Testing and Evaluation of the GSI Data Assimilation System

Kathryn M. Newman^{1,2} C. Zhou^{1,2}, H. Shao^{1,2}, X.Y. Huang^{1,2}, and M. Hu^{1,3,4}

¹ Developmental Testbed Center (DTC)
 ² National Center for Atmospheric Research (NCAR)
 ³ NOAA/ESRL/Global Systems Division
 ⁴CIRES/University of Colorado

Special Acknowledgement to AFWA and NSF

91st AMS Annual Meeting / 15th IOAS-AOLS Seattle, WA January 24-28, 2011

Developmental Testbed Center-

What is GSI?

- Gridpoint Statistical Interpolation
- Developed at NCEP/EMC, NOAA/GSD, NASA/GMAO, and NCAR/MMM
 - Community code supported through the DTC
- Primarily a three dimensional variational (3D-Var) data assimilation system
- Run for both regional and global operations
 - GFS, NAM, RR, HWRF

DTC Testing and Evaluation Objectives

- Perform GSI + WRF-ARW configuration runs
 - Determine the capability and robustness of the GSI+ARW in regional applications
 - Evaluate impact from a variety of existing and proposed new operational data types
- Provide rational basis for operational centers and the research community for advancements of NWP systems
 Ming Hu

Introduction to Community GSI and its User Support Thursday 4:30 pm J18.2

Developmental Testbed Center

http://www.dtcenter.org/com-GSI/users

GSI updates

- GSI Q1FY11 candidate code used for all extended tests
- See release notes for full list of v2.0 updates

<u>http://www.dtcenter.org/com-GSI/users/support/release_notes/</u> index_GSIv2.0.php

- GSI GPS Quality Control (QC) Changes (Cucurull 2010)
 - Improve QC statistics
 - Seasonal statistics to account for model skill score changes, smoothed QC altitude transitions
 - Fixed code errors
 - Reduce approximations in refractivity forward operator and improved assumptions
 - Improved observation errors
 - New ob errors are nearly always smaller than previous in tropics
 - Not much change in extratropics
 - These changes increase data usage in tropics

Extended Tests

- GSI Q1FY11 candidate coupled with WRF-ARW v3.2
- 15 August 2007 (12 UTC) 15 September 2007 (12 UTC)
- 15 km horizontal resolution
- 57 vertical levels, 10 mb model top
- AFWA T8 domain
- GDAS prepBUFR data
- Global BE used in all runs
- Verification using Model
 Evaluation Tools (MET) v2.0

west_east

Experimental Design

- **GFSWRF**: ARW runs started from GFS analysis every 6 hours
- GSI+ARW full cycling (6hrs) runs (following NAM configurations):
 - CYC_CONV_default: PrepBUFR data were assimilated
 - CYC_CONV_allobs: PrepBUFR data with increased surface observations were assimilated
 - CYC_CONV_nosfc: No surface PrepBUFR data assimilated
 - CYC_GPS: PrepBUFR (CYC_CONV_default) + GPS RO data were assimilated
 - CYC_AMSU-A: PrepBUFR (CYC_CONV_default) + AMUS-A radiance data were assimilated

Developmental Testbed Center

Surface

- 1 K temperature increment with 1 K observation error
- Analysis increment for same data is larger for regional BE than global BE
- Increment in stratosphere (regional BE) known issue
- ✓ Global BE used in extended runs

Developmental Testbed Center

Surface Assimilation Impact

- CYC_CONV_default: QC marks result in most surface data rejected during GSI minimization (*due to GFS quality marks*).
- CYC_CONV_allobs: Surface data set to match data allowed for NAM
 - This process may introduce some bad observations to the analysis
- CYC_CONV_nosfc: no surface prepBUFR report types assimilated

	ADPSFC 181	ADPSFC/ SFCSHP 183	ADPSFC 187		ADPSFC 281	SPSSMI 283	ADPSFC/ SFCSHP 284	QKSWND 285	ADPSFC 287
Ps Q T	2.00 9.00 8.00	9.00 9.00 8.00	6.00 9.00 8.00	UV	9.00	2.00	9.00	2.00	9.00

Table 1: QC mark value for corresponding prepbufr report type

- > All runs following NAM configurations
 - ➤ amount of surface data assimilated was altered

Adjustment made to 'qcmark' to allow more surface observations to be assimilated

- Verification against ADPUPA (sonde only, top), ADPSFC (bottom)
- Impact of additional sfc obs apparent at analysis time, little/no SS impact for fcst
- Negative impact from no sfc obs at fcst times relative to default surface obs

AMSU-A Radiance - Hurricane Dean Hurricane DEAN track

		Track error (km) - CONV	Track error (km) – AMSU-A
	T + 00h	48.15	48.69
	T + 12h	53.95	47.75
	T + 24h	77.65	86.13
	T + 36h	116.45	138.65
	T + 48h	166.41	178.26

CONV+AMSUA track error higher than CONV alone
Track position generally closer to best track with AMSU-A run, however timing of track negatively affecting track error

• 1800-1912 UTC AMSU-A run moves storm too quickly

Summary and Conclusions

- A series of monthly experiments were run using GSI+ARW to investigate the capability and performance of the system
 - Included observations impact of surface, GPS RO, and radiance assimilation
- Surface
 - Increased surface observations showed impact at the analysis time, but no impact on forecast
 - Simply adding more surface obs will not increase fcst skill. Default configuration has most impact.
- GPS
 - GSI v2.0 assimilated GPS RO data properly, increased data usage in tropics
 - Forecast verification showed slight positive impact over conventional obs alone particularly in upper troposhpere/lower stratosphere
- Radiance
 - Forecast verification showed neutral to slightly negative impact over conventional alone
 - Bias correction, domain, data coverage, etc are major issues with regional radiance data assimilation.
 - Although current bias correction seems to work, it doesn't positively impact fcst

- Contact:
 - <u>knewman@ucar.edu</u>
- DTC community GSI:
 - http://www.dtcenter.org/com-GSI/users/
- Presentation on DTC GSI community code:
 - M. Hu: Introduction to Community GSI and its User Support
 - Thursday 4:30 pm J18.2

