Testing and Evaluation of Regional EnKF Radiance Data Assimilation: Impact of MHS assimilation

Kathryn M. Newman^{1,2} Z. Liu², C. Schwartz², H. Shao^{1,2}, and X.Y. Huang²

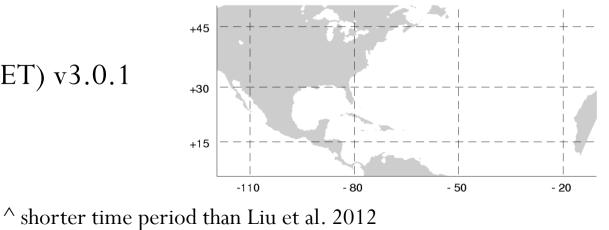
> ¹ Developmental Testbed Center (DTC) ² National Center for Atmospheric Research (NCAR)

Special Acknowledgement to AFWA and NSF

CMOS/AMS NWP WAF Montreal, Quebec May 29 – June 1 2012

Background/Objectives

- Recent studies (*Liu et al. 2012, Schwartz et al. 2012*) have shown positive impacts when assimilating microwave radiances with a limited-area EnKF.
 - Focused on the impact of assimilating AMSU-A radiances
- This study will evaluate the impact of assimilating MHS radiances in addition to AMSU-A
 - Determine if there is added benefit from assimilating MHS
- Provide rational basis for operational centers and the research community for advancements of NWP systems
 - Core mission of the DTC (R2O)



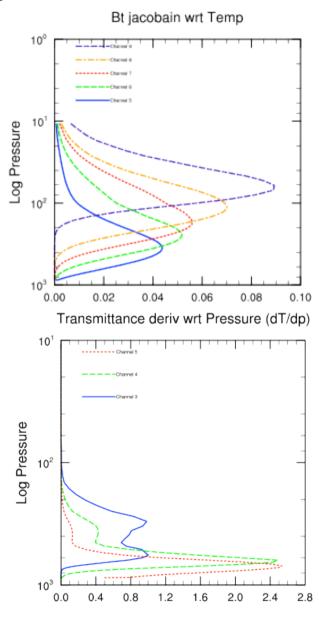
Experimental Design

*Experimental Design and Assimilation Strategy follows Liu et. al 2012

- Limited-Area EnKF using Data Assimilation Research Testbed (DART) with WRF-ARW v3.2.1
- Time Period: $2008081100 2008090212^{\circ}$
- 36 km horizontal resolution, 45 vertical levels, 20 hPa model top
- 96 ensemble members
- 6-hr cycling using ensemble LBCs from perturbed GFS means
- Deterministic 72-hr ARW fcsts initialized from 00/12 ensemble mean analyses
- Verification:

Model Evaluation Tools (MET) v3.0.1

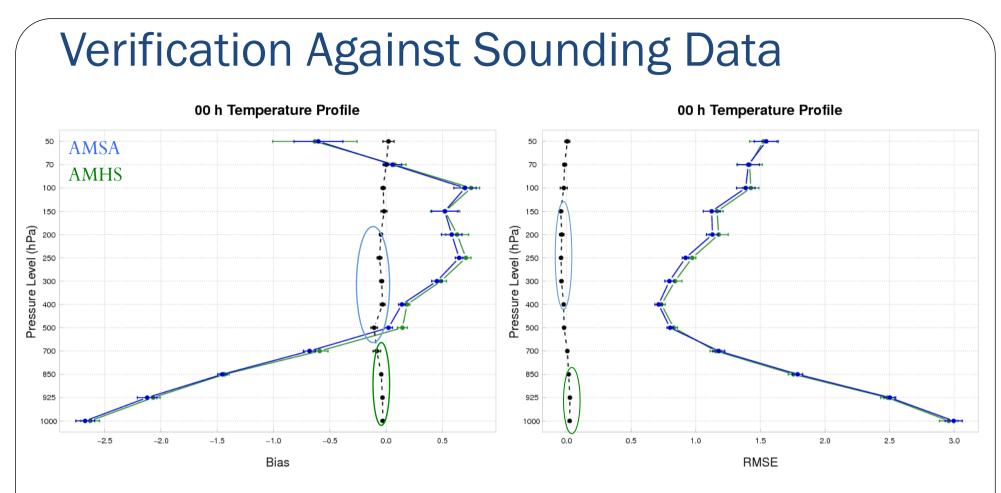
Developmental Testbed Center


Assimilation Methodology

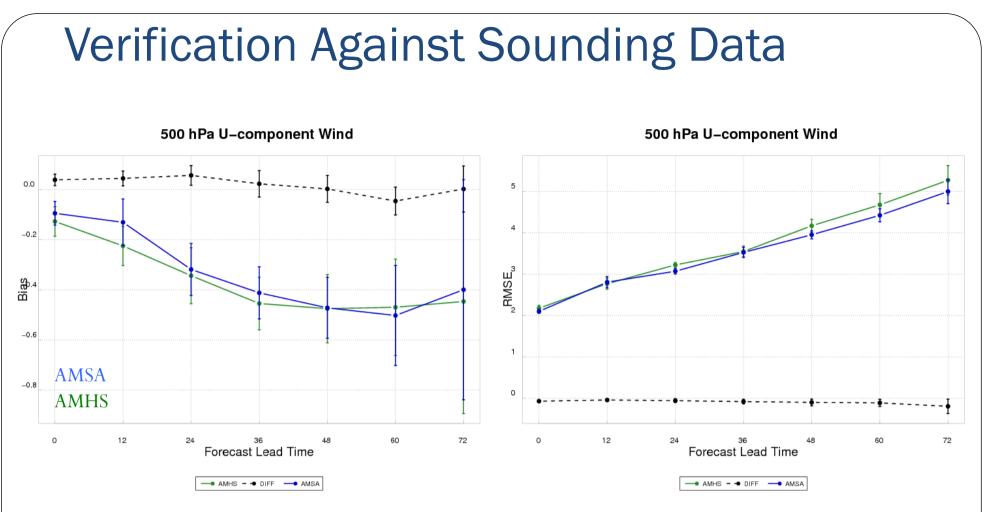
- Assimilated observations for experiments:
 - ASMU-A radiance (AMSA): conventional obs from radiosondes, aircraft, sat-derived winds, land/ocean sfc stations, GPS dropsondes (NOAA G-IV aircraft), COSMIC GPSRO, AMSU-A radiances from NOAA-18/METOP-2
 - AMSU-A + MHS radiance (AMHS): same as AMSA + MHS radiances from NOAA-18/METOP-2
- Radiance data were thinned on a 72-km grid
- +/- 1.5 hr observation assimilation window
- Bias Correction Coefficients from 3-mo offline statistics (spun-up)
- AMSU-A channels 5-7 and MHS channels 3-4 NOAA-18/ METOP-2 assimilated

Assimilation Methodology cont'

- Radiances were assimilated into DART using the CRTM built into WRFDA as the radiance forward operator for computing radiance prior ensembles
 - Following strategy adopted by previous investigators*
- Only radiance prior ensembles came from WRFDA, all other obs from DART
- The vertical localization of each radiance observation was taken as the level the channels' weighting function peaked
- For MHS: dTr/dp was calculated in WRFDA from the CRTM and used as the weighting function



Verification Results*


✓ Point verification against sounding (dropsonde) observations

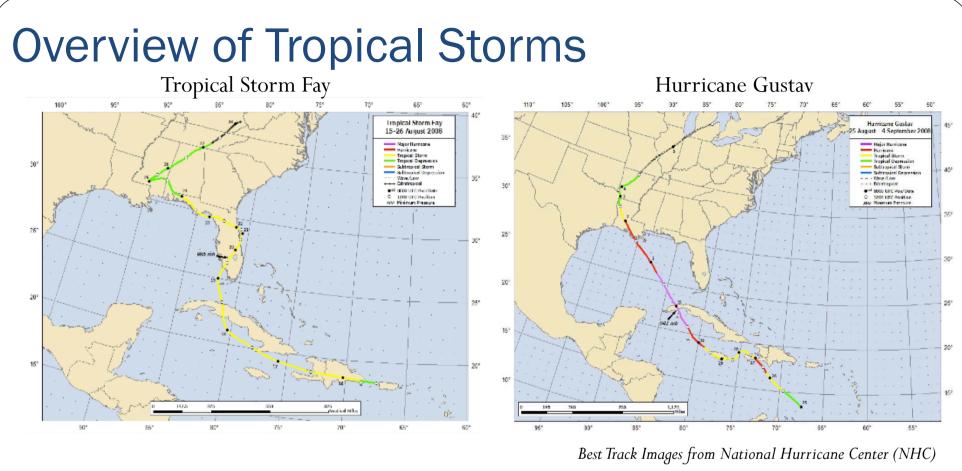
 \checkmark TC case studies

* Verification focus on AMSA-AMHS

- Pairwise statistical significance (AMSA-AMHS) is determined when the CIs of the difference do not encompass 0
- Pairwise SS differences favor AMHS slightly at the lowest levels, and favor AMSA for mid-levels

- Pairwise differences for bias favor AMSA for lead times out to 1 day; neutral for all remaining lead times
- RMSE pairwise SS differences indicate AMSA is better for all lead times

Verification Against Sounding Data: Summary Table

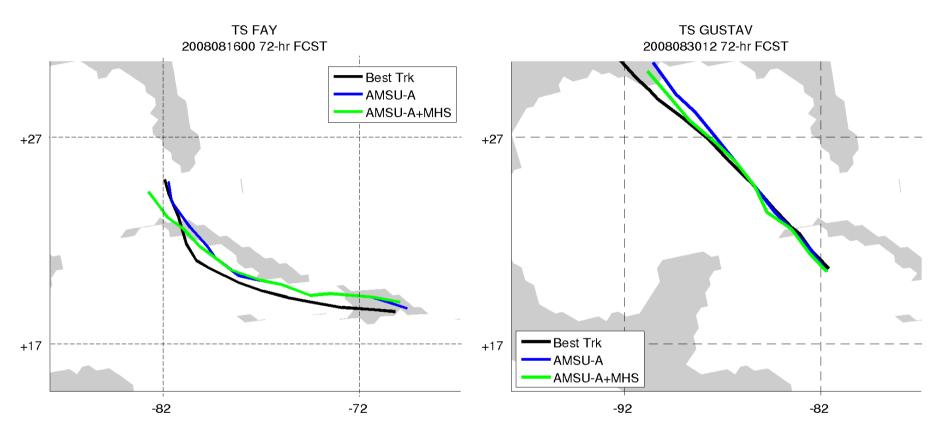

- RMSE for all aggregations favor AMSA, except low
 - level early lead times (T) for AMHS
- Biases show more neutral and slight favor for AMHS
- Indication of larger variability in AMHS forecasts... stemming from MHS data?

Γ		BIAS					RMSE				
L		925	850	700	500	200	925	850	700	500	200
Π	0	AMHS	AMHS	AMHS	AMSA	AMSA	AMHS	AMHS		AMSA	AMSA
	12	AMHS	AMHS	AMHS	AMSA	AMSA	AMHS			AMSA	AMSA
T	24				AMSA	AMSA					AMSA
	36				AMSA	AMSA				AMSA	AMSA
	48				AMSA	AMSA					AMSA
	60				AMSA	AMSA					AMSA
	72	AMHS				AMSA				AMSA	AMSA
	0	AMSA			AMSA		AMSA	AMSA	AMSA	AMSA	AMSA
	12	AMSA	AMSA	AMSA	AMSA	AMHS	AMSA	AMSA		AMSA	AMSA
	24				AMSA		AMSA		AMSA	AMSA	AMSA
Ы	36	AMSA				AMHS	AMSA	AMSA	AMSA	AMSA	AMSA
	48							AMSA	AMSA	AMSA	AMSA
	60					AMHS	AMSA	AMSA	AMSA	AMSA	
Ш	72								AMSA	AMSA	
П	0			AMSA		AMHS	AMSA	AMSA	AMSA	AMSA	AMSA
	12		AMSA			AMSA	AMSA	AMSA		AMSA	AMSA
	24		AMSA				AMSA	AMSA	AMSA	AMSA	AMSA
>	36	AMHS			AMHS			AMSA		AMSA	
	48						AMSA	AMSA		AMSA	AMSA
	60				AMSA						
	72	AMHS			AMHS						AMSA
	0		AMSA		AMHS	-	AMSA	AMSA	AMSA		-
11	12				AMHS	-	AMSA				-
	24				AMHS	-	AMSA	AMSA	AMSA	AMSA	-
o	36				AMHS	-	AMSA			AMSA	-
11	48			AMSA	AMHS	-	AMSA			AMSA	-
11	60	AMHS			AMHS	-				AMSA	-
	72	AMHS			AMHS	-		AMSA	AMSA	AMSA	-

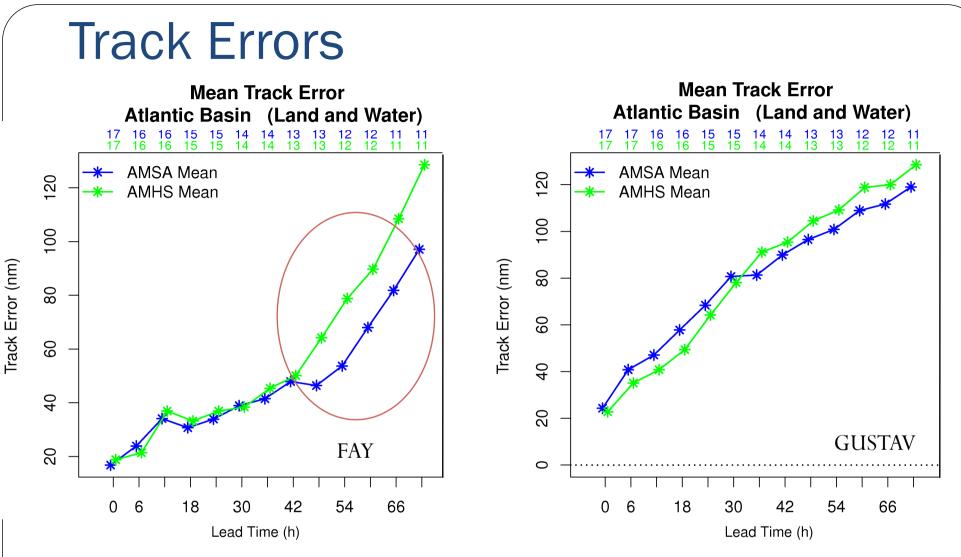
Verification Results

 \checkmark Point verification against sounding (dropsonde) observations

✓ Tropical Cyclone case studies

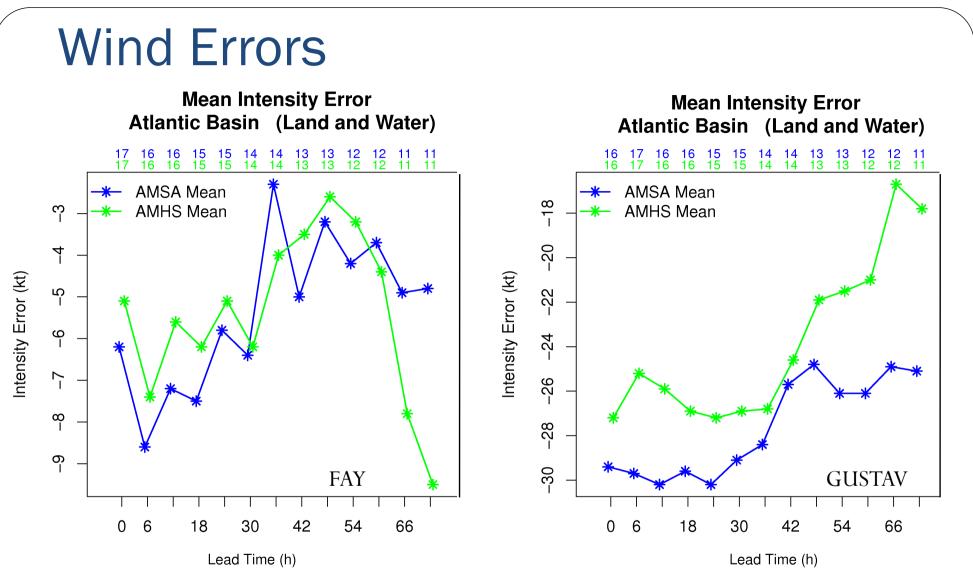


- Tropical Storm Fay
- Long lived tropical storm
- 8 landfalls
- Produced flooding in DR, Cuba, Haiti, FL


- Hurricane Gustav
- Reached Cat. 4 hurricane
- Landfall in LA
- Significant damage to Cuba, Haiti, LA

Developmental Testbed Center

Fay & Gustav Tracks



- Fay
 - AMSA/AMHS tracks N of NHC Best Track
 - AMHS misses Northward curvature
- Gustav
 - AMSA/AMHS tracks NE of NHC Best Track toward end of fcst
 - AMHS track closer to NHC Best Track at longer lead times

- Fay AMHS mean track error deviates from AMSA quickly after 42 hrs
 - Most contribution from Along Track (AMHS moves storm too fast)
- Gustav mean track errors close between AMSA and AMHS AMHS slightly lower out to 30 hr

✓ Statistical Significance is not assessed for individual storms due to small sample sizes

- Fay intensity errors for AMHS slightly smaller out to 1 day, drop off quickly after 60 hrs
- Gustav intensity errors for AMHS smaller than AMSA for all lead times

Conclusions

- When aggregating over the full time period, point verification against sounding data indicates neutral to a slight degradation in fcsts for the AMHS assimilation run.
 - Bias statistics show more SS differences favoring AMHS over AMSA than RMSE statistics
- Track and intensity errors show mixed results favoring the AMSA configuration for Fay, and the AMSUA+MHS configuration more often for Gustav.
 - Fay results show AMHS moves too quickly, does not curve the track properly, and has a sharp increase in intensity error for longer lead times
 - Gustav results indicate AMHS has lower track errors for early lead times, and lower intensity errors for all lead times