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ABSTRACT 

Estimation of initial condition-related numerical weather prediction uncertainty is a 

prime topic in fields of data assimilation and ensemble forecasting research. An 

Analysis and Forecast Error Variances Estimation System (AFEVES) had been 

developed by solving a constraint nonlinear optimization problem. The system uses 

information from differences between forecast and analysis fields (perceived error, PE) 

with different lead times with prior knowledge regarding the time evolution of (a) 

forecast error variance and (b) correlation relation between errors in forecasts and 

analyses. This report documents the technique details on AFEVES such as cost 

function, and minimization algorithm. The system was first examined in a framework 

of Observing System Simulation Experiment (OSSE) and applied to the NCEP GFS 

history analyses and forecasts. The AFEVES produced almost the same geopotential 

height error variances estimation reported by Peña and Toth (2014), which indicate the 

robustness of the system.  

 

1. Background  

Estimation of initial condition-related numerical weather prediction uncertainty is a prime 

topic in fields of data assimilation and ensemble forecasting. A accurate specification of 

short-term forecast error (background error) statistics is crucial to the quality of the 

analysis in a data assimilation system, because the background error along with 

observations error determine to what extent the background fields will be corrected to fit 

observations (e.g. Courtier et al. 1998; Bannister 2008). However, the estimation of the 

background error statistics is not straightforward, since true atmospheric state (“truth”) is 

not known. Two methods are mainly used in current data assimilation systems. The so-

called NMC (named for the National Meteorological Center, now called the National 

Centers for Environmental Prediction) method (Parrish and Derber 1992) is one approach 

that is widely employed to estimate the climatological background error covariances. The 

background error generated by this method is not forecast error at a lead time (e.g. 6 

hours), but a combination of forecast errors of different lengths and their correlations 

(Bannister 2008; Wang et al. 2014). An alternative method is to use an ensemble of short-
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term forecasts at a specific time to evaluate the flow-dependent covariances (Houtekamer 

et al. 1996; Fisher 2003). In this method, the closer the ensemble mean is to “truth”, the 

more accurate the background error estimation.  A method that directly deals with the 

forecast error (difference between forecast and truth) and produces the estimates of 

forecast error is of interest.  

Accurate estimates of error variances are also crucial for generating initial perturbations 

in ensemble forecast systems. Research community has recognized that the representation 

in initial condition-related uncertainty is an important aspect of ensemble systems 

(Tollerud et al. 2013). As a first attempt at estimating spatial variation of rescaling 

parameters, the ratios of ensemble spread to ensemble mean forecast error at a few 

vertical levels were investigated for potential application in rescaling initial ensemble 

perturbations for the operational SREF system (Du et al. 2012). Results suggested that 

the present method of computing initial perturbations is likely fine as is for the previous 

SREF implementation from 500 hPa to the top of the atmosphere (Tollerud et al. 2013). 

In this report, the method proposed by Peña and Toth (2014) is briefly introduced in 

section 2. Section 3 describes the nonlinear constraint optimization problem and its new 

solution scheme. The results from OSSE and a few operational systems will be shown in 

section 4. The final section gives a summary.   

2. Methodology  

Peña and Toth (2014, hereafter PT2014) proposed the use of differences between forecast 

and analysis fields (“perceived forecast errors”) to provide the unbiased estimation of 

analysis and forecast errors. Here we adopt the idea but also use the differences between 

forecasts valid at the same time but with different lead times to derive the initial and 

forecast error variance estimations.  

2.1 Decomposition of forecast differences 

Assuming there are two forecasts Fi and Fj valid at the same time, one with a lead time i, 

and the other with a shorter lead time j, the forecast difference dij is 

dij
2= (Fi- Fj)2 = ((Fi-T) – (Fj -T))2 ≡ (xi – xj)2                         (1) 
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where T is truth, xi= Fi-T and xj= Fj -T are forecast errors for lead times i and j 

respectively.  

Following the law of sum of variances to rewrite the right hand side of (1): 

dij
2 = xi

2 + x j
2 − 2ρij xi x j                 (2) 

where , ρij is	
   forecast	
   error	
   correlation	
   between	
    xi and xj. Equation (2) builds a 

relation between variance of forecast difference (Fi- Fj)2 and the unknown true forecast 

errors xi and xj and their correlation ρij .   

2.2 Parameters estimation 

The estimations of unknowns xj, α, and ρij  are achieved by the minimization of the 

following cost function 

J(xi , xi ,ρij ) =max( dij
2 − d̂ij

2 ⋅wij
−1)     (3) 

where wij are specified weights  and d̂ij  is measured variance of forecast difference 

calculated from real model forecasts.  It is seen that the method is independent of any 

assumption or tuning parameter used in data assimilation schemes. To facilitate the 

estimation of the three unknowns, one can introduce more equations like (2) valid for 

various other lead times. By doing so, however, additional unknown variables (xi and ρij) 

are also introduced. In PT2014, a nonlinear relation between xi = f (a, x j )  is introduced 

to reduce the optimization variables to the unknowns xj, α, and ρij ,where α is the error 

growth rate. It is noted that xj can be regarded as initial condition error (analysis error if 

Fj is analysis) with lead time j=0.  

 

3. Analysis and Forecast Error Variance Estimation System  

The minimization of the cost function defined by Eq. 3 is a nonlinear constraint 

optimization problem. In PT2014, the Nelder-Mead Simplex method (Lagarias et al., 

1998) in the Matlab software was used to minimize eq. (3). However, this method is 

sensitive to first guess parameters; it is thus important to ensure that the starting point 

of the minimization of the cost function is located close to the absolute minimum. 
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Moreover, the gradient of the cost function defined by Eq. (3) does not exist, which 

makes it not straightforward to use minimization algorithms that require the gradient of 

a cost function. 

To overcome the limitation in the Nelder-Mead Simplex method, and make the codes 

easily portable on different computational platforms, the minimization problem (Eq. 3) 

is redefined, and a limited-memory BFGS (L-BFGS or LM-BFGS) algorithm was 

introduced to solve the constraint nonlinear optimization problem. The new 

optimization system is referred to as the Analysis and Forecast Error Variances 

Estimation System (AFEVES).  

The newly proposed cost function with various constraints can be written as, 

 

J(x0,α,ρ1 ) = [(di
2 − d̂i

2 )wi
−1]2

i
∑

di
2 = xi

2 + x0
2 − 2ρi xi x0

xi
2 = x0

2eαti

ρi = ρ1
i

1≥ ρi ≥ 0
α ≥ 0

$

%

&
&
&
&

'

&
&
&
&

                                            
 (4) 

x0 and xi is analysis error and forecast error with leading time i, respectively. ρ1  is an 

optimized variable denotes the correlation between forecast error with lead time j=1 

and analysis error. ρi   is correlation between x0 and xi. di
2  is measured variance of 

difference between forecast with lead time i and analysis. This is called perceived error 

in PT2014. A limited-memory BFGS (L-BFGS or LM-BFGS) algorithm (Byrd et al. 

1995) is used to obtain the minimization of the constraint cost function. LM-BFGS is a 

kind of quasi-Newton method that approximates the Broyden–Fletcher–Goldfarb–

Shanno (BFGS) algorithm using a limited amount of computer memory. The 

minimization code and its interfaces for the above defined cost function and its gradient 

were written in the Fortran language and thus it is portable to different computational 

platforms. The system includes an input and output (IO) component and a key 

component of a LM-BFGS minimization algorithm with specified cost and its gradient. 
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NCL scripts were also written to provide input files for the AFEVES. 

4. Results  

4.1 OSSE results  

The AFEVES is first tested in the framework of a Observing System Simulation 

Experiment (OSSE).  The OSSE configuration is as follows: 

• Period: Aug 2- 31 2005 

• Nature run: ECMWF T511  

• Data assimilation and forecasting system 

– NCEP’s GFS system 

– T382for both GSI and GFS model  

– GSI with static background error covariance  

– Conventional and remote observations 

– 3-day forecasts initiated at 00Z and 12Z everyday 

The perceived error variances were calculated using the 3-day forecasts during 2-31Aug 

2005 via the GSI analysis. The true error variances were also obtained by comparing the 

analysis and forecasts with the ECMWF nature run. The optimization period is 2.5 day 

with 12-hour interval. In the report only the error estimation for geopotential height 

(GPH) is investigated.  

In PT2014, it is assumed that error follows an exponential growth function ( xi
2 = x0

2eαti ) 

for short-range forecasts, which is also used a strong constraint in the cost function. This 

means the method can estimate the growth components in the analysis error variances. 

However, if the analysis error variances have a decaying component for short-range 

forecasts, one needs to be cautious when interpreting the results.  
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It is found that there are decaying components in the GPH analysis error variances (Fig. 

1). This is mainly because the analyses were produced by the GSI 3DVAR with 

climatological background error covariance that cannot describe multi-variate covariance. 

It indicates the method may underestimate analysis error variances since it will always try 

to extract the growth component using modeled perceived error information.  

                 

Fig. 1. The GPH error variance evolution with forecast time (unit: hour). The ln(x(t)2/x(0) 

2) is plotted. The black curves present the snapshot of error variance evolution between 

30°N-60°N. The blue curve describes the mean error variance evolution between 30°N-

60°N.  

Before investigating the GPH error variance estimated by the AFEVES, the fitting error 

is examined first. It is expected that the absolute value of the difference between the 

observed perceived error variance and modeled perceived error variance (ABSE) is 

smaller than the standard error of the mean (SEM) if the AFEVES works well. This 

standard is also used as an index to justify the minimization algorithm in PT2014.  Figure 

2 shows SEM and the ABSE in geopotential height at 200hPa, 500hPa and 700hPa levels. 
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It is seen that the AFEVES produces very good fitting to the perceived errors and the 

ABSEs are smaller than the SEMs.  This confirms the good performance of the AFEVES.  

 

 

Fig. 2. Absolute value of the difference between the observed perceived error variance 

and modeled perceived error variance (ABSE), and the standard error of the mean (SEM) 

in goepotential height at 200hPa, 500hPa and 700hPa levels.  

Figure 3 displays the vertical profiles of “true” GPH analysis error variance and the 

estimated error variance. Except for levels 200 and 300 hPa, the estimated analyses 

error variance is smaller than the “truth” one.  One of the reasons is that there are 

decaying components in the analysis error variance, whereas the current method only 

extracts the growing components of it.  
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Fig. 3 Vertical profiles of GPH analysis error variance. Estimated analysis error variance 

is the blue curve and “truth” analysis error variance is the red curve.  

4.2 Error Estimation for Operational Forecasting System 

In this section, the AFEVES was applied to estimate analysis error variance for a few 

operational forecasting systems and compared results in PT2014. The 500 hPa 

geopotential height error variances over the Northern Hemisphere (hereafter NH; 30°N 

to 90°N) from the four models are analyzed. The dataset and region are same to 

PT2014 for direct comparison of results. Hence the SREF products were not used. The 

model versions were in operation during the Fall of 2008 at the National Centers for 

Environmental Prediction (NCEP), the Canadian Meteorological Center (CMC), the 

European Center for Medium range Weather Forecast (ECMWF) and the Fleet 

Numerical Meteorology and Oceanography Center (FNMOC). The forecasts and the 

analysis verification data are on regular grids of 1×1 degrees of resolution in latitude 

and longitude. The forecast perceived errors are computed as area-average error 
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variances over the domains available. Forecast data consist of output every 12 h out to 

2.5 d initialized at 0000 UTC daily from 1 Sep 2008 through 30 Nov 2008. Forecasts 

are verified against their own analyses. Table 1 shows analysis error variance and error 

growth rate estimated by AFEVES for the NCEP, CMC, ECMWF and FNMOC 

forecast systems. The results reported by PT2014 are shown as well for direct 

comparison.  

It is seen that though different optimization systems are used, the AFEVES produces 

almost the same analysis error variance estimation as PT2014 and exactly the same 

error growth rate estimation as PT2014. The results solidify the performance of the 

newly developed AFEVES system.  

Table. 1. Analysis error variance and error growth rate estimated by AFEVES and 

comparison with PT2014 for the NCEP, CMC, ECMWF and FNMOC forecast 

systems.  

Model 

 

Analysis Error Variance Error Growth Rate 

PT2014 AFEVES PT2014 AFEVES 

NCEP 38.0 37.78 0.25 0.25 

CMC 29.5 30.14 0.27 0.27 

ECMWF 11.5 11.40 0.30 0.30 

FNMOC 49.2 52.29 0.26 0.26 

 

Figure 4 displays the estimated true error variances at analysis time and their evolution 

for the four models. It is seen that the ECMWF model has the smallest analysis and 

forecast errors followed by the NCEP and CMC models, and the FNMOC model shows 

the largest error variance. Though different minimization algorithms and cost function 

specifications, these results are quantitatively consistent with the results reported in 

PT2014 (See their Fig. 6).  
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Fig. 4.   Estimated true forecast error variances as a function of lead time for four 

global models: NCEP, CMC, ECMWF and FNMOC for models operational in 2008. 

4. Summary  

The Analysis and Forecast Error Variances Estimation System (AFEVES) has been 

developed to estimate the growing components of analysis error variance and following 

short-range forecast error variance. This work advances PT2014 in the following aspects: 

1) a new cost function with L2 norm whose gradient exists were used; 2) the LM-BFGS 

algorithm was incorporated to solve the constraint nonlinear optimization problem; and 

3) the optimization code was written in the Fortran language. The AFEVES has merits of 

less sensitivity to initial guesses of the best solution and it is easy to port to other 

computational platforms.  
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The system was first examined in the framework of Observing System Simulation 

Experiment (OSSE) and then applied to the NCEP operational GFS history analyses and 

forecasts. Results from the OSSE show that there are decaying components in analysis 

error variance. However, the system is designed to extract the fast growing components 

of the errors, which indicates that the method may underestimate the analysis error 

varianc. This was evidenced that in most pressure levels (except for 200 and 300 hPa) the 

error variance of GPH was underestimated. A reason leading to the decaying components 

in the GFS system is because the analyses were produced by the GSI 3DVAR with 

climatological background error covariance that cannot accurately describe multi-variate 

covariance. 
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