
Workflow Requirements
Workflow workshop -- June 2021

Based on discussions with and contributions from:
Arun Chawla, Ben Cash, Chris Harrop, Christina Holt, Kate Friedman, Walter Kolczynski, Jian

Kuang, Bin Liu, Yannick Tremolet, Claude Gibert, Sam Trahan, Rahul Mahajan

The Issue

● The PROBLEM: Myriad of workflows supporting the different UFS applications -- Global
workflow (for coupled / atmosphere only system), CIME (for global forecast only systems),
Regional workflow, hurricane workflow, NG-GODAS/JEDI-SOCA, JEDI-EWOK, Observation
processing, etc.

● The Vision: Develop a wide array of tools (in Object Oriented Python) that can be used to
configure, execute and process a series of jobs / tasks as defined by an application suite

○ Application suite can range from model based (cycled, forecast only, coupled, ensembles, DA etc),
pre-processing of model/data, reanalysis products, verification & validation, plotting & web hosting etc.

● The Question: How do we get from the current state to a state that can support operations,
R2O as well as engage with the community ?

Requirements for an Ideal System

● Modular and Configurable
○ Broken down to sub tasks that allows efficient use of resources (minimize makespan and maximize

allocated cpu usage)
○ Easily allows a task to be reconfigured, switched on or off
○ Common repeatable parts separated out as generalized functions/methods

● Documentation
○ Detailed guides on how to use and port system
○ Every function/script should have inline documentation on -- a) purpose; b) input/output; c) use case

● Portability
○ Workflow system should be easily portable on multiple platforms (HPC, non-HPC, Cloud)
○ Should use language easily available on all platforms (Python 3 for example)

Requirements for an Ideal System (contd.)

● Portability (contd)
○ System specific information should be through easily accessible configuration files and not buried in

scripts
○ All paths through configuration files (no paths in any script unless relative)
○ Should contain no source code within the workflow framework
○ Utility/aux codes needed should be easily built and ported (e.g. CMAKE + HPC-Stack)
○ Libraries / packages needed should be easily deployable (use third party libraries as needed but

judiciously)

● Workflow Engine
○ Should be interfaced generically with workflow engines used by operations and community

(ecflow/cylc/rocoto)
○ Should work without a scheduler (e.g. slurm) on a workstation (have the ability to mix scheduled and

non-scheduled jobs)
○ Should be able to add new or other workflow engines e.g. airflow, Amazon SWF

Requirements for an Ideal System (contd.)

● Configurable for multiple applications
○ UFS based applications that cover range of use case conditions

■ Fully coupled global system ((d)atm+waves+ocean+ice+chemistry) with multiple options
■ A regional system with multiple options
■ DA(var+ens.)/forecast only or DA+forecast (Note: DA itself will have multiple options)
■ A hurricane modeling system
■ Deterministic/ensemble mode

○ Observation Ingest and Processing
■ Decoding, tanking (storing), dumping and filtering, etc

○ Post processing, product generation, validation and verification

● Configuration management system
○ A workflow system will be driven by a range of configuration yaml files + namelist options
○ A web based tool with an easy to use interface (web based/GUI/other?) to build these files based on choices

made by the user
○ Once created, these files can be shared/changed to run the workflow systems (i.e. the management system is

not needed to run the workflow)

Options

● OPTION 1: Build a single workflow that satisfies all requirements
○ One repository used by all teams
○ Works for a range of environments
○ Is it practical?

● OPTION 2: Build a series of tool sets / libraries and packages used by all
○ A finite number of workflows with different configurations.
○ Bulk of tasks done by common generic libraries / packages
○ A range of toolsets to support them and the UFS-weather-model
○ Only thing separating the workflows is the configuration layer

Our preference

● We are strongly leaning towards Option 2, as
○ It unifies workflows but provides a thin layer of separation for different teams

to work without tripping over each other
○ Built in Python3 and use package managers to create and install workflow

tools and packages
○ Maintains the separation of concerns
○ Keeps workflows simpler for porting to different platforms
○ Allows for piecewise implementation of new tool sets instead of a wholesale

replacement (agile approach)
○ Provides a complete package (model+workflow per application) to operations
○ Allows for flexibility to create new workflows that have not yet been

considered

How do we go about this?

● A Project plan with one PM
● All work in public repositories
● A lead software engineer (to direct solutions) and build generic toolsets
● Active team (with representations and contributions from application

stakeholder?) to test in different applications for rapid/agile development
● A CI system from the beginning, coding standards, linters, testing, etc.
● Active documentation as the system develops
● Test on a range of platforms (MacOS/Linux/NOAA HPC/Cloud)
● Regular interactions / report outs to operations and community to ensure

alignment

Workflow
Tools and

Abstractions

Generic
Tools

Global WF

Regional WF

Hurricane WF

….

Testing
Frameworks

Applications

Configuration
Tools and

Abstractions

Model

DA

Obs

Products

Diags

...

Configurations
/ Schemas

Tools

