is still
significant disturbance to the upstream flow at the lowest vertical levels using a shorter time-step. At higher
levels and in the downstream flow, the solution differs from that for the Base Case, but is not noticably closer
to Long’s solution.

3.4 Tests: coarser vertical resolution
Finally, the models were run as for the Base Case, but with coarser vertical resolution. The spacing between
vertical levels was chosen such that the first w level (above the model bottom) is higher than the top of the hill:
∆z = 500m for the hill height 400m. (For the scmc.Rev1.f90 code, the time-steps were as for the Base Case:
∆τ = 5s, ∆t = 20s.)

The results at model time t =36,000s from the scmc.Rev1.f90 code are displayed in Figure 5. They show
a large improvement on the results from the Base Case (with ∆z = 250m). There are no obvious remaining
upstream disturbances in the θ or U ′ fields, although some small oscillations are still apparent in the w field.
Comparing the model solutions to Long’s solution (shown in Figure 5 in fainter contours), the general position
and magnitude of the wave in the U ′ field continue to look good. However, the contours in the θ field appear
to compare less favourably with Long’s solution using a coarser vertical resolution — the differences between
the model field and Long’s solution are largest at higher vertical levels, both up- and downstream of the hill.

(a) (b) (c)

Figure 5: Results for testing a coarser vertical resolution (∆z = 500m) in the scmc.Rev1.f90 model: (a), (b)
and (c) show the potential temperature field, horizontal wind field U ′ as a perturbation from the mean wind
and vertical wind field respectively at model time t =36,000s.

An equivalent set-up was attempted with VHREM, but an initial attempt did not yield any meaningful
results — after setting ∆z = 500m, the flow-fields showed no sign of detecting a hill and remained unchanged
from the initial values! (This test has not since been repeated or further explored.)

4 Observations
From the tests demonstrated in the previous section, a couple of observations and resulting questions were
particularly apparent:
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• In none of the tests demonstrated above (nor in any earlier cases) has VHREM been seen to suffer
from the spurious upstream disturbances seen in the results from the WRF codes. What is causing the
difference in the two models?

• VHREM uses a time-step scaled to the smallest effective grid-length — for the Base Case set-up, ∆τ is
around 25% of the theoretical limit on the time-step for the equivalent set-up with no cut-cells. The WRF
codes use a time-step length appropriate for a domain of uncut cells to achieve a steady, albeit noisy,
solution. However, by reducing the length of the time-step by a factor of 10, the solutions generally
appear to improve.

5 Potential problems in the WRF codes
Alongside the test cases demonstrated in Section 3, the scmc.Rev1.f90 code was explored for potential prob-
lems. One potential source of error was noted, and is summarised here.

Consider the advection terms for the flux-form equations for the winds:

∂
∂t

U = −{∇ · (uU)}+ . . . ,

∂
∂t

W = −{∇ · (uW )}+ . . . ,

where U = ρu, W = ρw. The quantities U and W are advected by the winds u. When accounting for fluxes
through cut-cells, it is the flux of the winds (u) across the cell faces that should be adjusted proportional to the
fraction of the cell-face that lies above the orographic surface; it is not the advected quantities U and W that
are adjusted.

On the staggered computational grid, the quantities U and W are represented by ρxu and ρzw respectively,
where

ρx ≡ 0.5
(
ρi−1/2,k +ρi+1/2,k

)

and similarly for ρz — i.e. ρ must be averaged across the grid-cell to provide a value which coincides with the
position of u or w, as illustrated in Figure 6.

In the set-up for scmc.Rev1.f90, the variables “RU” and “RW” are generated, to be used as the prognostic
variables for the winds. The quantities are defined to be

RU(K, I) = 0.5{RHO(K, I)+RHO(K, I +1)}U(K, I)DZU(K, I),
RW(K, I) = 0.5{RHO(K, I)+RHO(K−1, I)}W (K, I)DXW (K, I),

such that RU represents the quantity ρxu, premultiplied by DZU, which represents the fractional grid-cell
length that lies above the orographic surface for the face on which u is stored (and similarly for RW).

As outlined above, the fractional grid-cell lengths, DZU and DXW, should act on the advective winds at
the cell-faces; and should not therefore be applied to the prognostic variables in this way. By pre-multiplying
the prognostic variables by the fractional cell lengths, the order of differencing in the subsequent computations
is incorrect.

For example, take the w-advection of the U ≡ ρxu variable (stored at location (i,k) in Figure 6), which
should follow the form:

∂
∂z
{wU} .
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ρ ρ

i−1/2 i i+1/2

k−1/2

k

k+1/2

Figure 6: Illustration of the position of model variables on the staggered grid — variables u and w are posi-
tioned half a grid-length from ρ in the horizontal and vertical directions respectively.

On the staggered computational grid, differencing in the z-direction to compute this quantity requires
several layers of averaging:

1
∆z

{(
wxU z)

i,k+1/2−
(
wxU z)

i,k−1/2

}

≡ 1
∆z

{(
wx ρxu

z
)

i,k+1/2
−

(
wx ρxu

z
)

i,k−1/2

}
.

Including the effect on the advective flux w from the cut-cell faces, the computed quantity becomes

1
∆z

{(
∆xwwx ρxu

z
)

i,k+1/2
−

(
∆xwwx ρxu

z
)

i,k−1/2

}
, (1)

where ∆xw denotes the fraction of the cell-face with centre w that lies above the orographic surface (represented
by DXW in the model code).

Compare that to what is currently computed in the scmc.Rev1.f90 code. The flux divergence of term ρu
contributes to the slow modes computation (stored as FU in the code) by:

1. First, defining a quantity WDUZ:

WDUZ(K) = 0.5*(RW(K,I) + RW(K,I+1)) ←→ ρz ∆xw w
x

*RDZ ←→ 1/∆z
*0.5*(U(K,I) + U(K-1,I)) ←→ uz

i.e. referring to the grid-locations represented in Figure 6

WDUZ(K) ←→ 1
∆z

(
ρz ∆xw w

x
uz

)
i,k−1/2

;
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2. and then, taking the difference of WDUZ at neighbouring vertical levels to complete the contribution:

(WDUZ(K+1) - WDUZ(K)) ←→ 1
∆z

{(
ρz ∆xw w

x
uz

)
i,k+1/2

−
(

ρz ∆xw w
x
uz

)
i,k−1/2

}
. (2)

It can be seen that the flux divergence terms from (1) and (2) are not the same — in particular, the con-
tribution from ρ differs due to differences in the order in which the averaging over grid-locations takes place.
Ultimately, the difference in the order of calculations may make have a negligible effect on the model solu-
tions. However, for completeness, the necessary adjustments to correct the code should be made – specifically,
to remove the pre-multiplication of RU and RW by DXU and DZW respectively, i.e.:

RU(K, I) → 0.5{RHO(K, I)+RHO(K, I +1)}U(K, I) ,
RW(K, I) → 0.5{RHO(K, I)+RHO(K−1, I)}W (K, I) .

Under this approach, RU and RW are the true prognostic variables, which are acted on by each of the
contributing factors in the integration. Where RU and RW are acted on by the fluxes of the winds U and W,
adjustment factors DZU and DXW would need to be applied respectively (to represent the flux-divergence
described by (1)).

The correction outlined above for RU and RW has not been completed in the scmc.Rev1.f90 code, and
therefore, its effect on the results has not been tested. From a quick glance at the code, it would seem that the
correction is not required for the other prognostic variables — potential temperature and density. Although,
where they are multiplied by the currently defined RU and RW (which currently include the factors of DZU
and DXW respectively), a correction factor would need to be added.

6 Next steps
Based on the analyses above, there are a number of different avenues to explore with both the WRF codes and
VHREM to better understand the potential of the cut-cell method:

• WRF codes

1. Correct the averaging terms in the WRF codes (as described in Section 5) & re-test — does this
improve the solutions: reducing the upstream noise/producing solutions closer to Long’s or the
linear solutions? (The correction could first be explored for the partial finite-volume method in
scmc.Rev1.f90; and then, for the full finite-volume model in scmc.Rev2.f90.)

2. Further consideration of the length of the time-step used in the WRF codes — a simple algorithm
would enable the length of time-step to be determined by the geometry of the smallest cut-cells.
Does such a change result in the solution improving when ∆τ is appropriate to the CFL limit for
the given model set-up?

3. Further explore the improvement seen for the coarser vertical resolution — is the improvement
associated with the first vertical level sitting above the top of the hill or simply with a coarser
resolution, i.e. test with other hill heights (and widths?) and other vertical resolutions.
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• VHREM

1. Further explore the thin-wall approximation — the resulting accuracy of the solutions and potential
efficiency gains from using a longer time-step (summarised in Section 3.2).

2. Go back and re-explore the case with coarser vertical resolution where the first vertical level sits
above the top of the hill. In theory, there is no obvious reason for the model to fail — was there an
error in the model set-up or is there a problem with the code?

3. Move towards a more complete finite-volume representation of the cut-cell method by re-formulating
the advection terms as two flux terms:

u ·∇φ = ∇ · (uφ)−φ(∇ ·u)

both of which can be handled using Gauss’s theorem, without having to re-cast the entire model
equation set in flux-form.
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