CCPP Single Column Model Overview

Motivation

 Simplest framework for intra-suite physics interaction Necessary-but-not-sufficient for physics development

HSD Testing "Harness"

Single Column Model Overview

- Initial state (T, q, u, v) from observations, idealization, or model
- Forcing applied to mimic changes in column state from surrounding environment (replaces dycore)
 - 3 typical methods
 - 1. "total" advective forcing
 - horizontal advection + prescribed vertical velocity
 - 3. 2 + nudging to observed profiles
- Physics responds to these changes and further modifies the column state
- End state is combination of forcing + physics

<u>Pros</u>

- •Simple and cheap
- •Interpretability
- •Approachable

Developmental Testbed Center

Cons

•Necessary, but not sufficient

•Forcing sensitivity

The CCPP within the SCM

DTC

SCM Inputs and Outputs

Developmental Testbed Center-

Instantaneous values every timestep

CCPP Public Releases

V	Date	Physics	Host
1.0	2018 Apr	GFS v14 operational	SCM
2.0	2018 Aug	GFS v14 operational updated GFDL microphysics	SCM UFS WM for developers
3.0	2019 Jul	GFS v15 operational Developmental schemes/suites	SCM UFS WM for developers
4.0	2020 Mar	GFS v15 operational Developmental schemes/suites	SCM UFS WM / UFS MRW App
4.1	2020 Oct	GFS v15 operational Developmental schemes/suites	SCM UFS WM / UFS MRW App
5.0	2021 Mar	GFS v15 operational Developmental schemes/suites	SCM UFS WM / UFS SRW App
6.0	2022 Jun	GFS v16 operational Developmental schemes/suites	SCM UFS WM / UFS SRW App

Developmental Testbed Center-

DTC

CCPP SCM Version 6.0

- Up-to-date with NOAA operational GFS v16 physics through the CCPP (and also works with developmental suites)
- Available to public on GitHub
- Bundled with CCPP v6
- Simple host model for calling physics through CCPP
 - Contains CCPP software framework and physics as Git submodules
 - Contains example of using CCPP framework to:
 - Reconcile model-provided data with that needed by all schemes in physics suite
 - Initialize a CCPP-compliant physics suite
 - Call physics suite (one-liner!)
- Run script to execute permutations of supported physics suites and cases
- Script to generate cases with UFS initial conditions (only!)
- Choice of prescribed surface fluxes, LSM, or simple ocean surface
- DEPHY international case data file format support

Using Observations to Drive SCM

GEWEX Cloud System Study Data Integration for Model Evaluation			 Model Evaluation Tools: Cluster Analysis Method MAP Climatology of Midlatitude Storminess (MCMS) Metrics for General Circulation Model Evaluation (MGE) 				
L BOUNDARY LAYER CLOUD WORKING GROUP FIRE Marine Stratus ASTEX ARM-1997 SGP IOP DYCOMS-II CROSS-PAC (EUROCS) CROSS-PAC 99 (EUROCS) EPIC 2001 GPC1 RICO BBC BBC2	I. CIRRUS CLOUD WORKING GROUP FIRE I CIITUS FIRE II CIITUS FIRE II CIITUS EUCREX-93 EUCREX-93 EUCREX-94 ARM-1994 SGP IOP March 9 Case CRYSTAL-FACE MIRAI CTUISES TWP-ICE	GCSS Fie	d Studies	V. Polar Cloud Working Group ARCMIP BASE SHEBA CEAREX LEADEX AOE 2001 M-PACE	VI. GCSS PACIFIC CROSS-SECTION INTERCOMPARISON WORKING GROUP CROSS-PAC (EUROCS) CROSS-PAC 99 (EUROCS) GPCI		
NASA Goddard Institute for Space Studies International Satellite Cloud Climatology Project Analysis Software NASA Official: George Tselioudis NASA Privacy Policy & Important Notices GCSS-DIME Website Curator: Violeta Golea NASA Goddard Institute for Space Studies GCSS-DIME Science Contact: William B. Rossow Contact GCSS-DIME Page updated: 2014-07-28 15:43 Contact GCSS-DIME							

Available Today

- GASS/TWP-ICE (maritime convection; near Australia, Jan-Feb 2006)
- ARM Great Plains (continental convective, Jun-Jul 1997)
- EUCLIPSE/ASTEX field campaign (stratocumulus, June 1992)
- LASSO (continental shallow cu, May 18, 2016)
- BOMEX (maritime shallow cu, June 1969)
- DEPHY repository cases **Planned**
 - Expand the variety of meteorological regimes

Note: A detailed SCM User's Guide explains how community users can add their own cases/data.

TWP-ICE case

- Tropical Warm Pool International Cloud Experiment
 - DOE ARM field campaign near Darwin, Australia in Jan-Feb 2006
 - Features active and suppressed convective states related to monsoon
 - Model intercomparison studies using this case:
 - For CRMs: Fridland et al. (2012, JGR)
 - For SCMs: Davies et al. (2013, JGR)

9

ARM SGP Summer 1997 case

- Atmosphere Radiation Measurement Southern Great Plains site
 - DOE ARM "Laboratory Without Walls"
 - Features 3 different summertime weather regimes over 30 days
 - Disorganized convection, clear/hot, passing MCS
 - Case is divided into time periods by phenomenon
 - Model intercomparison studies using this case:

ASTEX (Lagrangian) case

- Atlantic Stratocumulus to Cumulus Transition Experiment
 - EUCLIPSE
 - Features stratocumulus-to-cumulus transition over 2 day period in June 1992 near the Azores via following a column in a Lagrangian sense
 - Model intercomparison studies using this case:
 - Bretherton et al. (1999)
 - van der Dussen et al. (2013)

LASSO case(s)

- LES ARM Symbiotic Simulation and Observation
 - DOE ARM Southern Great Plains site
 - Focuses on shallow cumulus; example case from May 18, 2016
 - Includes observations, SCM forcing data, and LES simulations for MANY days from 2015-2019
 - Gustafson et al. 2020

Images obtained from the LASSO Bundle Browser: https://adc.arm.gov/lassobrowser

BOMEX case

- Barbados Oceanographic and Meteorological EXperiment
 - Near Barbados; joint project among 7 US agencies
 - Focuses on maritime shallow cumulus from June 22, 1969(!)
 - Model intercomparison studies using this case:
 - Siebesma et al. (2003)

Ties to the UNIFIED FORECAST SYSTEM

- Same vertical coordinate
 - σ -p hybrid
 - Today: Eulerian
 - Soon: semi-Lagrangian (allows for changing $p_{\rm s})$
- Physics namelist
- Physics data structure
 - GFS_typedefs.F90 with minor differences
- Soon: ICs/Forcing from configurable, selected columns
 - AKA "Column Replay"

Past/Current Uses

- DTC testing of the Grell-Freitas convection scheme
- Exploration of a forcing ensemble approach
- GF Total Convective T tendency (K day T tendency due to convection MONTHLY WEATHER REVIEW - ECMWF IFS model -2 0 q tendencies g kg-1day-1 q tendencies g kg-1day-1 FIG. 2. Specific humidity tendency output for convection (blue), PBL (green), cloud microphysics (purple), and model forcing (red) for 1D simulations of the TWP-ICE campaign. Tendencies are averaged over the period 19 Jan-12 Feb 2016. (a) ECMWF IFS model output tendencies. (b) GFSIC-SASAS (solid) and "un-tuned" GFSIC-IFSconv (dashed) runs are shown. (c) GFSIC-SASAS (solid) and tuned GFSIC-IFSconv (dashed) runs are shown

Courtesy: Robert Pincus and Dustin Swales

- Lisa Bengtsson et al. (2019, MWR: <u>https://doi.org/10.1175/MWR-D-19-</u> 0195.1)
- 2020 AMS Short Course on CCPP/SCM
- RRTMGP development/debugging

Buggy result: large, systematic differences between RRTMG/RRTMGP

Developmental Testbed Center

VOLUME 147

Summary

- One of simplest components of hierarchical physics testing framework
- Closely developed with CCPP
- Several supported suites with many unsupported developmental schemes
- Ties to UFS
- Used for scientific studies, physics sensitivity tests, teaching, physics development/debugging
- Actively developed with several planned usability improvements

