
This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.

Code Management and Making Contributions to the UFS
The Nuts and Bolts of Research to Operations

November 9, 2020

Michael J. Kavulich, Jr.,
Associate Scientist, NCAR JNT/RAL

Outline

• Version control: Git and GitHub
– Version control overview
– Using git software on the command line
– Using GitHub

• UFS structure, Submodules, and Manage Externals
• Making and contributing changes to the UFS code

– Changing code in CIME infrastructure
– Changing code in individual repositories

Outline

• Version control: Git and GitHub
– Version control overview
– Using git software on the command line
– Using GitHub

• UFS structure, Submodules, and Manage Externals
• Making and contributing changes to the UFS code

– Changing code in CIME infrastructure
– Changing code in individual repositories

What is version control?

• In the olden days, code development, whether for an individual or
in a team setting, was a slow, divergent process with lots of potential
for problems
– Keeping track of the “official” version of the code relied on outside

communication and/or naming conventions
– Difficulty remembering when changes were made and by whom
– Working on multiple changes simultaneously could result in frustrating conflicts

and overlapping changes
– Figuring out when and how a bug was introduced could be near impossible

• It was decided a better system was needed: version control
software was developed to enable users to
– Keep the authoritative version of the code in a central location
– Track changes made to the code
– Allow multiple individuals or groups to make changes to the code independently
– Recognize and resolve when conflicting changes are made to the code

A primitive version control system

Basics of version control

• Version control software simply tracks the history of changes to files; in other words,
it keeps track of different “versions” of a file or files as they are modified over time

• Three different types:
– Linear version control

• Simple but ubiquitous example: Microsoft Word/Google Docs
– Centralized version control

• Subversion
– Distributed version control

• git

• In this context, what we are tracking is simply plain text files
– source code
– run scripts
– documentation

git version control software

• git version control was developed for the Linux project
• Decentralized: rather than a single central copy of the code repository where all

changes must be handled, everyone has an equally valid copy of the entire repository
– This sounds complicated (and it can be), but the standard workflow (“gitflow”) used by most UFS

components keeps everything organized
– Among the many advantages to this system are

• Simple to track local development even for minor changes
• Internet access is not needed for active development until it is time to move the changes elsewhere
• Inadvertent changes can usually be undone easily

• git has become by far the dominant version control system in the software
community; in 2018 almost 90% of surveyed software developers preferred it as their
version control software.

https://nvie.com/posts/a-successful-git-branching-model/
https://insights.stackoverflow.com/survey/2018/

How git works

• A self-contained bunch of tracked code is known as a repository
• git repositories can be created from scratch, but we’ll focus on

existing code
• You have already used git at least once, when you began the

practical session:

If all else fails…

How git works

• A self-contained bunch of tracked code is known as a repository
• git repositories can be created from scratch, but we’ll focus on

existing code
• You have already used git at least once, when you began the

practical session:

• You can try any of the commands in this presentation at home if
you like, since git clone gives you a full copy of the repository
to do whatever you want with it!

If all else fails…

creates a clone, or a local copy
of an existing repository

Location of the Medium Range
Weather App repository on Github

check out the branch
named ‘ufs-v1.1.0’

directory where the local clone of
the repository will be created

Making commits with git

• A git “save point” is known as a commit
– Each commit contains

• A change to the code being tracked by git
• A commit “message” (provided by the person who made the change)
• A SHA-1 hash that uniquely identifies that commit, as well as all commits that came before it

– The git log command gives a list of all commits* since the repository was created

*Technically, only the commits
in a given branch, but we’ll
explain what that means later

https://en.wikipedia.org/wiki/SHA-1

Making commits with git

• A git “save point” is known as a commit
– You can create a commit by modifying code, ”staging” that code for commit, and then committing

• The git status command will show files that are different from what git has in its ledger; in this
example, two files have been modified and one new one created

a

Making commits with git

• A git “save point” is known as a commit
– You can create a commit by modifying code, ”staging” that code for commit, and then committing

• The git status command will show files you have modified; in this example, two files have been
modified and one new one created

This line shows what
“branch” you are on;
again, we’ll get to that

git has recognized some
changed files here

git also noticed there was
an “untracked” file that it
does not know about

These lines let us
know what we may
want to do next

Making commits with git

• A git “save point” is known as a commit
– You can create a commit by modifying code, ”staging” that code for commit, and then committing

• You can use the git diff command to see the changes you have made

Making commits with git

• A git “save point” is known as a commit
– You can create a commit by modifying code, ”staging” that code for commit, and then committing

• Use git add to stage a modified file for commit
• For new files, you will also use git add to stage them for commit
• To delete files, use git rm
• You can use git add on full directories, or even use wildcards, but this is strongly discouraged

– This makes it very easy to accidentally commit files you don’t want to commit, which can cause unintended
consequences further down the line

Making commits with git

• A git “save point” is known as a commit
– You can create a commit by modifying code, ”staging” that code for commit, and then committing

• Use git commit to commit the staged changes; this should bring up a text editor for you to enter your
commit message

• A commit message for your own fork can be as brief or as detailed as you like, but it should be enough
to give a rough idea of what was changed and why.

You will probably want to
set the GIT_EDITOR
environment variable to
your favorite text editor,
otherwise you may end up
in Emacs with no idea
how to escape…

git branches

• The simplest repository will consist of a single, linear history all the way back to its creation
• However, it is useful to have the ability to work on multiple changes to a repository in parallel
• Git allows (and encourages) a “branch” functionality

– Can be used for parallel development of different capabilities or fixes in the code
– Can be used to separate the code undergoing active development from that being tested for a release, or being kept

“stable” for some other purpose.
• If you never change anything, all commits will go on the main branch by default; this is often kept as

the “authoritative” version of a project’s code
– Most UFS components use “develop” as the main branch; for others it is “master” or “main”
– The MRW App release that we have been using this week is on branches named “release/public-v##” depending on the

release number of that component
– The name of a branch does not typically matter; it’s just for human readability

• Use git checkout –b your_branch_name to create a new branch identical to the current
branch; it is good practice to always create a new branch when making changes to the code that you
will need to keep

git branches

git tags

• As mentioned earlier, each git commit has a unique 40-character “hash” that
identifies it
– It is unique, but not very memorable

• Git tags allow a hash to be referenced in a human-readable way
– Can be checked out just like branches
– Essentially tags are an easily referenced, permanent “snapshot” of the code

• Git tags are typically created by repository managers for important events
– An official code release, e.g. v1.1.0
– A stable, well-tested version of the code
– A reference to a specific event in the repository history that should be preserved

This isn’t a paid advertisement for git, but…

• Even for tracking small projects on your personal machine, it’s worth it
– Just git init (creates new repository), git add, and git commit, and voila,

you have a repository for your project!
– Trust me, I wish someone had told me this in grad school

• git is an incredibly powerful tool, and we can only barely scratch the
surface today. Some more very useful commands include:
– git diff Can compare two files, two commits, two branches, etc.
– git merge Can merge the changes from one branch to another
– git stash Temporarily “stash away” your current changes without committing them
– git cherry-pick Can move individual commits from one branch to another
– git blame Gives a line-by-line summary of when and how each part of a file was last changed
– git bisect Can help determine when a certain change occurred in the code history

• For more information on git, the official documentation is quite accessible
– https://git-scm.com/docs/gittutorial

https://git-scm.com/docs/gittutorial

Git….Hub?

• GitHub is a website specifically for hosting and maintaining git repositories
• GitHub allows for many additional capabilities on top of the built-in git functionality

– Forks
– Pull requests
– Issue tracking
– Wiki
– etc.

GitHub

• Example: https://github.com/ufs-community/ufs-mrweather-app

https://github.com/ufs-community/ufs-mrweather-app

GitHub

• Example: https://github.com/ufs-community/ufs-mrweather-app

Drop-down list
of branches

Browsable
directory structure
of code repository

Latest release
tag

Click here to
browse revision
history/log

https://github.com/ufs-community/ufs-mrweather-app

GitHub Forks

• git allows individuals to keep their own copy of the “authoritative” repository; this is
known as a “fork”
– A fork, like every other git repository, is a full, stand-alone repository, containing the entire commit

history, all branches and tags
– The fork is stored under your own GitHub account, and you have full permissions to make as

many changes as you want without affecting the authoritative repository

GitHub Forks

• All development and new contributions should come from a user’s fork
– To create your own fork of a repository, click the “fork” button at the top-right

• Example: https://github.com/ufs-community/ufs-mrweather-app

Create a new
fork here

See existing
forks here

https://github.com/ufs-community/ufs-mrweather-app

GitHub Forks

• All development and new contributions should come from a user’s fork
– You might see a box asking where the fork should be created; choose your username

Choose your
own username

GitHub Forks

• All development and new contributions should come from a user’s fork
– After forking, you should see the same code you did before, but at a different URL

If you are looking at a fork, you will see the
original repository listed here

GitHub Forks

• All development and new contributions should come from a user’s fork
– Once your fork is created, in order to do work with the code and make changes to the code, you

will clone your fork instead of the main repository

– Aside from the different URL, working in a clone of your fork is the same as working in a clone of
the main repository

Cloning the main repository:
git clone https://github.com/ufs-community/ufs-mrweather-app

Cloning your fork:
git clone https://github.com/YOUR_GITHUB_USERNAME/ufs-mrweather-app

GitHub Issues

• The GitHub Issue Tracker is a great tool for communication with other collaborators
on a given repository
– Issues are simply numbered messages associated with a repository
– Reasons for opening an issue include:

• Pointing out a bug in the code
• Requesting a feature

– Typically issues consist of a title briefly describing the issue, followed by more detailed text
– Issues can be closed (resolved) by Pull Requests

View existing issues,
or open new ones

Github Issues

• https://github.com/ufs-community/ufs-weather-model/issues

https://github.com/ufs-community/ufs-weather-model/issues

Github Issues

A bit of git we haven’t covered yit: git push and pull

• When commits are made, they are initially only on the local clone of your repository
• In order to get your code changes back to the main repository on GitHub, you will

need to “push” those commits back to the origin, using the git push command

A bit of git we haven’t covered yit: git push and pull

• When commits are made by others to the main repository, they do not automatically
populate into your local clone

• In order to get the most up-to-date code from GitHub, you will need to “pull in” the
latest commits, using the git pull command

GitHub Pull Requests

• If you would like to make a change to a repository, you can do so via a “Pull Request”
– A pull request, often abbreviated PR, is a request to have your changes “pulled” in to the official

repository from your fork
– A PR can be applied between any two branches in any repositories with a common history, but

traditionally they are applied from a fork to the main repository
– When opening a PR, it is generally expected you will provide a description of the changes, a

justification for the changes (fixing a bug, adding a feature, etc.), and a summary of tests
conducted
• Different projects will have different requirements: more on that later

GitHub Pull Requests

If you just made a
push, GitHub may give
you this handy shortcut

Otherwise, click here
to open a new Pull
Request

Outline

• Version control: Git and Github
– Version control overview
– Using git software on the command line
– Using Github

• UFS structure, Submodules, and Manage Externals
• Making and contributing changes to the UFS code

– Changing code in CIME infrastructure
– Changing code in individual repositories

UFS Structure

• The UFS is composed
of a number of
individual, stand-alone
codes, most of which
were initially
independent
components

• Each of these
components is in its
own separate
repository

ufs-mrweather-app

ufs-weather-model NEMS_interface fv3gfs_interface CIME

stochastic_physics NEMS fv3atm FMS

atmos_cubed_sphere ccpp-physics ccpp-framework

UFS Structure

• ufs-weather-model
– The main repository for

the weather model and its
components

• fv3atm
– Contains the atmospheric

component of the
weather model

• ccpp-physics
– Contains the GFS physics

scheme
• atmos_cubed_sphere

– Contains the FV3
dynamical core

ufs-mrweather-app

ufs-weather-model NEMS_interface fv3gfs_interface CIME

stochastic_physics NEMS fv3atm FMS

atmos_cubed_sphere ccpp-physics ccpp-framework

Submodules, and Manage Externals

• How are all these repositories linked together? Surely it’s
a nightmare to keep track of all the changes going into
every repository…

• This is handled through manage_externals and
submodules
– Submodules are a native functionality of git (https://git-

scm.com/book/en/v2/Git-Tools-Submodules)
• A repository can be linked as a subdirectory as another repository
• Submodules are tracked in a top-level “.gitmodules” file

– manage_externals is a tool developed and maintained by Earth
System Model Computational Infrastructure (ESMCI) group
(https://github.com/ESMCI/manage_externals)
• Adds some additional functionality on top of submodules
• External repositories are tracked in the top-level “Externals.cfg” file Externals.cfg for the ufs-mrweather-app

version 1.1 release

https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://github.com/ESMCI/manage_externals

ufs-mrweather-app

ufs-weather-model NEMS_interface fv3gfs_interface CIME

stochastic_physics NEMS fv3atm FMS

atmos_cubed_sphere ccpp-physics ccpp-framework

manage_externals

git clone

submodules

submodules

ufs-weather-model

stochastic_physics NEMS fv3atm FMS

atmos_cubed_sphere ccpp-physics ccpp-framework

git clone --recursive

submodules

submodules

Outline

• Version control: Git and Github
– Version control overview
– Using git software on the command line
– Using Github

• UFS structure, Submodules, and Manage Externals
• Making and contributing changes to the UFS code

– Changing code in CIME infrastructure
– Changing code in individual repositories

Making changes to the code

• For quick and easy changes to small parts of the code, you can take advantage of the
“SourceMods” capability of CIME.
– Within each case directory, there is a directory named “SourceMods/src.ufsatm/” created by the

./create_newcase script.
– You can copy one or more files from the source code, make adjustments to the code prior to

running the ./case.build script
• This is only intended for small, easy, and temporary changes to the code in the

UFS components. For serious development work, see the following slides.

Contributing code back to the UFS

• For development work, you will need to change the source code
directly where it resides in the repository
– For the MRWeather App, this source code is found in

my_ufs_sandbox/src/model
• Changes to chgres_cube and UPP are more complicated

– In this example, we will make a change in the ufs-weather-model repository
• The first thing you will need to do is clone a fresh copy of the ufs-

mrweather-app, then switch to the main branch of each repository
– The released code is version 1.1.0, and is frozen aside from bug fixes. By the

time you start your development, the main branch will be far ahead of the
release branch

– You can change Externals.cfg so that it points to the develop branch rather
than the ufs-v1.1.0 tag
• tag = ufs-v1.1.0 --> branch = develop

• You must then create a fork of the repository you will be changing

Contributing code back to the UFS: Creating a fork

• To fork a repository, you will need to create a GitHub account (or log in to an existing
one).

• Then go to the repository you are interested in; in this case the ufs-weather-model
– https://github.com/ufs-community/ufs-weather-model

• In the top right, there is a “Fork” button that you can click to create a fork

http://github.com/join
https://github.com/ufs-community/ufs-weather-model

Contributing code back to the UFS : Committing changes

• Once your fork has been created at https://github.com/YourUsername/ufs-weather-
model, you can then modify Externals.cfg to check out your fork instead of the
authoritative repository
– repo_url = https://github.com/ufs-community/ufs-weather-model/ à YourUsername

• Then run ./manage_externals/checkout_externals to check out the code as
usual; this time, instead of cloning the authoritative ufs-community/ufs-weather-
model repository, manage_externals will clone your fork of ufs-weather-model

• Create a new branch and commit changes to your fork as described earlier.
– git add newfile changed_file
– git commit –m ‘Added new file and changed another one...for science!’

• Push your changes back to your fork on GitHub
– git push --set-upstream origin branchname

Contributing code back to the UFS: Opening a Pull Request

• Once your changes have been pushed back to GitHub, you are now ready to open a
Pull Request

• Visit your fork on GitHub via your favorite internet browser, and click “Pull Request”

Contributing code back to the UFS: Opening a Pull Request

• From the dropdown menu at right, select the
branch you just pushed to your fork

• After selecting the correct branch, select
“Create pull request”

Contributing code back to the UFS: Opening a Pull Request

• And now, it’s time to make your request!
– Create a brief but descriptive title in the first box
– Add more details about the changes and their

purpose in the large box
• For PRs that consist of many commits, this is where your

own commit message history can come in handy; if you
have been including descriptive commit messages all
along then this step is a lot less work!

– For some repositories, ufs-weather-model included,
the message box will be filled in with a template; in
that case you should follow the instructions provided

• When you are finished filling in all the details,
you can hit “Create pull request” to open the PR

Contributing code back to the UFS: Continuing a Pull Request

• Be prepared to respond to questions or
concerns from code managers and
other community members!

• Make requested changes to the code so
that your Pull Request can be approved
and merged to the main branch
– Pull requests are tied to a specific branch, so if

you need to make changes, simply add new
commits to that branch and push the back to
GitHub

Testing requirements

• Most components of the UFS have some kind of testing system for ensuring that
changes to the code are working correctly and do not break existing capabilities
– These are typically called regression tests
– The weather model has a fairly extensive regression testing system

• https://github.com/ufs-community/ufs-weather-model/wiki/Running-regression-test-using-rt.sh
– These tests will need to pass before changes can be accepted into the repository

https://github.com/ufs-community/ufs-weather-model/wiki/Running-regression-test-using-rt.sh

Requirements for different repositories

The example I used
above is for the
ufs-weather-model, but
different repositories
have different
requirements for PRs;
these will be briefly
detailed in the following
slides

ufs-mrweather-app

ufs-weather-model NEMS_interface fv3gfs_interface CIME

stochastic_physics NEMS fv3atm FMS

atmos_cubed_sphere ccpp-physics ccpp-framework

Development requirements: FV3 dynamical core

• https://github.com/NOAA-EMC/GFDL_atmos_cubed_sphere/
– Main development branch is dev/emc
– Fork of https://github.com/NOAA-GFDL/GFDL_atmos_cubed_sphere
– Development at GFDL takes place here: https://gitlab.gfdl.noaa.gov
– No regression testing suite yet, but making changes to the dynamical core should not be taken

lightly!
• Thorough justification for the changes should be provided (referencing an existing Issue may suffice)
• Testing should be done to ensure results will not change
• If results will change, you should be prepared with scientific justification for the differences

https://github.com/NOAA-EMC/GFDL_atmos_cubed_sphere/
https://github.com/NOAA-GFDL/GFDL_atmos_cubed_sphere
https://gitlab.gfdl.noaa.gov/

Development requirements: CIME

• https://github.com/ESMCI/cime
• Before starting a new feature or other development, open an issue and assign

yourself the task
• Create a branch from the latest version that passed all tests
• A set of regression tests must be performed before opening a PR
• More details in the CIME developers’ guide

https://github.com/ESMCI/cime
https://github.com/ESMCI/cime/wiki/Testing
https://github.com/ESMCI/cime/wiki/CIME-Developers-Guide

Development requirements: UFS_UTILS

• https://github.com/NOAA-EMC/UFS_UTILS/
• Technically not a part of the UFS MRWeather App, but…

– Contains chgres_cube, the utility for creating initial conditions for the MRWeather App
– chgres_cube is included in the NCEPLIBS package for the global release, not the App itself

• Requirements for contributing code:
– Requires an issue be opened prior to opening a pull request
– All code changes must conform to NCO Implementation Standards
– Requires regression testing on a number of platforms prior to merging

• Different utilities have different code managers; see the repository wiki for details

https://github.com/NOAA-EMC/UFS_UTILS/
https://www.nco.ncep.noaa.gov/idsb/implementation_standards/
https://github.com/NOAA-EMC/UFS_UTILS/wiki/5.-Code-Managers-For-Each-Program

Unified Post-Processor (UPP)

• https://github.com/NOAA-EMC/EMC_post/wiki/UPP-Code-Development
• Again, not technically part of the App

– is included in the NCEPLIBS package for the global release
• To make changes

– Create an issue to describe the change that you will be providing
– Open a pull request
– Contact one of the code managers to conduct regression tests

https://github.com/NOAA-EMC/EMC_post/wiki/UPP-Code-Development

CCPP

• See Dom’s talk, coming up next…

References and further reading

• Git documentation: https://git-scm.com/docs
– Git visual cheat sheet: https://ndpsoftware.com/git-cheatsheet.html

• GitHub documentation: https://docs.github.com/en/free-pro-team@latest/github

– Image credits: Randall Munroe, Simon Mutch,
Vincent Driessen

Messages consisting mainly of non-words are
discouraged

Thank you for your attention!
Questions?

https://git-scm.com/docs
https://ndpsoftware.com/git-cheatsheet.html
https://docs.github.com/en/free-pro-team@latest/github
https://xkcd.com/1597/
https://smutch.github.io/VersionControlTutorial/
https://nvie.com/posts/a-successful-git-branching-model/

This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.

Bonus slides!

GitHub Forks: keeping in sync

• While forking has many advantages, it does require some additional effort in keeping
your fork sync with the main repository

• This is handled through another bit of git functionality: remote repositories
• A “remote” is simply a link to another repository, either on disk or on the web

– When you create a remote link to another repository, you can push to and pull from that repository
– One remote is automatically created when you clone: the “origin” remote is the location where the

current repository was cloned from
– You can view remote repositories with the git remote command

GitHub Forks: keeping in sync

• To keep your fork in sync with the main repository, clone fork locally, and create a
remote named ”upstream” that will point to the main repository

• Next, use git fetch on the “upstream” repository, which will fetch the latest changes,
including both new commits on each branch as well as new branches

GitHub Forks: keeping in sync

• Next, perform a merge on the main branch for the repository. Including the --ff flag
is recommended to avoid potential problems

• Finally, push the synced branch to your fork on GitHub; assuming everything went
well, the main branch on your fork is now synced with the main brain in the
authoritative repository!

Bonus slides: changing NCEPLIBS, chgres_cube, or post code

• Because chgres_cube and ncep_post are provided in NCEPLIBS rather than as
individual components, code changes are a bit more complicated

• You will need to build your own version of NCEPLIBS, rather than using a pre-
installed version

• Example: https://github.com/NOAA-EMC/NCEPLIBS-external/blob/release/public-
v1/doc/README_cheyenne_intel.txt
– It is not necessary to re-build the NCEPLIBS-external package

• You will need to set the -DCMAKE_INSTALL_PREFIX flag when running cmake to install NCEPLIBS in a
directory of your choosing

– Before building a new copy of NCEPLIBS, you will need to point to the branch where you have
made your modifications
• The release/public-v1 branch of NCEPLIBS uses git submodules directly rather than manage_externals

https://github.com/NOAA-EMC/NCEPLIBS-external/blob/release/public-v1/doc/README_cheyenne_intel.txt

Bonus slides: changing NCEPLIBS, chgres_cube, or post code

> git clone -b develop
git@github.com:NOAA-EMC/NCEPLIBS

> cd NCEPLIBS/
> vi .gitmodules

– Edit the NCEPLIBS-post and/or UFS_UTILS url and branch to
point to your fork and branch

> git submodule update --init --recursive
– Since we did not clone with the --recursive tag, this step is

needed clone all of the submodules prior to building
– We now see our fork is being cloned, rather than the main

repository
• To use this newly-built NCEPLIBS package when

building and running CIME, set the NCEPLIBS_DIR
environment variable

mailto:git@github.com:NOAA-EMC/NCEPLIBS

