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The Issue

● The PROBLEM: Myriad of workflows supporting the different UFS applications -- Global 
workflow (for coupled / atmosphere only system), CIME (for global forecast only systems), 
Regional workflow, hurricane workflow, NG-GODAS/JEDI-SOCA, JEDI-EWOK, Observation 
processing, etc.

● The Vision: Develop a wide array of tools (in Object Oriented Python) that can be used to 
configure, execute and process a series of jobs / tasks as defined by an application suite

○ Application suite can range from model based (cycled, forecast only, coupled, ensembles, DA etc), 
pre-processing of model/data, reanalysis products, verification & validation, plotting & web hosting etc.

 

● The Question: How do we get from the current state to a state that can support operations, 
R2O as well as engage with the community ? 



Requirements for an Ideal System

● Modular and Configurable
○ Broken down to sub tasks that allows efficient use of resources (minimize makespan and maximize 

allocated cpu usage)
○ Easily allows a task to be reconfigured, switched on or off
○ Common repeatable parts separated out as generalized functions/methods

● Documentation
○ Detailed guides on how to use and port system
○ Every function/script should have inline documentation on -- a) purpose; b) input/output; c) use case

●  Portability
○ Workflow system should be easily portable on multiple platforms (HPC, non-HPC, Cloud)
○ Should use language easily available on all platforms (Python 3 for example)



Requirements for an Ideal System (contd.)

● Portability (contd)
○ System specific information should be through easily accessible configuration files and not buried in 

scripts 
○ All paths through configuration files (no paths in any script unless relative)
○ Should contain no source code within the workflow framework
○ Utility/aux codes needed should be easily built and ported (e.g. CMAKE + HPC-Stack)
○ Libraries / packages needed should be easily deployable (use third party libraries as needed but 

judiciously)

● Workflow Engine
○ Should be interfaced generically with workflow engines used by operations and community 

(ecflow/cylc/rocoto)
○ Should work without a scheduler (e.g. slurm) on a workstation (have the ability to mix scheduled and 

non-scheduled jobs)
○ Should be able to add new or other workflow engines e.g. airflow, Amazon SWF



Requirements for an Ideal System (contd.)

● Configurable for multiple applications
○ UFS based applications that cover  range of use case conditions

■ Fully coupled global system ((d)atm+waves+ocean+ice+chemistry) with multiple options
■ A regional system with multiple options 
■ DA(var+ens.)/forecast only or DA+forecast (Note: DA itself will have multiple options) 
■ A hurricane modeling system
■ Deterministic/ensemble mode

○ Observation Ingest and Processing
■ Decoding, tanking (storing), dumping and filtering, etc

○ Post processing, product generation, validation and verification

● Configuration management system
○ A workflow system will be driven by a range of configuration yaml files + namelist options
○ A web based tool with an easy to use interface (web based/GUI/other?) to build these files based on choices 

made by the user
○ Once created, these files can be shared/changed to run the workflow systems (i.e. the management system is 

not needed to run the workflow)



Options

● OPTION 1: Build a single workflow that satisfies all requirements
○ One repository used by all teams
○ Works for a range of environments
○ Is it practical? 

● OPTION 2: Build a series of tool sets / libraries and packages used by all
○ A finite number of workflows with different configurations. 
○ Bulk of tasks done by common generic libraries / packages
○ A range of toolsets to support them and the UFS-weather-model
○ Only thing separating the workflows is the configuration layer



Our preference

● We are strongly leaning towards Option 2, as 
○ It unifies workflows but provides a thin layer of separation for different teams 

to work without tripping over each other
○ Built in Python3 and use package managers to create and install workflow 

tools and packages
○ Maintains the separation of concerns
○ Keeps workflows simpler for porting to different platforms
○ Allows for piecewise implementation of new tool sets instead of a wholesale 

replacement (agile approach)
○ Provides a complete package (model+workflow per application) to operations
○ Allows for flexibility to create new workflows that have not yet been 

considered



How do we go about this? 

● A Project plan with one PM
● All work in public repositories 
● A lead software engineer (to direct solutions) and build generic toolsets
● Active team (with representations and contributions from application 

stakeholder?) to test in different applications for rapid/agile development
● A CI system from the beginning, coding standards, linters, testing, etc.
● Active documentation as the system develops
● Test on a range of platforms (MacOS/Linux/NOAA HPC/Cloud)
● Regular interactions / report outs to operations and community to ensure 

alignment 
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