What Does a Convection-Allowing Ensemble of Opportunity Buy Us in Forecasting Thunderstorms?

Brett Roberts123, Burkely T. Gallo13, Israel L. Jirak1, Adam J. Clark25, David C. Dowell4, Xuguang Wang5, Yongming Wang5

UFS Users’ Workshop, 27 July 2020

1 NOAA/NWS/NCEP Storm Prediction Center, Norman, OK
2 NOAA/OAR/National Severe Storms Laboratory, Norman, OK
3 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, OK
4 NOAA/OAR/ESRL Global Systems Laboratory, Boulder, CO
5 School of Meteorology, University of Oklahoma, Norman, OK
Background and Motivation

- **Community Leveraged Unified Ensemble (CLUE, 2016-present)** provides an unprecedented opportunity for systematic comparisons of CAM ensemble systems.

- Spring Forecasting Experiments (SFEs) have given us subjective feedback on CAM ensembles:
 - Primary focus is CAM ensemble forecasts of *convective evolution* and *severe hazards*.

- Recent SFEs have noted some consistent themes from subjective comments/ratings:
 - Diverse “ensembles of opportunity” (SSEO 2011-17; HREF 2018-present), which aggregate output from CAM runs with disparate configurations, tend to score higher than formal/unified ensembles.
 - A common impression is that formal ensembles are *underdispersive*, while SSEO/HREF are more dispersive and tend to show spatially broader neighborhood probability fields for conv. fields.

- We want to quantify this subjective gap between HREF and unified ensembles in the CLUE.
Datasets

Nightly 00 UTC runs of 3 CAM ensembles examined over the set of days in SFE2018 with all data available (21 days total):

- HREFv2.1 (N=10; multi-core/physics/IC parents & time lagging)
- HRRRE (N=9; unified configuration; perturbed ICs/LBCs)
- OU MAP (N=10; unified configuration; perturbed ICs/LBCs)

HRRRE and OU MAP essentially share the “CLUE” configuration: WRF-ARW, Thompson microphysics, MYNN PBL, RUC LSM

HREFv2.1 member configuration details:

<table>
<thead>
<tr>
<th>Member</th>
<th>Core</th>
<th>ICs</th>
<th>LBCs</th>
<th>Microphysics</th>
<th>PBL</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRRR</td>
<td>WRF-ARW</td>
<td>RAP -1h</td>
<td>RAP -1h</td>
<td>Thompson</td>
<td>MYNN</td>
</tr>
<tr>
<td>HRRR -6h</td>
<td>WRF-ARW</td>
<td>RAP -1h</td>
<td>RAP -1h</td>
<td>Thompson</td>
<td>MYNN</td>
</tr>
<tr>
<td>HRW ARW</td>
<td>WRF-ARW</td>
<td>RAP</td>
<td>GFS-6h</td>
<td>WSM6</td>
<td>YSU</td>
</tr>
<tr>
<td>HRW ARW -12h</td>
<td>WRF-ARW</td>
<td>RAP</td>
<td>GFS-6h</td>
<td>WSM6</td>
<td>YSU</td>
</tr>
<tr>
<td>HRW NMMB -12h</td>
<td>NMMB</td>
<td>RAP</td>
<td>GFS-6h</td>
<td>Ferrier-Aligo</td>
<td>MYJ</td>
</tr>
<tr>
<td>HRW NSSL -12h</td>
<td>WRF-ARW</td>
<td>NAM</td>
<td>NAM -6h</td>
<td>WSM6</td>
<td>MYJ</td>
</tr>
<tr>
<td>NAM CONUS Nest</td>
<td>NMMB</td>
<td>NAM</td>
<td>NAM</td>
<td>Ferrier-Aligo</td>
<td>MYJ</td>
</tr>
<tr>
<td>NAM CONUS Nest -12h</td>
<td>NMMB</td>
<td>NAM</td>
<td>NAM</td>
<td>Ferrier-Aligo</td>
<td>MYJ</td>
</tr>
</tbody>
</table>

HREF rated best overall by SFE participants

OU MAP rated best among unified ensembles

HRRRE rated next-best among unified ensembles
Verification fields

We are concerned with CAM ensemble forecasts of convective evolution and severe hazards… In other words, roughly what SPC must forecast in their outlooks. So we will verify two fields:

1. **Composite radar reflectivity (CREF)**
 a. Succinctly captures convective evolution and coverage
 b. High-quality truth dataset available to verify against: MRMS national mosaic
 c. Instantaneous hourly fields are verified, so timing errors are heavily penalized

2. **2-5 km AGL Updraft helicity (UH) -- a.k.a. “surrogate severe” forecasts**
 a. Highlights intense, rotating storms responsible for most severe hazards
 b. The **surrogate severe** verification methodology will be used (LSRs as truth)
 c. Verified over the entire 24-h convective day, so timing errors are largely tolerated

These fields are central in the SFE when subjective impressions are formed, and are arguably the most important CAM fields examined by SPC forecasters.
Composite Reflectivity (CREF) methodology

- All verification is performed on neighborhood maximum ensemble probabilities (NMEPs) for the 40-dBZ CREF threshold
 - 40-km NH “radius” (box half-length)
 - NMEP smoothed w/ 40-km Gaussian
 - Percentile-based member bias correction

- We verify hourly snapshots of CREF for forecast hours 13-30 (13Z-06Z daily)

Q: Are there storms in the right areas for each snapshot?
Brier Skill Score for CREF >40 dBZ NMEPs

Member ranking:
1. OU MAP
2. HREFv2.1
3. HRRRE

Ensemble ranking:
1. HREFv2.1
2. OU MAP
3. HRRRE

Red bars: $\text{BSS}_{\text{gained}} = \text{BSS}_{\text{ens-mean}} - \text{BSS}_{\text{mems}}$

HREFv2.1 is making the most of its members, as indicated by $\text{BSS}_{\text{gained}}$.
Attributes diagrams for CREF >40 dBZ NMEPs

HREFv2.1 shows superior reliability, except at very high probabilities within daily domains.

HRRRE and OU MAP show classic underdispersive signal.
Mean correlation between members with respect to CREF placement:
1. OU MAP (0.46)
2. HRRRE (0.36)
3. HREFv2.1 (0.23)
Surrogate Severe methodology

SS forecasts are fundamentally similar to CREF NMEPs, except:

1. Computed on 80-km grid
2. One field for max UH over the full 24-h convective day (12Z-12Z)
3. We compute for numerous percentile thresholds and smoothing (σ) values to see how skill varies in that parameter space

Q: Did the CAM (or ensemble) do well at forecasting where intense, rotating storms tracked throughout the convective day?
Surrogate Severe FSS

Ranking of ensemble mean forecasts matches CREF:

1. HREFv2.1
2. OU MAP
3. HRRRE

UH percentiles maximizing skill differ some, and HREF maximizes skill with less smoothing than HRRRE and OU MAP.

Ensemble SS forecasts outperform individual members more as smoothing decreases.

HREF again shows a more pronounced improvement over its members than HRRRE or OU MAP.
Summary and Conclusions

- Overall, HREF was best at forecasting convective evolution during SFE 2018, followed by OU MAP, and then HRRRE.
 - This matches subjective participant ratings
- Skill differences between systems are meaningful at smaller scales (σ ~ 40 km), but for surrogate severe, they largely wash out after applying aggressive smoothing (σ > 100 km) to the NMEPs.
- Objective statistics confirm HREF member probability fields are less correlated with one another, resulting in better spread-skill relationship and reliability than OU MAP or HRRRE.
Summary and Conclusions

- **Key takeaway:** HREF membership design seems to be sampling model uncertainty effectively. How difficult will it be for stochastic perturbations in unified ensembles to replicate this as they mature?

- **Caveat #1:** we looked at the “next-day problem.” Relevance of our spread findings to “WoF problem” (short lead times, small spatial scales) is TBD.

- **Caveat #2:** we verified SFE2018 data here; preliminary stats suggest HRRRE spread improved in SFE2019, so gap may be closing some.