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1. Introduction

The presence and distribution of atmospheric aerosols have a strong impact on the
Earth’s system. Interactions with meteorological parameters through radiative effects
and cloud formation, for example, significantly affect the Earth’s weather and climate.
During airborne hazard events, such as volcanic eruptions, forest fires, or sand storms,
the amount of aerosols in the atmosphere significantly increases, affecting also air quality
and human health.

Numerical model applications help to understand the dispersion of aerosols. Disper-
sion modeling and chemical transport modeling, however, remain challenging due to
large uncertainties of source terms, chemical conversions, and atmospheric transport
processes.

Air quality modeling relies on the adequate representation of the initial aerosol dis-
tribution. Uncertainties of initial aerosol fields can be reduced by data assimilation,
which combines information of observations with numerical model output. In recent
years, substantial progress has been achieved in assimilating aerosol-related quantities
into dispersion models (e.g., Yumimoto et al., 2008; Zhang et al., 2008; Benedetti et al.,
2009; Liu et al., 2011; Zhang et al., 2011; Schwartz et al., 2012; Pagowski et al., 2014;
Sic̆ et al., 2016) either using a 3-Dimensional Variational (3DVar), 3DVar First Guess at
Appropriate Time (FGAT), or 4-Dimensional Variational (4DVar) data assimilation sys-
tem. All studies revealed noticeable improvements of model forecasts after assimilating
aerosol-related observations.

Most assimilated observations are either surface measurements or measurements of
vertically integrated quantities such as Aerosol Optical Depth (AOD). The missing ver-
tical information of these measurements inhibits any change of the vertical profile shape
but multi-day data assimilation allows modifications of the profile shape due to inter-
actions with meteorological conditions (Sic̆ et al., 2016). The assimilation of vertically-
resolved measurements introduces direct information of the vertical profile from observa-
tions into the model. Recently, the assimilation of vertical LIght Detection And Ranging
(LIDAR) measurements revealed a promising and coherent impact in air quality mod-
eling studies (e.g., Yumimoto et al., 2008; Sic̆, 2014; Wang et al., 2014; Geisinger et al.,
2017).

The aim of this visiting scientist project was to implement LIDAR data assimilation
into the Gridpoint Statistical Interpolation (GSI) 3DVar because the assimilation of ver-
tical LIDAR profiles will significantly improve the knowledge of the vertical distribution
of aerosols, which is particularly important during natural hazard events such as volcanic
eruptions or sand storms. It will help to improve the vertical aerosol representation in
air quality forecasts.
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2. Project description

The aim of the project was to implement LIDAR data assimilation into the GSI. The
GSI is tightly coupled with the Community Radiative Transfer Model (CRTM). This
model simulates satellite radiances that are needed to assimilate radiances from infrared
and microwave sensors. It also includes the AOD observation operator (Liu et al., 2011).
The assimilation of LIDAR-based quantities therefore requires both, the extension of the
GSI and the CRTM.

Two one-month visits were planned for this project. Benjamin T. Johnson (Joint
Center for Satellite Data Assimilation (JCSDA), University Corporation for Atmospheric
Research (UCAR), National Oceanic and Atmospheric Administration (NOAA), College
Park, MD, USA) and Mariusz Pagowski (Earth System Research Laboratory (ESRL),
NOAA, Boulder, CO, USA) hosted me during these visits. I spent two weeks at NOAA
in College Park, MD, and two weeks at NOAA in Boulder, CO, in March/April 2018
and focused on (i) getting detailed information about the CRTM and GSI, (ii) designing
the implementation of LIDAR data assimilation, and (iii) starting its implementation
as planned in the proposal.

Since it was clear from the beginning that the project would demand more work of
concentrated effort, it was planned that parts of this work were also performed at my
home institution Zentralanstalt für Meteorologie und Geodynamik (ZAMG) in Austria.
Due to a lot of other commitments, however, the progress was slower than expected.
I focused on the implementation of the observation operator in the CRTM. While it
was straightforward to simulate aerosol extinction coefficients, the calculation of the
backscattering coefficients was challenging and required a lot of effort.

During the second one-month research visit at ESRL, NOAA, in Boulder, CO, in
fall 2018, I finalized the calculation of the backscattering coefficients and tested and
evaluated the CRTM implementation. This report therefore contains information and
results of modeling Aerosol Optical Properties (AOP) with CRTM only. It is planned
that the implementation in the assimilation software tool will be done in a second part
of this project.
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3. Calculation of AOP with CRTM

CRTM is able to simulate AOD as observed by the Moderate Resolution Imaging Spec-
troradiometer (MODIS) instrument onboard the Aqua and Terra satellites (Liu et al.,
2011). More recently, CRTM capabilities have been extended to simulate AOD measure-
ments from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument onboard
the joint National Aeronautics and Space Administration (NASA)/NOAA Suomi Na-
tional Polar-orbiting Partnership (Suomi-NPP) satellite.

So far, CRTM only considers Global Ozone Chemistry Aerosol Radiation and Trans-
port (GOCART) aerosols, which include hydrophobic and hydrophilic Organic Carbon
(OC), hydrophobic and hydrophilic Black Carbon (BC), dust, sea salt, and sulfate. In-
formation about aerosol radii, aerosol hygroscopic growth, and optical properties (such
as mass extinction coefficients, single scatter albedo, and phase coefficients for aerosols)
are available in a look-up table. In this study, an extended aerosol look-up table was
created and used to simulate AOP from LIDAR measurements.

3.1. Physical basis

Radiation that passes through the atmosphere is scattered and absorbed by molecules
and particles. Absorption and scattering therefore have molecular and aerosol contribu-
tions. Both quantities can be simulated with CRTM in general. However, I focus here
on the description of aerosol-related effects and describe the calculation of AOD, aerosol
extinction and backscattering coefficients.

Optical depth τ (dimensionless) of a layer containing an aerosol of a specific type i
contains contributions of absorption and scattering and is calculated as

τ(i, reff, λ) = χ(i)κe(i, reff, λ), (1)

where χ (in kg m−2) is the integrated aerosol concentration of the layer and κe (in
m2 kg−1) is the mass extinction coefficient for the aerosol with effective radius reff at
wavelength λ. Because CRTM computations are performed for height and thickness
independent quantities, optical depth of a layer is the same as its volume extinction
coefficient βe (usually τ = βedz).

Considering all types of aerosols in a layer, total AOD and total volume extinction
coefficient E are

AOD(λ) = E(λ) =
n aerosols∑

i=1

τ(i, reff, λ) =
n aerosols∑

i=1

χ(i)κe(i, reff, λ). (2)

The volume scattering coefficient βs (dimensionless) of an aerosol layer is

βs(i, reff, λ) = χ(i)κe(i, reff, λ)w(i, reff, λ), (3)

where

w =
βs

βe

=
βs

βs + βa

(4)
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is the dimensionless single scatter albedo. In a purely scattering medium, the volume
absorption coefficient βa = 0 and w = 1, in a purely absorbing medium βs = 0 and
w = 0. The volume scattering coefficient of all aerosols S is computed as

S(λ) =
n aerosols∑

i=1

βs(i, reff, λ) =
n aerosols∑

i=1

χ(i)κe(i, reff, λ)w(i, reff, λ). (5)

The calculation of the volume backscattering coefficient of an aerosol layer requires
knowledge of the scattering direction. This information is given in the phase coefficients
c. The part that is backscattered by aerosols can be calculated by evaluating the function
P at x = −1 because x = cosϕ and ϕ = π for backscattering. Clenshaw’s recurrence
formula can be used for this purpose. It can be shown that

P (x) = −1

2
b2(x) + xb1(x) + c0 (6)

where b1 and b2 are calculated recursively and c0 is the zeroth phase coefficient. Details
are given in Appendix A. Mass backscattering coefficients κb are then obtained by

κb(i, reff, λ) = κe(i, reff, λ)ω(i, reff, λ)
P (i, reff, λ, π)

4π
. (7)

The volume backscattering coefficient is obtained from multiplying the mass backscat-
tering coefficients with the integrated aerosol concentration

βb(i, reff, λ) = χ(i)κb(i, reff, λ) (8)

and the volume backscattering coefficient of all aerosols is

B(λ) =
n aerosols∑

i=1

βb(i, reff, λ)

=
n aerosols∑

i=1

χ(i)κb(i, reff, λ) (9)

=
n aerosols∑

i=1

χ(i)κe(i, reff, λ)ω(i, reff, λ)
P (i, reff, λ, π)

4π
.

The inverse of the last two terms of Eqs. (7) and (9) also refers to the LIDAR Ratio
(LR) S

S(i, reff, λ) =
4π

w(i, reff, λ)P (i, reff, λ, π)
. (10)

It depends on the aerosol phase function P (π) and single scatter albedo w, and is
therefore sensitive to the aerosol size, its shape, and refractive index (He et al., 2006).
The LIDAR ratio is also known as the extinction-to-backscattering ratio that can be
written as

S =
βe

βb

=
βa + βs

βb

. (11)
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Several studies showed that the LIDAR ratio is not constant. However, a constant
LIDAR ratio can be assumed to estimate the volume backscattering coefficient. For
GOCART aerosols, the following reasonable values can be found in the literature

• Dust: Sdust = 48 (Burton et al., 2013)

• Sea salt: Ssea salt = 22 (Burton et al., 2013)

• Organic carbon: SOC = 65

• Black carbon: SBC = 65

• Sulfate: Ssulf = 62 (Prata et al., 2017)

Knowledge of volume extinction coefficients and the LIDAR ratio allows the estimation
of volume backscattering coefficients

βb(i, reff, λ) ≈ βe(i, reff, λ)

S(i)
. (12)

and the volume backscattering coefficient of all aerosols can be approximated as

B(λ) =
n aerosols∑

i=1

βb(i, reff, λ) ≈
n aerosols∑

i=1

βe(i, reff, λ)

S(i)
. (13)

An important step towards successfully modeling AOP with CRTM was the correct
reconstruction of the backscattering coefficients. This has been done outside of the
CRTM environment. For fast and easy access, resulting mass backscattering coefficients
were then included in the CRTM aerosol look-up table for all aerosol types, pre-defined
aerosol radii, and wavelengths.

3.2. Tangent linear and adjoint models

3.2.1. Theoretical background

Tangent linear and adjoint models are needed for variational data assimilation. The tan-
gent linear model allows the computationally efficient estimation of the model trajectory.
If M is a model that describes the model’s trajectory, i.e.,

x(ti+1) = M [x(ti)], (14)

the tangent linear model of M , called M ′ is

δx(ti+1) = M ′[x(ti)]δx(ti) =
∂M [x(ti)]

∂x
δx(ti). (15)

M ′ is a first order approximation that describes the evolution of a perturbation δx of
the control variable x (initial condition).
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For any linear operator M ′ exists an adjoint operator M? such that

〈x,M ′y〉 = 〈M?x, y〉 (16)

where 〈, 〉 is an inner product and x and y are vectors (or functions) of the space where
the product is defined. In Euclidian space, the adjoint matrix is equal to the transposed
matrix

M? = M ′T. (17)

The solution of the adjoint equations yields the gradient of the cost function at time ti.

3.2.2. Example: Tangent linear and adjoint model of optical depth

In CRTM, optical depth is modeled as

τ = χκe, (18)

with χ being the integrated aerosol concentration of a layer and κe the mass extinction
coefficient, see also Section 3.1, Eq. (1). Because χ and κe are independent variables

χ =χ

κe =κe (19)

τ =χκe.

The first derivative of this set of equations (i.e., the tangent linear statement) is

δχ =δχ

δκe =δκe (20)

δτ =κeδχ+ χδκe

or  δχ

δκe

δτ

 =

 1 0 0

0 1 0

κe χ 0


 δχ

δκe

δτ

 (21)

in matrix notation.
Since the adjoint matrix equals the transposed matrix in Euclidian space and 1 0 0

0 1 0

κe χ 0


T

=

1 0 κe

0 1 χ

0 0 0

 , (22)

the adjoint model of τ can be written asδχ?δκ?e
δτ ?

 =

1 0 κe

0 1 χ

0 0 0


δχ?δκ?e
δτ ?

 , (23)
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which is equivalent to

δχ? =δχ? + κeδτ
?

δκ?e =δκ?e + χδτ ? (24)

δτ ? =0.

This set of equations describes the adjoint model of optical depth.
Tangent linear and adjoint models of the volume extinction coefficient, absorption

coefficient, volume scattering coefficient, and volume backscattering coefficient are de-
scribed in detail in Appendix B.

3.3. Aerosol scattering look-up tables

Aerosol scattering look-up tables contain information of relevant physical aerosol charac-
teristics. The CRTM aerosol table is based on Hess et al. (1998) and Chin et al. (2000).
SPHerical (SPH) particles were assumed. Aerosol size (effective radius, which depends
on the amount of atmospheric humidity for most aerosol types), mass extinction coeffi-
cient, single scatter albedo, and the asymmetry parameter were made available for dust,
sea salt (aerosols in Sea Salt Accumulation Mode (SSAM) and Sea Salt Coarse Mode
(SSCM)), OC, BC, and sulfate. The CRTM aerosol table also contains phase coeffi-
cients, which were used to reconstruct the mass backscattering coefficients as described
in detail in Appendix A. This variable was then added in an extended CRTM aerosol
table.

The same aerosol properties can be computed with Modeled Optical Properties of en-
SeMbles of Aerosol Particles (MOPSMAP) (Gasteiger and Wiegner, 2018). This model
also provides aerosol characteristics of non-spherical dust particles. Josef Gasteiger, Uni-
versity of Vienna, Austria, used this model and computed optical aerosol characteristics
of GOCART aerosols and added information for two non-spherical dust aerosols Volume-
Equivalent Prolate Spheriods (VEPS) and Cross-Section Equivalent Prolate Spheriods
(CSEPS). Non-spherical VEPS have the same mass and volume as corresponding spher-
ical particles. The aspect ratio of CSEPS was calculated after Kandler et al. (2009).
Refractive indices of the MOPSMAP model were used from Hess et al. (1998).

The following sections give more detailed information about the content of the aerosol
look-up tables from CRTM and MOPSMAP.

3.3.1. Effective radius

Log-normal size distributions were assumed for each aerosol type with

n(ln r) =
N√
2π

1

ln(σg)
exp

[
−1

2

(
ln r − ln rg

ln(σg)

)2
]
, (25)

and N being the number of particles within the mode, r the radius, rg the geometric
median radius, and σg the geometric mean standard deviation (Liu et al., 2011). The
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kth moment of the log-normal distribution (Mk) can be computed from (Binkowski and
Roselle, 2003)

Mk = Nrkg exp

[
k2

2
ln2(σg)

]
(26)

so that

M0 =N, (27)

M1 =Nrg exp

[
1

2
ln2(σg)

]
, (28)

M2 =Nr2
g exp

[
2 ln2(σg)

]
, (29)

M3 =Nr3
g exp

[
9

2
ln2(σg)

]
. (30)

The zeroth moment M0 is the number of aerosol particles N , the second moment (M2)
is proportional to the total particulate surface area, and the third moment (M3) is
proportional to the particulate volume. Since the effective radius (reff) is defined as
reff = M3

M2
, it can be calculated as

reff = rg exp

[
5

2
ln2(σg)

]
. (31)

The effective radius (in µm) is different for each aerosol type. Table 1 summarizes the
range of radii covered by CRTM and MOPSMAP.

Furthermore the aerosol size of sea salt, hydrophilic OC and BC, and sulfate increases
with ambient moisture. Hygroscopic growth rate of the CRTM look-up table is based
on the Global Aerosol Data Set (GADS) (Koepke et al., 1997), compiled by d’Almeida
et al. (1991) and described by Chin et al. (2000).

MOPSMAP used a different model for hygroscopicity, which is based on Zieger et al.
(2013) and parameterized as

g(aw) =

(
1 + κ

aw

1− aw

)1/3

, (32)

where g(aw) is the hygroscopic growth factor (i.e., the ratio between the particle size at
a specific relative humidity and particle size of a dry particle), aw water activity, which
can be replaced by relative humidity if the Kelvin effect can be neglected, and κ a mea-
sure of the particle’s hygroscopicity when SPH particles with individual homogeneous
composition are assumed (Zieger et al., 2013). For MOPSMAP, κ values were calculated
from Figure 11 of Zieger et al. (2013). For BC, κ was set to 0.1.

Figure 1 shows the hygroscopic growth of GOCART aerosols modeled with CRTM
and MOPSMAP. Hydroscopic aerosols increase with increasing relative humidity. A
moderate linear increase is assumed for all aerosols below 80 %, the size of sea salt
aerosols increases significantly at relative humidities larger than 95 %. Radii of dust,

8



Figure 1: Hygroscopic growth of CRTM (left) and MOPSMAP (right) aerosols on a
linear (top) and logarithmic (bottom) scale. Particles that do not grow with increasing
humidity (such as dust, hydrophobic OC and BC) are additionally plotted with solid
lines. Different line thicknesses of dust aerosols (black lines) indicate different dust
particle sizes (thin to thick lines: 0.05 µm, 1.40 µm, 2.40 µm, 4.50 µm, 8.00 µm).
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Table 1: GOCART aerosols types and their CRTM and MOPSMAP effective radii.

Aerosol type CRTM reff(in µm) MOPSMAP reff(in µm)

SPH dust 0.0098 to 7.9887 0.0098 to 7.8266

VEPS dust — 0.0098 to 7.7625

CSEPS dust — 0.0098 to 7.8262

Aerosols in SSAM 0.3001 to 1.4515 0.3000 to 1.3537

Aerosols in SSCM1 1.0001 to 4.8070 1.0000 to 4.4994

Aerosols in SSCM2 3.2500 to 17.2804 3.2479 to 13.0551

Aerosols in SSCM3 7.4951 to 88.8403 7.3576 to 21.2236

OC 0.0872 to 0.2122 0.0872 to 0.2572

BC 0.0355 to 0.0739 0.0355 to 0.0787

Sulfate 0.2424 to 0.7929 0.2424 to 1.0475

hydrophobic OC, and hydrophobic BC do not depend on relative humidity but are
constant.

CRTM models a slightly larger hygroscopic growth than MOPSMAP. This is most
evident for large relative humidities, where sea salt becomes as large as 89 µm in CRTM
but only about 20 µm in MOPSMAP. At 50 % relative humidity, CRTM and MOPSMAP
sea salt aerosols are as large as 12.43 µm and 8.98 µm, respectively (see Table 2).

3.3.2. Mass extinction coefficient

The mass extinction coefficient of aerosols (κe in m2 kg−1) depends on aerosol type,
aerosol size, and measurement wavelength (CRTM and MOPSMAP contain information
of 61 wavelengths from 200 nm to 37.037 µm). It is important to note that mass extinc-
tion coefficients of CRTM look-up tables are specified relative to dry aerosol mass. This
means that all humidification effects are embodied in the value of the mass extinction
efficiency (Chin et al., 2000).

Figure 2 shows the mass extinction coefficients as a function of wavelength at 10 % and
90 % relative humidity and as a function of aerosol size (including hygroscopic growth) at
a wavelength of 550 nm for CRTM and MOPSMAP. Largest mass extinction coefficients
are found for small wavelengths and small particles such as BC, OC, and sulfate. In the
range of LIDAR wavelengths, small dust particles have larger mass extinction coefficients
than large dust particles. This behavior changes for large measurement wavelengths. The
comparison of mass extinction coefficients at 10 % and 90 % relative humidity reveals
increasing κe with increasing relative humidity.

This is also shown at 550 nm, where mass extinction coefficients of all hygroscopic
aerosols significantly increase with increasing size. Since aerosol size already includes
hygroscopic growth, effective radii are proportional to the amount of ambient moisture.

Distinct differences between CRTM and MOPSMAP mass extinction coefficients are

10



Table 2: Characteristics of GOCART aerosols at 50 % relative humidity (no humidity
influence on dust) and at a wavelength of 550 nm modeled with CRTM and MOPSMAP.

Aerosol type reff ke ω kb

(µm) (m2 kg−1) (1) (m2 kg−1 sr−1)

CRTM

SPH dust 0.33 2181.0 0.99 42.24

VEPS dust – – – –

CSEPS dust – – – –

Aerosols in SSAM 0.48 7114.0 1.00 27.52

Aerosols in SSCM1 1.60 2164.0 1.00 57.47

Aerosols in SSCM2 5.21 587.3 1.00 38.33

Aerosols in SSCM3 12.43 262.0 1.00 20.65

OC 0.11 4578.0 0.98 38.17

BC 0.04 9918.0 0.20 47.23

Sulfate 0.34 7328.0 1.00 31.90

MOPSMAP

SPH dust 0.33 2173.4 0.96 81.48

VEPS dust 0.33 2211.4 0.96 45.30

CSEPS dust 0.33 2235.3 0.96 46.32

Aerosols in SSAM 0.37 4067.7 1.00 82.26

Aerosols in SSCM1 1.24 1350.5 1.00 63.19

Aerosols in SSCM2 4.03 358.8 1.00 31.48

Aerosols in SSCM3 8.98 154.3 1.00 19.88

OC 0.09 3014.5 0.97 64.72

BC 0.04 9248.1 0.20 91.80

Sulfate 0.30 5031.4 1.00 74.76
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Figure 2: Mass extinction coefficients of CRTM (left) and MOPSMAP (right) as a
function of wavelength at 10 % (top) and 90 % (middle) relative humidity and as a
function of aerosol size at a wavelength of 550 nm (bottom). Particles that do not grow
with increasing humidity (such as dust, hydrophobic OC and BC) are plotted with solid
lines in the top and middle panels. Different line thicknesses of dust aerosols (black lines)
indicate different dust particle sizes (thin to thick lines: 0.05 µm, 1.40 µm, 2.40 µm,
4.50 µm, 8.00 µm). The thin gray vertical lines in the top and middle panels indicate the
three LIDAR wavelengths at 355 nm, 532 nm, and 1064 nm as well as the wavelength
of many AOD measurements at 550 nm.
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found for the smallest dust aerosol at a wavelength of 550 nm and at high relative
humidities due to different modeling of ambient moisture effects. Table 2 summarizes
these differences at a wavelength of 550 nm and 50 % relative humidity. It clearly shows
that all CRTM mass extinction coefficients are larger than that of MOPSMAP. If the
non-spherical shape of dust is accounted for, MOPSMAP mass extinction coefficients
are slightly larger than that of spherical CRTM particles.

3.3.3. Single scatter albedo

The single scatter albedo for aerosol scatterers (w, dimensionless) depends on aerosol
type, aerosol size, and measurement wavelength. Figure 3 shows the single scatter albedo
as a function of wavelength at 10 % and 90 % relative humidity and as a function of
aerosol size (including hygroscopic growth) at a wavelength of 550 nm for CRTM and
MOPSMAP. Single scatter albedo ranges from zero to one. At small wavelengths, largest
values are found for OC and sulfate. In the range of LIDAR wavelengths, small dust
particles have larger single scatter albedo than larger dust particles, in general. This is
not true for smallest dust aerosols as shown in the bottom panels of Figure 3. Single
scatter albedo of non-spherical dust particles is slightly larger than that of spherical
particles. The comparison of single scatter albedo at 10 % and 90 % relative humidity
reveals increasing w with increasing ambient moisture.

Obvious differences between CRTM and MOPSMAP are again found for the smallest
dust aerosol at a wavelength of 550 nm and for high relative humidities. Figure 3 and
Table 2 show that most aerosols have single scatter albedo that is very close to one at a
wavelength of 550 nm. Exceptions are BC (0.2 at 50 % relative humidity), OC (0.97/0.98
at 50 % relative humidity for MOPSMAP and CRTM, respectively), and dust. Dust
particles with radii of 0.33 µm have a single scatter albedo of 0.96 in MOPSMAP and
0.98 in CRTM (see Table 2).

3.3.4. Mass backscattering coefficient

The CRTM mass backscattering coefficient κb (in m2 kg−1 sr−1) was calculated offline
(see above) and stored in the extended aerosol look-up table. Information of the cor-
responding MOPSMAP parameter was derived from the model itself (Gasteiger and
Wiegner, 2018). Both aerosol look-up tables provide information of mass backscattering
coefficients as a function of aerosol type, aerosol size, and measurement wavelength.

Figure 4 shows the mass backscattering coefficients of CRTM and MOPSMAP look-up
tables as a function of wavelength at 10 % and 90 % relative humidity and as a func-
tion of aerosol size (including hygroscopic growth) at a wavelength of 550 nm. Largest
backscattering coefficients are found for small wavelengths and for small aerosols such as
OC, BC, and sulfate. The larger the size of the dust aerosols, the smaller the backscat-
tering coefficients (with the exeption of very small dust particles as shown in the bottom
panel of Figure 4). Smaller backscattering coefficients are also modeled for non-spherical
dust particles. Higher amount of ambient moisture increases backscattering coefficients.

Problems occurred when reconstructing CRTM backscattering coefficients of some
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Figure 3: Single scatter albedo of CRTM (left) and MOPSMAP (right) as a function of
wavelength at 10 % (top) and 90 % (middle) relative humidity and a function of aerosol
size at a wavelength of 550 nm (bottom). Particles that do not grow with increasing
humidity (such as dust, hydrophobic OC and BC) are plotted with solid lines in the
top and middle panels. Different line thicknesses of dust aerosols (black lines) indicate
different dust particle sizes (thin to thick lines: 0.05 µm, 1.40 µm, 2.40 µm, 4.50 µm,
8.00 µm). The thin gray vertical lines in the top and middle panels indicate the three
LIDAR wavelengths at 355 nm, 532 nm, and 1064 nm as well as the wavelength of many
AOD measurements at 550 nm.
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Figure 4: Mass backscattering coefficients of CRTM (left) and MOPSMAP (right) as
a function of wavelength at 10 % (top) and 90 % (middle) relative humidity and as a
function of aerosol size at a wavelength of 550 nm (bottom). Particles that do not grow
with increasing humidity (such as dust, hydrophobic OC and BC) are plotted with solid
lines in the top and middle panels. Different line thicknesses of dust aerosols (black lines)
indicate different dust particle sizes (thin to thick lines: 0.05 µm, 1.40 µm, 2.40 µm,
4.50 µm, 8.00 µm). The thin gray vertical lines in the top and middle panels indicate the
three LIDAR wavelengths at 355 nm, 532 nm, and 1064 nm as well as the wavelength
of many AOD measurements at 550 nm.
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aerosol types at some wavelengths. Even negative coefficients were reconstructed. Fig-
ure 4 shows these features, e.g., for CRTM backscattering coefficients of sea salt 2 at 90 %
relative humidity between about 2000 nm and 3000 nm (in the infrared part of the spec-
trum). A potential reason of this behavior is a deficiency of the phase coefficients of the
original CRTM aerosol look-up table. Since this problem did not affect backscattering
coefficients at LIDAR wavelengths, data were still used for further calculations.

Dinstinct differences between CRTM and MOPSMAP mass backscattering coefficients
are found for dust, where CRTM coefficients are larger than that of MOPSMAP at small
wavelengths. At a wavelength of 550 nm, MOPSMAP medium-size dust aerosols have
larger backscattering coefficients than corresponding CRTM aerosols.

Backscattering coefficients of other GOCART aerosols are also modeled differently but
these differences are more complex than for other optical properties. At a wavelength
of 550 nm and 50 % relative humidity, e.g., small sea salt aerosols (SSAM and SSCM1)
have larger backscattering coefficients in MOPSMAP but SSCM2 and SSCM3 aerosols
have larger coefficients in CRTM (see Table 2).

The evaluation of CRTM runs with different parameter settings will reveal adequacies
and deficiencies of CRTM and MOPSMAP model parameterizations, discussed in the
next section.
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4. CRTM evaluation

4.1. Input data

Information about aerosol concentrations and AOP have been made available by NASA.
The MERRA Aerosol Reanalysis (MERRAero) is based on the Goddard Earth Observ-
ing System Data Assimilation System version 5 (GEOS-5) model driven by Modern Era
Retrospective-analysis for Research and Applications (MERRA) meteorological reanal-
yses. These data cover the period from January 2002 to February 2016. The production
of MERRAero (MERRA-1) data has been discontinued end of February 2016 because of
the availability of MERRA-2 data. The new MERRA-2 data are available from 1980 to
present. The spatial resolution of both data sets is 0.625◦ in longitude, 0.5◦ in latitude,
at 72 vertical eta levels. Global gridded fields are therefore available on 576 grid points
in longitude, 361 grid points in latitude, and 72 grid points with height (hybrid-eta levels
from the surface to 0.01 hPa).

Both MERRA data sets provide global fields of the concentration of dust, sea salt,
sulfate, black and organic carbon. One MERRA-11 and one MERRA-22 file from 17
April 2010, 12 UTC were used as input to calculate AOP with CRTM.

In addition to aerosol concentrations, MERRA-1 and MERRA-2 also provide infor-
mation about AOD at 550 nm. These data were used to validate AOD calculated
with CRTM. Furthermore, MERRA-1 provides information about aerosol extinction and
backscattering coefficients at three different wavelengths (355 nm, 532 nm and 1064 nm)
as observed by LIDAR measurements. Because corresponding MERRA-2 data are not
publicly available, only MERRA-1 data were used to validate lidar-based AOP from
CRTM.

The following links give further information about MERRA:

• MERRA-1 data download:

https://gmao.gsfc.nasa.gov/reanalysis/merra/MERRAero/data/

• MERRA-1 documentation:

https://gmao.gsfc.nasa.gov/reanalysis/merra/MERRAero/docs/

• MERRA-2 data download:

https://disc.sci.gsfc.nasa.gov/daac-bin/FTPSubset2.pl

• MERRA-2 data documentation:

https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/docs/

https://gmao.gsfc.nasa.gov/pubs/docs/Randles887.pdf

1MERRA-1 file: dR MERRA-AA-r2.inst3hr 3d aer Nv.20100417 1200z.nc4
2MERRA-2 file: MERRA2 300.inst3 3d aer Nv.20100417.SUB.nc4
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4.2. CRTM model runs

Several CRTM model configurations were tested and validated:

CRTM(SPH, MERRA-1): CRTM calculations were done with MERRA-1 aerosol con-
centrations and the extended CRTM aerosol look-up table. This table contains
information of SPH particles only.

CRTM(SPH, LR, MERRA-1): CRTM calculations were done with MERRA-1 aerosol
concentrations and the extended CRTM aerosol look-up table. This table contains
information of SPH particles only. Backscattering coefficients were calculated by
assuming a constant LIDAR ratio.

CRTM(SPH, MERRA-2): CRTM calculations were done with MERRA-2 aerosol con-
centrations and the extended CRTM aerosol look-up table. This table contains
information of SPH particles only.

CRTM(SPH, LR, MERRA-2): CRTM calculations were done with MERRA-2 aerosol
concentrations and the extended CRTM aerosol look-up table. This table contains
information of SPH particles only. Backscattering coefficients were calculated by
assuming a constant LIDAR ratio.

MOPSMAP(SPH, MERRA-1): CRTM calculations were done with MERRA-1 aero-
sol concentrations and the MOPSMAP aerosol look-up table. Only SPH particles
were used.

MOPSMAP(SPH, LR, MERRA-1): CRTM calculations were done with MERRA-1
aerosol concentrations and the MOPSMAP aerosol look-up table. Only SPH par-
ticles were used. Backscattering coefficients were calculated by assuming a constant
LIDAR ratio.

MOPSMAP(VEPS, MERRA-1): CRTM calculations were done with MERRA-1 aero-
sol concentrations and the MOPSMAP aerosol look-up table. VEPS particles were
used to simulate AOP of dust.

MOPSMAP(CSEPS, MERRA-1): CRTM calculations were done with MERRA-1 aero-
sol concentrations and the MOPSMAP aerosol look-up table. CSEPS particles
were used to simulate AOP of dust.

MOPSMAP(SPH, MERRA-2): CRTM calculations were done with MERRA-2 aero-
sol concentrations and the MOPSMAP aerosol look-up table. Only SPH particles
were used.

MOPSMAP(SPH, LR, MERRA-2): CRTM calculations were done with MERRA-2
aerosol concentrations and the MOPSMAP aerosol look-up table. Only SPH par-
ticles were used. Backscattering coefficients were calculated by assuming a constant
LIDAR ratio.
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MOPSMAP(VEPS, MERRA-2): CRTM calculations were done with MERRA-2 aero-
sol concentrations and the MOPSMAP aerosol look-up table. VEPS particles were
used to simulate AOP of dust.

MOPSMAP(CSEPS, MERRA-2): CRTM calculations were done with MERRA-2 aero-
sol concentrations and the MOPSMAP aerosol look-up table. CSEPS particles
were used to simulate AOP of dust.

4.3. Evaluation of AOD

Aerosol concentrations of the MERRA-1 and MERRA-2 reanalyses were used to compute
total AOD at 550 nm as measured by the MODIS instrument onboard the Aqua and
Terra satellites. Since CRTM output is a vertical profile of the dimensionless aerosol
optical depth (see Eq. 1), it has to be vertically integrated

AOD′ =

n layers∑
n=1

AOD(n). (33)

4.3.1. Model-to-model comparison

Figure 5 shows AOD from MERRA-2, CRTM(SPH, MERRA-2), and MOPSMAP(SPH,
MERRA-2). Highest aerosol loads are found above the Saharan region in North Africa
as well as in East Asia. High AOD in the northwestern part of Russia might be caused
by aerosols from the volcanic eruption of the Eyjafjallajökull in April 2010.

The comparison between the models visualizes different model parameterizations and
model assumptions because input aerosol concentrations were identical for all runs. This
comparison reveals higher AOD in CRTM and MOPSMAP over the oceans (slightly
smaller differences for MOPSMAP than for CRTM) but smaller AOD over continental
regions with high dust load (such as over the Saharan region in Africa).

To further investigate the impact of the aerosol shape on AOD, Figure 6 shows the
AOD differences for spheriods (CSEPS and VEPS) and spherical particles calculated
with MOPSMAP. Positive differences indicate larger aerosol extinction for spheroids
than for spherical particles. This is consistent with larger mass extinction coefficients of
non-sperical than of spherical particles as shown in Figure 2 and Table 2.

Since MOPSMAP models spheroids only for dust aerosols, AOD differences are largest
over dusty regions, where they are, in general, smaller than 0.1. This is too small to
change the general picture of the MOPSMAP versus MERRA-2 comparison shown in
Figure 5. This means that above the Saharan region in North Africa and in East Asia,
AOD from prolate spheroids from MOPSMAP is still smaller than that of MERRA-2.

4.3.2. Comparison to observations

The AErosol RObotic NETwork (AERONET) is a global ground-based aerosol monitor-
ing network that uses automatic sun-sky scanning spectral radiometers. Level 2 of these
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Figure 5: AOD at 550 nm (left) from MERRA-2 (top), CRTM(SPH, MERRA-2)
(middle), and MOPSMAP(SPH, MERRA-2) (bottom) and their differences relative to
MERRA-2 (right).

Figure 6: AOD difference at 550 nm from MOPSMAP(CSEPS, MERRA-2) (left) and
MOPSMAP(VEPS, MERRA-2) (right) relative to MOPSMAP(SPH, MERRA-2). Note
the different colorbar compared to Figure 5.
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Figure 7: Daily mean AOD at 550 nm observed with AERONET on 17 April 2010.

data were used to validate modeled AOD. To compare the data at the same wavelength,
AERONET AOD was interpolated to 550 nm using measured AOD at 500 nm and the
Ångström coefficient α from 440 nm and 675 nm

AOD550 = AOD500

(
550

500

)−α
. (34)

Figure 7 shows daily mean AERONET AOD observations on 17 April 2010. Most
of the 91 measurement sites were located over the continental U.S. and in Europe.
Only a few measurements were made available in South America, Africa, Asia, and
Australia. Highest AOD values were observed in India, Nepal, and south-east Asia.
Two measurement sites even observed daily-mean AOD values larger than one. These
were the stations in Pokhara, Nepal (83.98◦ longitude, 28.19◦ latitude) and Kathmandu,
Nepal (85.54◦ longitude, 27.60◦ latitude).

Scatter plots of observed and modeled AOD are shown in Figure 8 (the left panel
shows results for MERRA-1, the right panel for MERRA-2). In general, all models are
in good agreement with the observations with a small positive model bias for small AOD
(< 0.35) and a small negative model bias for high AOD (> 0.6). A potential reason for
these consistent model biases is a small bias of MERRA aerosol concentrations that
were used as input for all computations. Furthermore, results might be affected by the
representativeness error, caused by the comparison of daily-mean observed AOD and
AOD simulated for 12 UTC.

All model runs have very similar performance when MERRA-1 input data were used.
Worse model consistency is found for MERRA-2 input data. Besides that, MERRA-1
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Figure 8: Scatter plot of daily mean AOD measurements from the AERONET and
AOD from different aerosol models. The left scatter plot shows results of MERRA-1
input data, the right scatter plot those of MERRA-2 input data.
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model runs have higher r2 values than MERRA-2 runs.
Different performance of CRTM and MOPSMAP from MERRA-1 and MERRA-2

indicates different aerosol composition of MERRA-1 and MERRA-2 data because the
same models, same parameterizations but different aerosol fields were used as input.
Furthermore, it seems that optical properties changed (improved) between these two
MERRA data versions. To better understand these differences, however, a more detailed
investigation is needed. This investigation should also include looking at the aerosol
composition at specific measurement sites, but it is out of the scope of this study.

4.4. Evaluation of LIDAR optical properties

Aerosol concentrations of the MERRA-1 and MERRA-2 reanalyses were also used to
compute AOP as observed by LIDAR instruments. Since CRTM operates on height/thick-
ness independent quantities, volume extinction and backscattering coefficients are di-
mensionless and have to be re-scaled to obtain appropriate units:

E ′(z) =
E(z)

dz
(35)

and

B′(z) =
B(z)

dz
(36)

with dz (in m) being the layer depth, which can be obtained from

dz = −dp(z)

g%(z)
, (37)

when using MERRA data (see also Section C.3).

4.4.1. Model-to-model comparison

Figure 9 shows aerosol extinction and backscattering coefficients as well as the LR at
532 nm from the MERRA-1 reanalysis on 17 April 2010, 12 UTC. Larger aerosol con-
centrations in the lower atmosphere cause increasing extinction and backscattering co-
efficients towards the surface. The median extinction coefficient increases from approx-
imately 5× 10−4 km−1 at 100 hPa to 2× 10−2 km−1 at 900 hPa. Similarly, the median
backscattering coefficient increases from approximately 7×10−6 km−1sr−1 at 100 hPa to
5× 10−4 km−1sr−1 at 900 hPa. The slightly larger increase of backscattering coefficients
yields decreasing LR towards the surface. The median LR profile decreases from 70 sr−1

at 100 hPa to 40 sr−1 at 900 hPa.
Individual profiles reveal that global extinction and backscattering coefficients can

vary more than two orders of magnitude. This is reasonable and can be attributed to
aerosol-loaded and clear-air conditions.

It is also important to note that we found some MERRA-1 data quality issues with
aerosol concentrations being exactly zero at some pressure levels. These missing data
were filled with log-linear interpolation. Large differences between mean and median
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Figure 9: Vertical profiles of MERRA-1 AOP: aerosol extinction coefficients (left),
backscattering coefficients (middle), and extinction-to-backscattering ratio (right). Re-
sults are shown for the visible part of the spectrum. Individual profiles are shown in
gray (out of 207936 profiles, only every 1000th profile is plotted), median in red, the
75 % percentile in yellow, the mean in blue, the standard deviation in green.

profiles as well as large standard deviations also indicate a large number of outlier
profiles. Unfortunately, MERRA-2-derived AOP from LIDAR measurements are not
yet publicly available and cannot be used for validation.

Figure 10 shows the differences of aerosol extinction and backscattering coefficients
of CRTM(SPH, MERRA-1) and MOPSMAP(SPH, MERRA-1) relative to MERRA-1.
Backscattering coefficients were obtained from both methods (i) the aerosol look-up
tables and (ii) by assuming a constant LR for individual aerosol types (Eq. 12). Note
that CRTM and MOPSMAP results are obtained at 550 nm and not at 532 nm as the
MERRA-1 reference. However, results are not expected to vary much between these
wavelengths (see Figs. 2 and 4).

In general, CRTM, MOPSMAP, and MERRA-1 extinction coefficients are in good
agreement. Median CRTM differences are within ±25 % with negative differences (i.e.,
smaller CRTM extinction coefficients) at altitudes above about 850 hPa and positive
differences below. Median MOPSMAP extinction coefficients are also within 25 % but
they are systematically negative in the entire troposphere.

Median systematic difference of the backscattering coefficients calculated with the
CRTM look-up table decreases from −50 % at 100 hPa to −25 % at 700 hPa. In the
atmospheric boundary layer, CRTM backscattering coefficients are larger than that of
MERRA-1 and differences become positive. In contrast, MOPSMAP backscattering
coefficients are larger than that of MERRA-1 in the entire troposphere. Assuming a
constant LR, the differences between the models are smaller. Median differences between
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Figure 10: Vertical difference profiles of aerosol extinction coefficients (left), aerosol
backscattering coefficients (middle), and aerosol backscattering coefficients from a fixed
LR (right) of CRTM (top) and MOPSMAP (bottom) relative to MERRA-1. CRTM
and MOPSMAP both used MERRA-1 aerosol concentrations and assumed spherical
particles only. Results are shown for the visible part of the spectrum.
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Figure 11: CALIOP orbit segments used for evaluation. Day-time measurements are
shown in red, night-time measurements in blue.

CRTM and MERRA-1 are smaller than 5 % in large parts of the atmosphere. Those of
MOPSMAP are again mainly negative but remain within approximately −15 %.

Individual extinction and backscattering coefficient difference profiles have a lot of
spikes larger than 100 %, yielding also a large difference between the median and the
mean as well as a large standard devitation. A first closer look at these differences
showed that they are related to atmospheric humidity and different modeling of ambient
moisture effects (see Section 3.3).

4.4.2. Comparison to observations

The Cloud-Aerosol Lidar with Orthogonal Polarisation (CALIOP) instrument onboard
the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)
satellite measures aerosol and cloud characteristics with a LIDAR technique at two
wavelengths at 532 nm and 1064 nm. Retrieved backscattering and extinction coeffi-
cients are provided, e.g., by NASA.

To validate the quality of vertically-resolved modeled AOP, we selected a set of
CALIOP measurements over North Africa3 and the North Atlantic4. The locations
of these two orbit segments are shown in Figure 11. Measurements above Africa were
obtained from approximately 0:30 UTC to 0:41 UTC, those above the North Atlantic
were performed from approximately 16:21 UTC to 16:32 UTC. Even though these mea-
surements are not co-located in time with the model simulations, we choose these two
orbit segments to better understand the impact of dust and sea salt on modeled AOP.

3CALIOP file: CAL LID L2 05kmAPro-Standard-V4-10.2010-04-17T00-22-35ZN Subset.hdf
4CALIOP file: CAL LID L2 05kmAPro-Standard-V4-10.2010-04-17T15-59-02ZD Subset.hdf
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Figure 12: Vertically-resolved extinction coefficients from CALIPSO measurements
on 17 April 2010 over North Africa (top left) and model results from MERRA-1,
CRTM(SPH, MERRA-1), and MOPSMAP(SPH, MERRA-1).

CALIOP variables names were Extinction Coefficient 532 for extinction coefficients
and Total Backscatter Coefficient 532 for backscattering coefficients.

Figures 12, 13, 14, and 15 show validation results for the overpass over Africa, Figures
16, 17, 18, and 19 show results over the North Atlantic. To make a meaningful com-
parison, model data were horizontally interpolated to CALIOP observation locations.
Furthermore, all data were vertically interpolated to a common pressure grid, defined as
p = psurf exp(−z/H) with psurf = 101325 Pa being surface pressure, z being an equidis-
tant altitude grid from the surface to 5 km, and H = 7000 m being the atmospheric
scale height.

Figure 12 reveals largest CALIOP extinction coefficients between about 10◦N and
14◦N as well as between 22◦N and 32◦N. MERRA-1 captured best the magnitude of
these measurements even though they were slightly smaller than the observed values.
CRTM and MOPSMAP extinction coefficients were clearly too low in this region. Better
agreement between CRTM/MOPSMAP and CALIOP was found between 14◦N and
22◦N, where MERRA-1 overestimated aerosol extinction.

Figure 13 shows mean profiles of model minus observation extinction coefficient differ-
ences for MERRA-1 and MERRA-2 input data. Differences were only calculated where
CALIOP measurements were available. MERRA-1 data are in best agreement with
CALIOP observations. All CRTM/MOPSMAP simulations consistently show a nega-
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Figure 13: Model minus observation extinction coefficient difference profiles over Africa
from different model simulations. Results are shown for MERRA-1 (left) and MERRA-2
(right) input data.

tive bias (i.e., modeled extinction coefficients are too low). The bias is larger than 50 %
in the atmospheric boundary layer, becomes smaller than 30 % at 2 km, and increases
again above about 2.5 km.

Figure 14 shows backscattering coefficients of the CALIOP overpass over Africa. The
spatial pattern is very similar to that of extinction coefficients with largest backscatter-
ing found between about 10◦N and 14◦N and between 22◦N and 32◦N. MERRA-1 again
captures this pattern and its magnitude reasonably well. While backscattering coeffi-
cients of spherical particles from the CRTM and MOPSMAP aerosol look-up tables are
too large, they are too small if a constant LIDAR ratio is assumed. Distinctively better
results are found when using non-spherical dust particles provided by MOPSMAP.

These results are also shown in mean backscattering coefficient difference profiles
(Figure 15). The mean MOPSMAP(SPH, MERRA-1) bias is largest, it almost reaches
100 % slightly above 2 km. At the same level, the CRTM(SPH, MERRA-1) bias is
about 50 %. The bias of mean backscattering coefficients obtained with a constant
LR is consistently negative and amounts approximately to −30 % to −50 % above the
atmospheric boundary layer up to an altitude of 3 km. MERRA-1 and simulations with
non-spherical dust particles closest match the observations with biases being, in general,
within −30 % above the atmospheric boundary layer up to 3 km.

Above the North Atlantic, aerosol extinction coefficients are distinctively smaller than
over Africa (cp. Figs. 12 and 16 but note different range of y-axes). CALIOP ex-
tinction coefficients rarely exceed 3 km−1 over the North Atlantic. While MERRA-1
clearly underestimates extinction of sea salt aerosols, CRTM(SPH, MERRA-1) and
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Figure 14: Vertically-resolved backscattering coefficients from CALIPSO measurements
over North Africa (top left) and model results from MERRA-1, CRTM, and MOPSMAP.
Results of several CRTM and MOPSMAP model runs are shown (see individual figure
titles for details).
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Figure 15: Model minus observation backscattering coefficient difference profiles over
Africa from different model simulations. Results are shown for MERRA-1 (left) and
MERRA-2 (right) input data.

MOPSMAP(SPH, MERRA-1) are in better agreement. Figure 17 reveals that all mod-
els exhibit a systematical negative bias with the smallest bias found for CRTM and
largest for MERRA-1. For MERRA-2, mean model biases are about −50 % for CRTM
and −60 % for MOPSMAP. Differences between the three MOPSMAP simulations are
negligible because of the absence of dust in this region.

Figures 18 and 19 show validation results of backscattering coefficients above the North
Atlantic. Contrary to the African results, there is hardly any difference between the
simulation using backscattering information from the aerosol look-up tables or assuming
a constant LIDAR ratio. This indicates a better LIDAR ratio parameterization for sea
salt than for dust. Vertical difference profiles of backscattering coefficients are similar to
difference profiles of extinction coefficients with negative biases for all simulations almost
everywhere. Smallest biases are again found for CRTM, largest biases for MERRA-1.
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Figure 16: Vertically-resolved extinction coefficients from CALIPSO measurements on
17 April 2010 over the North Atlantic (top left) and model results from MERRA-1,
CRTM(SPH, MERRA-1), and MOPSMAP(SPH, MERRA-1).
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Figure 17: Model minus observation extinction coefficient difference profiles over the
North Atlantic from different model simulations. Results are shown for MERRA-1 (left)
and MERRA-2 (right) input data.

5. Summary, conclusions, and outlook

This report gave detailed information about modeling AOP with CRTM. Furthermore,
model results were validated with another aerosol model (MERRA) and with observa-
tions. The following results were obtained:

1. CRTM is now able to simulate aerosol extinction and backscattering coefficients as
observed with LIDAR instruments; AOP can be simulated for all wavelengths that
are typically used for LIDAR measurements (i.e., 355 nm, 532 nm, and 1064 nm);

2. Two aerosol look-up tables can be used for CRTM AOP simulations: an extended
CRTM table and a table that is based on MOPSMAP;

3. The MOPSMAP look-up table also contains AOP of non-spherical dust particles;

4. Aerosol backscattering coefficients can be computed using (i) one of the aerosol
look-up tables or (ii) aerosol extinction coefficients from one of the aerosol look-up
tables and assuming a constant LIDAR ratio which is different for each aerosol
type;

5. The comparison between CRTM simulations and MERRA reanalyses showed that
the models are, in general, in good agreement;

6. Compared to MERRA reanalyses, CRTM AOD is larger over the oceans but
smaller over regions with high dust load (such as over the Saharan region in Africa);
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Figure 18: Vertically-resolved backscattering coefficients from CALIPSO measurements
over the North Atlantic (top left) and model results from MERRA-1, CRTM, and
MOPSMAP. Results of several CRTM and MOPSMAP model runs are shown (see
individual figure titles for details).
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Figure 19: Model minus observation backscattering coefficient difference profiles over
the North Atlantic from different model simulations. Results are shown for MERRA-1
(left) and MERRA-2 (right) input data.

7. Over dusty regions, AOD differences are reduced when non-spherical effects are
accounted for;

8. Validation with AOD measurements from AERONET revealed only small model
biases (which can, at least partly, be caused by biased aerosol concentrations rather
than model AOP);

9. Vertical profiles of aerosol extinction and backscattering coefficients agree reason-
ably well for all models;

10. Over dusty regions, validation with AOP measurements from the CALIOP satellite
revealed a negative bias (up to −40 %) of CRTM extinction coefficients (i.e., the
model underestimates aerosol extinction);

11. Over the ocean, the CRTM model bias has similar magnitude

12. The bias of backscattering coefficients simulated with CRTM depends on how it
is computed: if the simulation uses information of spherical aerosols of the aerosol
look-up tables, CRTM overestimates backscattering coefficients over dusty regions;
assuming a constant LR for individual aerosol types, simulated backscattering
coefficients are too small over dusty regions; best results and smallest biases are
obtained when simulating backscattering coefficients with non-spherical particles;
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13. Over the ocean, simulated backscattering coefficients are similar for all model runs
(i.e., influence of the calculation method is much smaller compared to the dusty
region)

14. These results are encouraging to continue with part II of this project: the assimila-
tion of vertically-resolved LIDAR measurements using an appropriate assimilation
tool.

There is still quite some work left to successfully assimilate LIDAR measurements
into an air quality model. This work includes further CRTM developments as well as
the implementation into the data assimilation software.

Most important future CRTM developments include (i) the generation of a CRTM
coefficient file for the CALIPSO satellite (so far, all tests were performed using the
CRTM coefficient file of MODIS onboard the Aqua satellite), and (ii) testing the tangent
linear and adjoint models. After this is done, the assimilation of aerosol extinction and
backscattering coefficients can be implemented into an appropriate data assimilation
tool.

LIDAR data assimilation can then be improved by implementing the observation
operator of the attenuated backscattering signal. Rayleigh scattering as well as the
absorption of radiation in the ultraviolet and visible parts of the spectrum by ozone,
nitrogen dioxide, and sulfur dioxide (in the ultraviolet only) as well as in the infrared
part of the spectrum by oxygen and carbon dioxide need to be accounted for. More
information can be found in Sic̆ (2014).

In recent years, spaceborne LIDAR-based measurements have only been performed by
the CALIPSO satellite, launched in 2006. The satellite is aging, however, but there are
other satellites performing similar LIDAR measurements. In August 2018, the Atmo-
spheric Dynamics Mission–Aeolus (ADM-Aeolus) satellite has successfully been launched
into orbit. When these data are publicly available, they can be also be assimilated into
models. The implementation into CRTM, however, needs to be expanded in order to
account for the angle of 35 degrees off-nadir, where measurements are performed. Earth
Cloud Aerosol and Radiation Explorer (EarthCARE) (scheduled for launch in 2021)
will also provide vertically-resolved LIDAR measurements that can be used to improve
model forecasts.
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Appendices

A. Reconstruction of CRTM backscattering coefficients

A.1. Legendre polynomials

If P (x) is a function defined from x = −1 to x = +1, it can be written as

P (x) = c0L0(x) + c1L1(x) + c2L2(x) + · · · =
∞∑
n=0

cnLn(x) (38)

with cn being some coefficients and Ln(x) being Legendre polynomials, i.e., orthogonal
functions on [−1, 1].

Legendre polynomials are given by

L0(x) =1 (39)

L1(x) =x (40)

Ln+1(x) =
2n+ 1

n+ 1
xLn(x)− n

n+ 1
Ln−1(x). (41)

A.2. Clenshaw’s recurrence formula

Clenshaw’s recurrence formula can be used to efficiently evaluate a sum of coefficients
times functions that obey a recurrence formula, e.g.,

P (x) =
imax∑
i=0

kiφi(x), (42)

with φ(x) satisfying the recurrence relation

φi+1(x) = αi(x)φi(x) + βi(x)φi−1(x) (43)

for some functions αi(x) and βi(x).
Now introduce the quantities bi(x) (i = imax, . . . , 1), defined by the following recur-

rence:

bimax+2(x) =0 (44)

bimax+1(x) =0 (45)

bi(x) =αi(x)bi+1(x) + βi+1(x)bi+2(x) + ki i = imax, . . . , 1. (46)

Using Eq. (46) to get ci

ki = bi(x)− αi(x)bi+1(x)− βi+1(x)bi+2(x) (47)
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and writing out explicitly the sum given by Eq. (42) yields

P (x) = . . .

+ [b8(x)− α8(x)b9(x)− β9(x)b10(x)]φ8(x)

+ [b7(x)− α7(x)b8(x)− β8(x)b9(x)]φ7(x)

+ [b6(x)− α6(x)b7(x)− β7(x)b8(x)]φ6(x)

+ [b5(x)− α5(x)b6(x)− β6(x)b7(x)]φ5(x)

+ . . .

+ [b2(x)− α2(x)b3(x)− β3(x)b4(x)]φ2(x)

+ [b1(x)− α1(x)b2(x)− β2(x)b3(x)]φ1(x)

+ [b0(x)− α0(x)b1(x)− β1(x)b2(x)]φ0(x).

Since the last line of this expression seems to be

[b0(x)− α0(x)b1(x)− β1(x)b2(x)]φ0(x) =k0(x)φ0(x)

= [k0(x) + β1(x)b2(x)− β1(x)b2(x)]φ0(x).

the only surviving terms are

P (x) =
imax∑
i=0

kiφi(x) = β1(x)b2(x)φ0(x) + b1(x)φ1(x) + k0φ0(x). (48)

Equations (44), (45), (46), and (48) are Clenshaw’s recurrence formula, which can be
used to evaluate Eq. (42).

A.3. Combined use of Legendre polynomials and Clenshaw’s
recurrence formula

Comparing Eqs. (41) and (43) yields

φn(x) =Ln(x), (49)

φ0(x) =L0(x) = 1, (50)

φ1(x) =L1(x) = x, (51)

αn(x) =
2n+ 1

n+ 1
x, (52)

βn(x) =− n

n+ 1
. (53)

Comparison of Eq. (38) with the upper limit of the sum truncated at nmax and Eq. (42)
yields

kn = cn, (54)

which can be used to calculated bn(x) using Eq. (46):

bn(x) =
2n+ 1

n+ 1
xbn+1(x)− n+ 1

n+ 2
bn+2(x) + cn. (55)
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Using Eq. (53) and evaluating bn(x) at n = 1 yields

β1(x) = −1

2
. (56)

Using all these quantities and inserting them into Eq. (48) enables the reconstruction of
the function P (x), defined from x = −1 to x = +1 and expanded into some coefficients
and Legendre polynomials:

P (x) =
nmax∑
n=0

cnLn(x) = −1

2
b2(x) + xb1(x) + c0. (57)

A.4. Reconstruction of backscattering coefficients

1. Evaluate the function x = cosϕ at x = −1 (i.e., backscattering at ϕ = π).

2. Calculate the coefficients

n1 =
2n+ 1

n+ 1
(58)

n2 =
n+ 1

n+ 2
(59)

for n = 1, . . . nmax used in Eq. (55).

3. Use Eq. (55) with bnmax+2 = bnmax+1 = 0 (Eqs. (44) and (45)), x = −1 (step 1), the
coefficients n1 and n2 (step 2), and the phase coefficients Acn and go through all
bn to calculate b2 and b1

bn(x) = n1xbn+1(x)− n2bn+2(x) + cn. (60)

4. Use Eq. (57) with b2, b1, x = −1, and the phase coefficient c0 to calculate the P (π)

5. Use Eq. (7) to calculate the mass backscattering coefficient: divide P (π) by 4π and
multiply it with the mass extinction coefficient κe and the single scatter albedo ω.

6. DONE!!

A.5. Example

Using four Legendre terms, the coefficients n1 and n2 are

n1(1 : 4) =1.50, 1.67, 1.75, 1.80

n2(1 : 4) =0.67, 0.75, 0.80, 0.83
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At a wavelength of 550 nm and no humidity (i.e., smallest aerosol size), the phase
coefficients cn for all aerosol types are

cdust(0 : 4) =0.50, 0.74, 0.64, 0.11, 0.36

cSSAM(0 : 4) =0.50, 0.82, 0.68, 0.19, 0.31

cSSCM1(0 : 4) =0.50, 0.67, 0.61, 0.02, 0.45

cSSCM2(0 : 4) =0.50, 0.61, 0.50,−0.17, 0.60

cSSCM3(0 : 4) =0.50, 0.62, 0.44,−0.23, 0.66

cOC(0 : 4) =0.50, 0.80, 0.63, 0.21, 0.09

cBC(0 : 4) =0.50, 0.47, 0.40, 0.12, 0.27

csulf(0 : 4) =0.50, 0.87, 0.72, 0.23, 0.33

Iterative calculation of b2, b1 for sulfate, e.g., yields

b6 =0.0

b5 =0.0

b4 =0.33

b3 =− 0.34

b2 =1.05

b1 =− 0.47

which yields 0.45 for the reconstructed phase function P (π). For all aerosols, P (π) is
equal to

Pdust(π) =0.66

PSSAM(π) =0.49

PSSCM1(π) =0.87

PSSCM2(π) =1.15

PSSCM3(π) =1.21

POC(π) =0.21

PBC(π) =0.32

Psulf(π) =0.45

Mass backscattering coefficients κb are then obtained by

κb = κeω
P (π)

4π
(61)
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with the mass extinction coefficient κe and single scatter albedo ω. At 550 nm and no
humidity, the dimensionless single scatter albedo w for all aerosol types is

ωdust =0.98

ωSSAM =1.00

ωSSCM1 =1.00

ωSSCM2 =1.00

ωSSCM3 =1.00

ωOC =0.96

ωBC =0.19

ωsulf =1.00

the mass extinction coefficient is

κe,dust =1318.0 m2 kg−1

κe,SSAM =2588.0 m2 kg−1

κe,SSCM1 =898.1 m2 kg−1

κe,SSCM2 =235.5 m2 kg−1

κe,SSCM3 =97.1 m2 kg−1

κe,OC =2649.0 m2 kg−1

κe,BC =8962.0 m2 kg−1

κe,sulf =3133.0 m2 kg−1

and finally, κb is

κb,dust =67.63 m2 kg−1 sr−1

κb,SSAM =100.98 m2 kg−1 sr−1

κb,SSCM1 =62.06 m2 kg−1 sr−1

κb,SSCM2 =21.64 m2 kg−1 sr−1

κb,SSCM3 =9.32 m2 kg−1 sr−1

κb,OC =43.43 m2 kg−1 sr−1

κb,BC =42.25 m2 kg−1 sr−1

κb,sulf =111.77 m2 kg−1 sr−1

The LIDAR ratio S, which is also known as the extinction-to-backscatter ratio can be
calculated as

S =
κe

κb

=
4π

wP (π)
. (62)
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At a wavelength of 550 nm and no humidity, it is equal to

Sdust =19.49

SSSAM =25.63

SSSCM1 =14.47

SSSCM2 =10.88

SSSCM3 =10.42

SOC =61.00

SBC =212.13

Ssulf =28.03

for all aerosol types. Note that these numbers are slightly different than data stored in
the new aerosol table because they were obtained using 16 Legendre coefficients instead
of only 4. To give a better idea about the differences, these numbers are also given below

κb,dust =33.08 m2 kg−1 sr−1

κb,SSAM =38.21 m2 kg−1 sr−1

κb,SSCM1 =26.67 m2 kg−1 sr−1

κb,SSCM2 =20.33 m2 kg−1 sr−1

κb,SSCM3 =11.15 m2 kg−1 sr−1

κb,OC =25.86 m2 kg−1 sr−1

κb,BC =43.53 m2 kg−1 sr−1

κb,sulf =24.14 m2 kg−1 sr−1

and

Sdust =39.85

SSSAM =67.73

SSSCM1 =33.68

SSSCM2 =11.58

SSSCM3 =8.71

SOC =102.43

SBC =205.89

Ssulf =129.76

again, for a wavelength of 550 nm and no humidity.
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B. Tangent linear and adjoint models of different AOP

Section 3.2 gave some background information about tangent linear and adjoint models
and showed how to calculate these models for AOD. Here, I show how to calculate
tangent linear and adjoint models for other AOP.

B.1. Volume extinction coefficient

In CRTM, the volume extinction coefficient βe equals optical depth because all compu-
tations are performed for height/thickness independent quantities. It is modeled as

βe = χκe, (63)

with χ being the integrated aerosol concentration of a layer and κe the mass extinction
coefficient, see also Section 3.1, Eq. (1). The derivations of the tangent linear statement
and the adjoint model are identical to that of optical depth. The resulting tangent linear
statement is

δχ =δχ

δκe =δκe (64)

δβe =κeδχ+ χδκe

and the adjoint model of βe is

δχ? =δχ? + κeδβ
?
e

δκ?e =δκ?e + χδβ?e (65)

δβ?e =0.

B.2. Absorption coefficient

The absorption coefficient βa can be obtained from the extinction coefficient βe and
single scatter albedo w and Eq. (4) because

(1− w) =1− βs

βs + βa

=
βs + βa − βs

βs + βa
(66)

=
βa

βs + βa

βa = (βs + βa)(1− w) = βe(1− w). (67)

The tangent linear statement is

δβe =δβe

δw =δw (68)

δβa =δβe(1− w)− βeδw
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or δβe

δw

δβa

 =

 1 0 0

0 1 0

(1− w) −βe 0


δβe

δw

δβa

 (69)

in matrix notation.
The adjoint model of βa can then be written asδβ?eδw?

δβ?a

 =

1 0 (1− w)

0 1 −βe

0 0 0


δβ?eδw?

δβ?a

 , (70)

which is equivalent to

δβ?e =δβ?e + (1− w)δβ?a
δw? =δw? − βeδβ

?
a (71)

δβ?a =0.

B.3. Volume scattering coefficient

In CRTM, volume scattering coefficient βs is modeled as

βs = χκew, (72)

with χ being integrated aerosol concentration of a layer, κe the mass extinction coef-
ficient, and w single scatter albedo, see also Section 3.1, Eq. (3). The tangent linear
statement is

δχ =δχ

δκe =δκe (73)

δw =δw

δβs =δχκew + χδκew + χκeδw

or 
δχ

δκe

δw

δβs

 =


1 0 0 0

0 1 0 0

0 0 1 0

κew χw χκe 0



δχ

δκe

δw

δβs

 (74)

in matrix notation.
The adjoint model of βs can then be written as

δχ?

δκ?e
δw?

δβ?s

 =


1 0 0 κew

0 1 0 χw

0 0 1 χκe

0 0 0 0



δχ?

δκ?e
δw?

δβ?s

 , (75)
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which is equivalent to

δχ? =δχ? + κewδβ
?
s

δκ?e =δκ?e + χwδβ?s (76)

δw? =δw? + χκeδβ
?
s

δβ?s =0.

B.4. Volume backscattering coefficient

The volume backscattering coefficient βb is obtained from

βb = χκb (77)

with χ being integrated aerosol concentration of a layer and κb the mass extinction
coefficient, see also Section 3.1, Eq. (8). The tangent linear statement is

δχ =δχ

δκb =δκb (78)

δβb =δχκb + χδκb

or  δχ

δκb

δβb

 =

 1 0 0

0 1 0

κb χ 0


 δχ

δκb

δβb

 (79)

in matrix notation.
The adjoint model of βb can then be written asδχ?δκ?b

δβ?b

 =

1 0 κb

0 1 χ

0 0 0


δχ?δκ?e
δβ?s

 , (80)

which is equivalent to

δχ? =δχ? + κbδβ
?
b

δκ?b =δκ?b + χδβ?b (81)

δβ?b =0.

The volume backscattering coefficient βb can also be obtained by assuming a constant
LIDAR ratio S

βb ≈
βe

S
(82)

with βe being the volume extinction coefficient, see also Section 3.1, Eq. (12).
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In this case, the tangent linear statement is

δβe =δβe

δS =0 (83)

δβb =δβe

or δβe

δS

δβb

 =

1 0 0

0 0 0

1 0 0


δβe

δS

δβb

 (84)

in matrix notation.
The adjoint model of βb can then be written asδβ?eδS?

δβ?b

 =

1 0 1

0 0 0

0 0 0


δβ?eδS?

δβ?b

 , (85)

which is equivalent to

δβ?e =δβ?e + δβ?b
δS? =0 (86)

δβ?b =0.

45



Table 3: MERRA data used for CRTM computations, their description and units.

MERRA variable description unit

lon longitude degrees east

lat latitude degrees north

lev layer layer

time time minutes since YYYY-MM-DD HH:MM:SS

ps/PS surface pressure Pa

delp/DELP pressure thickness Pa

RH relative humidity 1

AIRDENS air density kg m−3

du001/DU001 dust mixing ratio (bin 1) kg kg−1

du002/DU002 dust mixing ratio (bin 2) kg kg−1

du003/DU003 dust mixing ratio (bin 3) kg kg−1

du004/DU004 dust mixing ratio (bin 4) kg kg−1

du005/DU005 dust mixing ratio (bin 5) kg kg−1

ss001/SS001 sea salt mixing ratio (bin 1) kg kg−1

ss002/SS002 sea salt mixing ratio (bin 2) kg kg−1

ss003/SS003 sea salt mixing ratio (bin 3) kg kg−1

ss004/SS004 sea salt mixing ratio (bin 4) kg kg−1

ss005/SS005 sea salt mixing ratio (bin 5) kg kg−1

SO4 sulfate aerosols kg kg−1

BCphobic/BCPHOBIC hydrophobic BC kg kg−1

BCphilic/BCPHILIC hydrophilic BC kg kg−1

OCphobic/OCPHOBIC hydrophobic OC kg kg−1

OCphilic/OCPHILIC hydrophilic OC kg kg−1

C. MERRA data preparation for CRTM

C.1. List of variables

The list of variables kept for further computations is given in Table 3.

C.2. Pressure and temperature from MERRA data

Vertical pressure profiles p are calculated from pressure thickness dp (accumulation of
individual contributions of each layer). Temperature T is then obtained from pressure
and density % using the ideal gas law:

T =
p

%Rair

(87)

with Rair = 287 J K−1 kg−1 being the gas constant of dry air.
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C.3. Unit conversion of aerosol concentrations

Due to CRTM input data requirements, MERRA aerosol mixing ratios ζ in kg kg−1 need
to be converted to integrated aerosol concentrations for a layer χ in kg m−2. This was
done using the hydrostatic equation in differential form:

dp = ptop − pbottom = −%gdz (88)

(g = 9.81 is the gravitational acceleration and dz the layer thickness) which yields

dz = −dp

%g
(89)

and

%dz = −dp

g
. (90)

Therefore,

[ζ%dz] =
kg

kg

kg

m3
m =

kg

m2
=

[
−ζ dp

g

]
= [χ]

The conversion factor therefore is −dp/g. Note that the conversion factor depends on
location and time.
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Acronyms

3DVar 3-Dimensional Variational

4DVar 4-Dimensional Variational

ADM-Aeolus Atmospheric Dynamics Mission–Aeolus

AERONET AErosol RObotic NETwork

AOD Aerosol Optical Depth

AOP Aerosol Optical Properties

BC Black Carbon

CALIOP Cloud-Aerosol Lidar with Orthogonal Polarisation

CALIPSO Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations

CIRES Cooperative Institute for Research in Environmental Sciences

CRTM Community Radiative Transfer Model

CSEPS Cross-Section Equivalent Prolate Spheriods

CU Colorado University

DTC Developmental Testbed Center

EarthCARE Earth Cloud Aerosol and Radiation Explorer

ESRL Earth System Research Laboratory

FGAT First Guess at Appropriate Time

GADS Global Aerosol Data Set

GEOS-5 Goddard Earth Observing System Data Assimilation System version 5

GOCART Global Ozone Chemistry Aerosol Radiation and Transport

GSD Global Systems Division

GSI Gridpoint Statistical Interpolation

JCSDA Joint Center for Satellite Data Assimilation
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LIDAR LIght Detection And Ranging

LR LIDAR Ratio

MERRA Modern Era Retrospective-analysis for Research and Applications

MERRAero MERRA Aerosol Reanalysis

MODIS Moderate Resolution Imaging Spectroradiometer

MOPSMAP Modeled Optical Properties of enSeMbles of Aerosol Particles

NASA National Aeronautics and Space Administration

NOAA National Oceanic and Atmospheric Administration

OC Organic Carbon

SPH SPHerical

SSAM Sea Salt Accumulation Mode

SSCM Sea Salt Coarse Mode

Suomi-NPP Suomi National Polar-orbiting Partnership
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