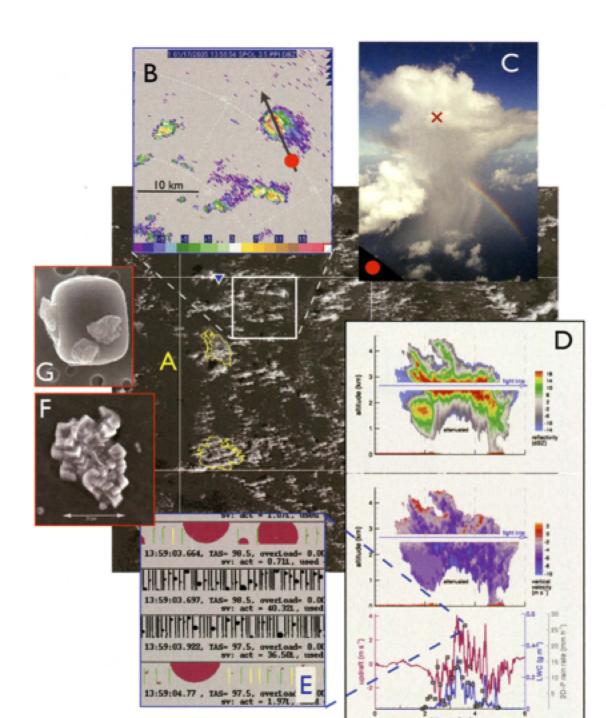

CCPP Single Column Model Overview

Grant Firl NCAR Research Applications Laboratory (RAL)

Developmental Testbed Center

Single Column Model Overview


- Initial state (T, q, u, v) from observations, idealization, or model
- Forcing applied to mimic changes in column state from surrounding environment (replaces dycore)
 - 3 typical methods
 - 1. "total" advective forcing
 - horizontal advection + prescribed vertical velocity
 - 3. 2 + nudging to observed profiles
- Physics responds to these changes and further modifies the column state
- End state is combination of forcing + physics

<u>Pros</u>

- Simple and cheap
- Interpretability
- Approachable

- <u>Cons</u>
- Necessary, but not
- sufficient
- Forcing sensitivity

CCPP SCM Version 4.0

- Continuously up-to-date with NOAA operational UFS physics through the CCPP (and also works with developmental suites)
- Available to public on GitHub (soon)
- Bundled with CCPP v4 (soon)
 - Simple host model for calling physics through CCPP
 - Contains CCPP software framework and physics as Git submodules
 - Contains example of using CCPP framework to:
 - Reconcile model-provided data with that needed by all schemes in physics suite
 - Fill CCPP data structure through automatically generated code (based on metadata included within code comments)
 - Initialize a CCPP-compliant physics suite
 - Call physics suite (one-liner!)
 - Run script to run permutations of supported physics suites and cases

Ties to the UFS Atmosphere Model

- Same vertical coordinate
 - σ -p hybrid
 - Today: Eulerian
 - Soon: Lagrangian (allows for changing p_s)
- Physics namelist
- Physics data structure
 - GFS_typedefs.F90 with minor differences
- Soon: ICs/Forcing from configurable, selected columns
 - AKA "Column Replay"

Current Capabilities

- Run several field campaign-based cases included in the repository
 - A run script exists to automate running through any combination of cases and physics suites you want (serially)
- Four supported CCPP physics suites work and it is possible to create new ones fairly easily
 - Can also run the same suite with different physics namelists for sensitivity tests or tuning
- Simple Python plotting scripts are included for analysis with appropriate system setup
- Create SCM initial conditions (only) for any location on the globe from FV3 initial conditions and run without forcing

Quick Start – Prerequisites and Supported Machines

- System Setup
 - FORTRAN 90+ compiler
 - ifort (18.0.1.163 and 19.0.2)
 - gfortran (6.2, 8.1, and 9.1)
 - C compiler
 - icc (18.0.1.163 and 19.0.2)
 - gcc (6.2 and 8.1)
 - Apple Clang (10.0.0.10001145)
 - cmake (2.8.12.1, 2.8.12.2, and 3.6.2)
 - netCDF (4.3.0, 4.4.0, 4.4.1.1, 4.5.0, 4.6.1 and 4.6.3)
 - not 3.x
 - with HDF5, ZLIB and SZIP
 - must be compiled with same compiler used for model
 - Python (2.7.5, 2.7.9, and 2.7.13) (not 3.x)
 - Libxml2 (2.2, 2.9.7, 2.9.9)
 - NCEPlibs
- Supported Machines
 - Hera (NOAA HPC), Cheyenne (NCAR HPC), generic Mac OSX, Ubuntu, CentOS
 - Soon: Docker container, Amazon Machine Image

Quick Start – Obtaining Code

- The code is maintained in a public repository on GitHub under the NCAR organization.
- It contains 2 submodule repositories: ccpp-physics and ccpp-framework
- Which branch to check out depends on your goals:
 - User: release branch
 - Developer: dtc/develop

NCAR / gmtb-scm			O Watch ▼ 15	★ Star 1 % Fork
Code () Issues 5	1 Pull requests 3 O Actions	s 🏢 Projects 0 💷 W	/iki 🕕 Security 🔟 Insigh	nts 🔅 Settings
ITB Single Column M nage topics	lodel			Ec
🕞 561 commits	پو 7 branches	🗇 0 packages	♥ 4 releases	2 7 contributors
ranch: dtc/develop -	New pull request	с	reate new file Upload files F	Find file Clone or download
his branch is 85 commi	ts ahead, 2 commits behind master.			🕅 Pull request 🗈 Compa
🖣 climbfuji Merge pull rec	quest #157 from grantfirl/short_course_pre	ep	Late	est commit 92d760d 3 hours ag
	quest #157 from grantfirl/short_course_pre change GSD suite to v1; update s		Late	est commit 92d760d 3 hours ag 13 days ag
ссрр		supported suites	Late	13 days ag
ccpp scm	change GSD suite to v1; update s	supported suites uild in cmake		
ccpp scm) .gitignore	change GSD suite to v1; update s	supported suites uild in cmake MakeLists.txt to run_gmtb_	scm.py/setup	13 days ag 12 hours ag 7 months ag
ccpp ccpp ccp ccp ccp ccp ccp ccp ccp	change GSD suite to v1; update s update user guide for ccpp_preb moved physics data copy from C	supported suites uild in cmake MakeLists.txt to run_gmtb_ prrect branches for its subm	scm.py/setup	13 days ag 12 hours ag

```
git clone --recursive -b v4.0
https://github.com/NCAR/gmtb-scm
OR
```

```
git clone --recursive -b dtc/develop
https://github.com/NCAR/gmtb-scm
```

Quick Start – Building and Compiling

- CMAKE step
 - Creates a properly configured makefile for the SCM/CCPP system
 - Calls the code generation script automatically
 - Matches host-provided variables with physics-requested variables, generates software caps for schemes or suites

cmake ../src

Default (dynamic, release build)

cmake -DCMAKE_BUILD_TYPE=Debug ../src

Debug (dynamic, debug build)

cmake -DSTATIC=ON ../src

Static (static, release build)

- Compilation step
 - make [VERBOSE=1]

Quick Start – Running Individually

Python run script

- Functions
 - Sets up the run directory (bin)
 - Creates output directory, chooses the correct CCPP SDF for cases that require prescribed surface fluxes and links the SDF, links physics namelist, links all data in physics_input_data directory, links correct ozone data depending on the chosen ozone scheme, links plotting scripts and configuration files
 - Launches the executable! (can optionally launch within gdb)
- Arguments
 - -c CASE_NAME (required; NO FILE EXTENSION!)
 - -s SUITE_NAME (optional, uses operational GFS physics as default)
 - -n PHYSICS_NAMELIST_WITH_PATH (optional, uses operational namelist by default)
 - -g (optional, execute in gdb)

./run_gmtb_scm.py -c CASE_NAME [-s SUITE_NAME] [-n PHYSICS_NAMELIST_WITH_PATH] [-g

Quick Start – Multiple Runs

- Another python script
 - Serially calls individual run script depending on arguments
 - Arguments
 - Optionally specify one of the following
 - -c CASE_NAME
 - o Runs all supported suites for the given case
 - -s SUITE_NAME
 - o Runs all supported cases for the given suite
 - -f PATH_TO_FILE
 - o Runs whichever cases and suites are specified in the file
 - -v or -vv
 - Optional to write SCM output to console or log
 - -t
 - Optional to time the individual runs (or run several times to get an average)

./multi_run_gmtb_scm.py {[-c CASE_NAME] [-s SUITE_NAME] [-f PATH_TO_FILE]} [-v{v}] [-t]

Quick Start – Analysis

- Yet another python script
 - Uses an external configuration file (its only argument) to tell it what to plot
 - Which output datasets to plot and how to label their data
 - Where to save the output
 - Whether observations are available to plot alongside SCM output
 - Whether plots are generated for individual datasets in addition to comparisons among all datasets
 - Definitions of which time period to average over for profile plots
 - Currently plots the following
 - Mean profiles (against obs if available)
 - Multiple profiles on one plot
 - Time series
 - Multiple time series on one plot
 - Time-pressure contours

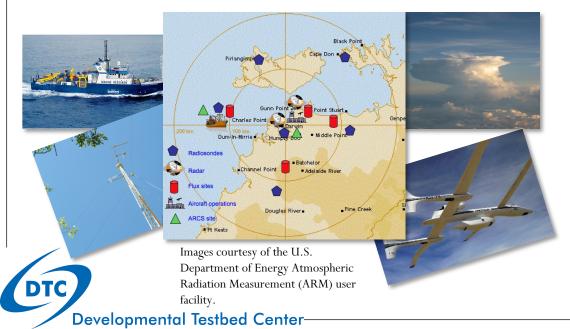
./gmtb_scm_analysis.py filename_to_configuration_file_with_extension

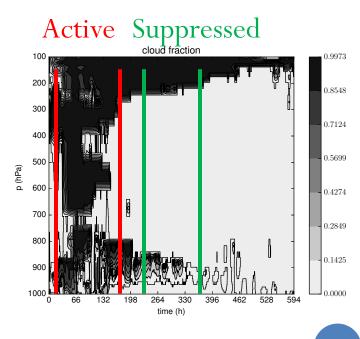
Using Observations to Drive SCM

ASTEX FIRE II Cirrus TOGA/COARE BASE CROSS-PAC (EUROCS) ARM-1997 SGP IOP ICE-89 WISP ARM-1997 SGP IOP SHEBA (EUROCS) ARM-1997 SGP IOP EUCREX-93 CFRP III CROSS-PAC CEAREX (EUROCS) DYCOMS-II EUCREX-94 CASP II (EUROCS) LEADEX GPCI CROSS-PAC (EUROCS) ARM-1994 SGP IOP FRONTS 92 LBA AOE 2001 GPCI CROSS-PAC (EUROCS) ARM-2000 SGP IOP EASTEX CRYSTAL-FACE M-PACE GPCI
EPIC 2001 CRYSTAL-FACE BALTEX CROSS-FAC 99 (EUROCS) GPCI MIRAI Cruises BBC RICO TWP-ICE BBC2

Model Evaluation Tools:

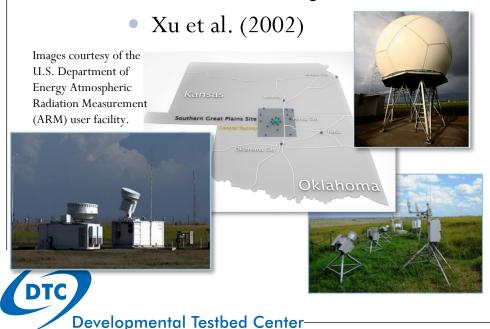
Alle

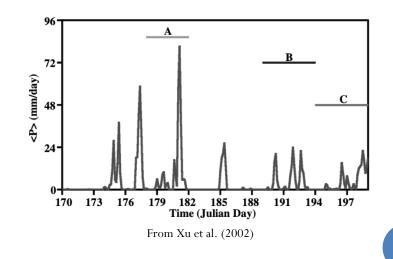

Available Today


- GASS/TWP-ICE (maritime convection; near Australia, Jan-Feb 2006)
- ARM Great Plains (continental convective, Jun-Jul 1997)
- EUCLIPSE/ASTEX field campaign (stratocumulus, June 1992)
- LASSO (continental shallow cu, May 18, 2016)
- BOMEX (maritime shallow cu, June 1969) Planned
 - Expand the variety of meteorological regimes

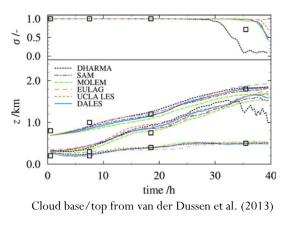
Note: A detailed SCM User's Guide explains how community users can add their own cases/data and we will be participating in an effort to standardize SCM input.

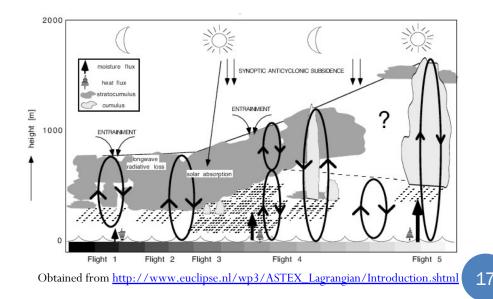
TWP-ICE case


- Tropical Warm Pool International Cloud Experiment
 - DOE ARM field campaign near Darwin, Australia in Jan-Feb 2006
 - Features active and suppressed convective states related to monsoon
 - Model intercomparison studies using this case:
 - For CRMs: Fridland et al. (2012, JGR)
 - For SCMs: Davies et al. (2013, JGR)



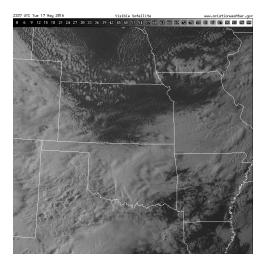
ARM SGP Summer 1997 case


- Atmosphere Radiation Measurement Southern Great Plains site
 - DOE ARM "Laboratory Without Walls"
 - Features 3 different summertime weather regimes over 30 days
 - Disorganized convection, clear/hot, passing MCS
 - Case is divided into time periods by phenomenon
 - Model intercomparison studies using this case:



ASTEX (Lagrangian) case

- Atlantic Stratocumulus to Cumulus Transition Experiment
 - EUCLIPSE
 - Features stratocumulus-to-cumulus transition over 2 day period in June 1992 near the Azores via following a column in a Lagrangian sense
 - Model intercomparison studies using this case:
 - Bretherton et al. (1999)
 - van der Dussen et al. (2013)



Developmental Testbed Center

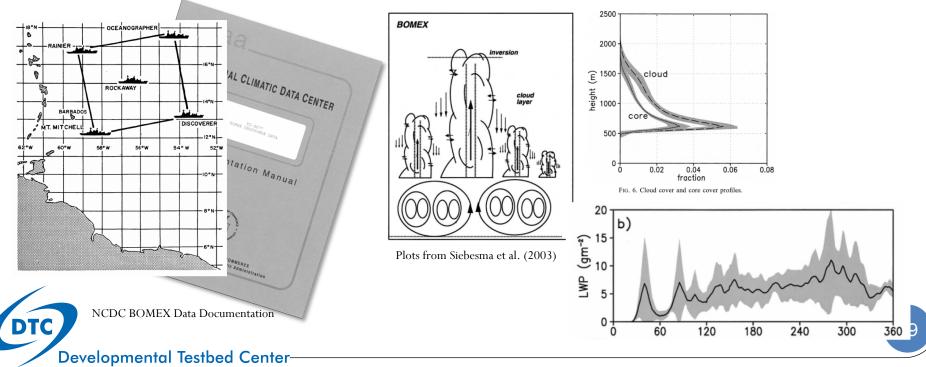
LASSO case(s)

- LES ARM Symbiotic Simulation and Observation
 - DOE ARM Southern Great Plains site
 - Focuses on shallow cumulus; example case from May 18, 2016

Images obtained from the LASSO Bundle Browser: <u>https://adc.arm.gov/lassobrowser</u>

Developmental Testbed Center

DTC


Height (km AGL) 0.100 Cloud Fraction 15 25 30 10 20 Time (Hours UTC) Solar Time (Hours) 6 12 18 0.010 Height (km AGL) 0.001 5 10 15 20 25 30 Time (Hours UTC) Solar Time (Hours) 0 18 Height (km AGL) Cloud Mask: Model Only Obs Only Intersect Metrics (for below 5 km) ETS=0.26 Bias=1.47 25 30 5 10 15 20 Time (Hours UTC)

20160518

Sim ID: 3

BOMEX case

- Barbados Oceanographic and Meteorological EXperiment
 - Near Barbados; joint project among 7 US agencies
 - Focuses on maritime shallow cumulus from June 22, 1969(!)
 - Model intercomparison studies using this case:
 - Siebesma et al. (2003)

Ongoing Development

- Continual updates to keep pace with CCPP-physics and CCPPframework development
- Process isolation capability
- Data from non-active parameterizations can be "saved" from previous run, or specified from observations or idealization
- Possible due to flexibility afforded by CCPP

Single Column Model

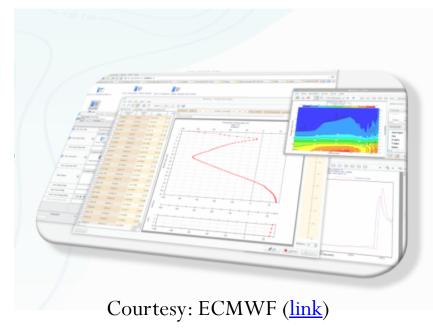
Amount of Driving Data

One parameterization active only

Arbitrary subset of parameterizations active

All parameterizations active

Developmental Testbed Center


Ongoing Development

- More Cases
 - From GASS, EUCLIPSE, use data from long-term sites (like DOE ARM SGP, Cabauw, Lindenberg, etc.)
 - Participate in standard SCM case data format led by MeteoFrance
- UFS Column "Replay" Mode
 - Partially implemented (initial conditions only)
 - Namelist-controlled list of points to save FV3 dycore tendencies

Ongoing Development

- Better Visualization and Analysis
 - Visualize and edit ICs, forcing, physics choices and parameters
 - Set up ensemble runs varying the same
 - Choose output variables and frequency
 - Execute the model on a local machine
 - Analyze the output

