
1

Summary of UFS Workflows workshop follow-up
meeting (29-30 June 2021, virtual)

Editors:
Mrinal Biswas, Ben Cash and Michael Ek

Participants:
Alper Altuntas (NCAR)
Arun Chawla (NOAA/EMC)
Benjamin A Cash (GMU/COLA)
Christina Holt (CU/CIRES at NOAA/GSL)
Christopher Harrop (CU/CIRES at NOAA/GSL)
Evan Kalina (CU/CIRES at NOAA/GSL, DTC)
Hendrik Tolman (NOAA/STI and UFS-SC)
Jeff Beck (CSU/CIRA at NOAA/GSL, DTC)
Kate Friedman (NOAA/EMC)
Ligia Bernardet (NOAA/GSL, DTC)
Louisa Nance (NCAR, DTC)
Mariana Vertenstein (NCAR)--invited, though couldn't attend
Michael Ek (NCAR, DTC)
Mrinal Biswas (NCAR, DTC)
Rahul Mahajan (NOAA/EMC)
Rocky Dunlap (NCAR)
Stylianos Flampouris (NOAA/STI, Present Affiliation: Raytheon)
Walter Kolczynski (IMSG at NOAA/EMC)

2

Introduction
This is a report on the Unified Forecast System (UFS) Workflows meeting held 29-30
June 2021, which was a follow-up to the UFS Workflows workshop held virtually 29-30
April 2020. The June 2021 meeting was spread over a two-day period (each 2-hour
duration). The organizing committee included UFS collaborators from the
Developmental Testbed Center (DTC), George Mason University (GMU), the National
Oceanic and Atmospheric Administration (NOAA), and the National Center for
Atmospheric Research (NCAR). The logistics of the virtual meeting were provided by
the DTC. The aim of the workshop was to continue communications across the
modeling groups and translate communication into concrete steps to improve workflows
across the UFS. The meeting was attended by 17 participants, which included
participation from Environmental Modeling Center (EMC)’s management and UFS
leads.

This report provides an overview of the presentations and a summary of the extensive
discussions that followed.

Requirements of a workflow
Arun Chawla (NOAA/NWS/EMC) presented “Workflow requirements” on the first day
of the workshop. His presentation revisited and emphasized the issues caused by
having numerous independent workflows within the UFS applications. There was
general agreement that future development should aim to develop a flexible array of
tools that can be used to configure, execute and process a variety of jobs as
defined by an application suite. It was emphasized that the aim is not to find a
single workflow for all applications but to build a system that is sustainable and
works as a composable toolset. All the workflow components were discussed at
length and the requirements list was modified accordingly. Below are the arrived-at
requirements of a workflow system.

(a) Skeleton of a workflow system:1. Modular and Configurable:
○ Broken down to sub-tasks that allow for efficient use of resources, e.g. minimize

total time to completion (or makespan) and maximize allocated CPU usage.
○ Easily allows a task to be reconfigured, switched on, or off.
○ Common repeatable parts are separated out as generalized functions/methods.

2. Documentation is critical:
○ Detailed guides on how to use and port system
○ Every function/script should have inline documentation on -- a) purpose; b)

input/output; c) use case.

https://dtcenter.org/events/2020/ufs-workflows-workshop-crow-review
https://dtcenter.org/sites/default/files/taxonomy-term/Workflow%20Requirements%20Final%20Arun.pdf

3

3. Portability:
○ Workflow systems should be easily portable to multiple platforms (HPC, non-

HPC, Cloud).
○ Should use language easily available on all platforms (Python 3 for example).
○ System-specific information should be set via easily accessible configuration files,

as opposed to buried in scripts.
○ All paths specified through configuration files (no paths in any script unless

relative).
○ Should contain no source code within the workflow framework.
○ Utility/aux codes needed should be easily built and ported (e.g. CMAKE + HPC-

Stack).
○ Libraries/packages needed should be easily deployable (use third-party libraries

as needed but judiciously).
4. Workflow Engine:

○ Should be interfaced generically with workflow engines used by operations and
community (ecflow/cylc/rocoto)
○ Should work without a scheduler (e.g. slurm) on a workstation (have the ability to
mix scheduled and non-scheduled jobs)
○ Should be able to add new or other workflow engines e.g. airflow, Amazon SWF

5. Configurable for multiple applications:
○ UFS-based applications that cover a range of use case conditions:

● Fully-coupled global system ((d)atm+waves+ocean+ice+chemistry) with
multiple options.

● A regional system with multiple options.
● Data Assimilation (DA) (var+ens.), forecast only, or DA+forecast (Note: DA

itself will have multiple options).
● A hurricane modeling system.
● Deterministic/ensemble mode.
● Single column/hierarchical testing.

○ Observation Ingest and Processing:
● Decoding, tanking (storing), dumping (concatenating or grouping) and

filtering, etc.
○ Post-processing, product generation, validation, and verification.

6. Configuration management system:
○ A workflow system will be driven by a range of configuration files + namelist

options. Configuration files will be YAML or equivalent.
○ A GUI-based tool with an easy to use interface to build the configuration files and

perform basic consistency checking based on choices made by the user.
○ Once created, these files can be shared/changed to run the workflow systems

(i.e. the management system is not needed to run the workflow).

4

(b) Implementation:
Two options for how workflow(s) can be used or shared by many applications were
presented for discussion. The first was to build a single workflow that satisfies all
requirements that is hosted in a single repository and works for a range of
environments. The second approach presented was to build a set of generic and
abstract tools that can be used and implemented with different applications. In this
second approach, the majority of the tasks would be performed by common libraries
and packages, with the configuration separating the workflows for different applications.

The first option was unanimously deemed to be impractical. The second option was the
preferred one because it unifies workflows while providing independence for different
applications to address their concerns. It will make porting the workflow simpler on
different platforms. It will follow agile software development practices in implementing
components instead of replacing the whole workflow system. This will be flexible
enough to create new workflows in the future.

(c) Project Management:
The proposed work will be executed by a single project manager. All of the development
will be in the public repositories (e.g. Github). A lead software engineer will direct
solutions and build generic toolsets in consultation with representatives from different
applications who should contribute to testing for agile development. A CI system with
coding standards, linters (automated code checking), and testing protocols should be in
place from the beginning. There will be Live Documentation and regular interactions to
share accomplishments, ideas, and concerns.

Perspective from UFS management - Hendrik Tolman
Hendrik Tolman’s presentation stressed the need for a unified system (not unitary)
with focused resources allowing diversity. Requirements for fast cycling systems
(reduce latency by running DA and the model together in-core), and slow cycling
systems (apply appropriate resources to DA and model separately, hence running
DA and model sequentially) are not compatible. Therefore a single workflow does
not seem feasible. One of the key points was to design systems starting from
requirements (software and system engineering) and not from solutions. Software
engineering perspective includes the hierarchy of running the codes of each step of a
workflow (e.g. obs processing, DA etc) (UFS code), scripts to run the tasks (“ex”
scripts), managing file I/O, configure and running of the code, functional scheduler
(job run sequence) and finally the system scheduler (ECflow). The system
engineering includes (1) the elements of a workflow

https://dtcenter.org/sites/default/files/taxonomy-term/UFS%20workflow%20202104%20Hendrik.pptx.pdf

5

e.g. input data processing, model initialization, producing forecast and post processing
of output; (2) the workflow should be flexible, modular, and efficient for both researchers
and operations; and (3) workflow should have elements that can be shared by different
applications. The above requirements-based assessment shows that a “unitary”
workflow is not likely to be feasible, but that instead a library of systems engineering
and software engineering-based tools could be the foundation for a Unified approach to
customizable workflows.

Working with JEDI tools - Benefits and challenges
Joint Effort for Data assimilation Integration (JEDI)-based workflow consists of EWOK
(Experiments and Workflows Orchestration Kit) that can provide generic tools to
describe and create application suites and create appropriate tasks. Examples of
application suites are end-to-end cycled systems, forecast only (deterministic or
ensemble forecasts), observation and post-processing (inline or offline), etc. Also, there
are tools within JEDI for file handling that can be useful for UFS. There is an ongoing
effort to evaluate the use of EWOK in whole or in part for the UFS workflow system,
which has identified a number of potential issues that will need to be explored further.
For example, several module environments needed for JEDI are in a private repository.
NOAA is moving away from private repos, so that will be a non-starter for community
workflows. There were also questions about whether the JEDI workflow will take into
consideration the UFS workflow requirements as well as concerns raised about its use
and development pathlines as to whether it would be useful for the UFS community.

Workflow System Architecture
The intent is to have a single workflow architecture that is capable of supporting all UFS
applications. The workflow working group’s role is to identify and document the
requirements of the workflow system, as well as articulating and communicating those
requirements to management, developers, and stakeholders. The system architecture
should have the flexibility to address multiple applications end-to-end (e.g. including
pre-and post-processors).

GUI for CESM simpler models framework
Alper Altuntas (NCAR) presented “A GUI for CESM simpler model framework,” which is
a GUI-based tool for users to create Community Earth System Model (CESM) cases,
choose compsets and grids. The goal is to streamline modeling within CESM and to
enable hierarchical testing so users can adjust model complexities. This required
development of new relational metadata in Common Infrastructure for Modeling the
Earth (CIME) and providing a graphical interface using Jupyter lab. The project adds

6

new metadata called compliance metadata. The presentation provided an overview of
CIME, which allows the user to create a case, configure it, build the model, and submit
jobs to the batch system. The creation of a case requires a compset that includes a
complete set of components integrated together to run a specific case (e.g. linking
atmosphere, ocean, initialization time, resolution etc). The user can use an already
existing configured compset and grids or create a new one for their needs. To
accomplish this, there is new meta data in CIME. The purpose is to express
interdependencies and incompatibilities between different options (OCN_GRID,
COMP_ATM, DATM_MODE, etc). A live demo was also presented to show the
capability. The general consensus during the discussion was the sanity check is worth
exploring with or without the availability of GUI.

Working with NCO - moving forward
The attendees agreed that the job of the National Centers for Environmental Prediction
(NCEP) Central Operations (NCO) is to provide seamless forecasts to end users. So,
any failures during runtime will jeopardize the mission. Hence, NCO should be able to
debug any issue as quickly as possible. The bash scripts (e.g. set -x) provide line-by-
line tracking of commands executed along with errors if any. Developers should be
prepared to educate NCO to debug codes easily. This shift will require regular
communications with NCO. A biweekly tag-up between EMC and NCO will ensure
continued communication. The expectations and responsibilities of both parties should
be laid out formally as part of an “Environmental Equivalence” phase 3 (EE3).

Summary
The meeting provided an opportunity to review and further refine the requirements,
implementation, and project management of a workflow system. It was a consensus that
the workflow system should be modular and be able to diversify, so a unified system
should be built instead of a unitary system. The UFS management and the participants
agreed that all of the repositories should be available to the community. One of the
critical aspects of the workflow system is working closely with NCO. Communicating
with them regularly and addressing their needs for running the model in operations will
be critical to making it successful.

	Editors:
	Participants:
	Introduction
	Requirements of a workflow
	(a) Skeleton of a workflow system:
	(b) Implementation:
	(c) Project Management:
	Perspective from UFS management - Hendrik Tolman
	Working with JEDI tools - Benefits and challenges
	Workflow System Architecture
	GUI for CESM simpler models framework
	Working with NCO - moving forward
	Summary

