

WEATHER

SERVICE

ž

THE

GFS Development and Transition to Operations

Fanglin Yang Environmental Modeling Center National Centers for Environmental Prediction

Unified Forecast System (UFS) Medium-Range Weather (MRW) Application Users' Training, November 2020

Outline

. .

x

四日

 $\mathbf{\Lambda}$

12

ž

- History of NCEP Global Forecast System (GFS)
- GFS Performance
- Recent Changes and Upgrades
 - The Future

Current NCEP Production Suite (NPS)

Distinct Modeling Systems of NPS:

- AQM: CMAQ North American Air Quality Model (84 hrs)
- CFS: Spectral model coupled to ocean and ice & weakly coupled DA for seasonal forecasts (9 months)
- GDAS/GFS: FV3 based atmospheric model with GSI based DA (16 days, medium range)
- GEFS: Spectral model with 21 member ensemble (16 days)
- HiRes Window: Regional NMMB (72 hrs)
- HREF: Ensembles of WRF ARW and NMMB (72 hrs)
- HRRR/RAP: Regional WRF ARW with ensemble DA (36 hrs)
- HWRF: Regional WRF NMM-E hurricane model coupled to ocean and waves (126 hrs)
- HMON: Regional NMMB hurricane model coupled to ocean (126 hrs)
- HySPLIT: Regional on-demand dust/smoke/volcanic ash prediction
- NAM: NMMB North American Mesoscale Model (84 hrs)
- NAM Nests: High-Resolution NMMB Nests (84 hrs)
- NWPS: SWAN Near Shore Wave Prediction System
- NGAC: Global Spectral Model for Aerosols (5 days)
- NLDAS: Regional Land Data Assimilation System
- NAEFS: North American Ensemble Forecast System (GEFS+Canadian Ensembles)
- NWM: WRF Hydro for Water Prediction (5 days)
- RTMA/URMA: Regional Mesoscale Analysis
- RTOFS: HyCOM Global Ocean Model (5 days)
- SREF: Short Range Ensemble with WRF ARW, NMMB (84 hrs)
- Waves: Global multigrid WaveWatch III Model (10 days)
- Wave Ensembles: Global WaveWatch III Ensembles (10 days)
- Great Lakes: WaveWatch III for great lakes (10 days)
- Space Weather: Global Spectral Whole Atmosphere Model
- Space Weather: WSA EnLil Solar Wind Prediction Model

GFS is the center of the universe

26 models

The Birth of NWS Global Forecast Systems

- NCEP's first global forecast system was implemented in 1974 using the Hough analysis and a 2.5° 9-layer sigma coordinate global primitive equation model (Shuman, 1989, Flattery, 1971, Stackpole, 1973, 1978).
- In 1980, **Joseph Sela** introduced the spectral model to NCEP operation.

Dr. Joseph Sela created and developed the spectral GFS and worked on improving it from 1975 until his death in 2010.

People Developed the NWP Models at NCEP

Development Division in the early 1990's at the World Weather Building

EMC in the NCWCP Auditorium in 2017

(photo taken by Michiko Masutani)

Change History of GFS Configuration

AND ATMOSP

NOAA

ATMENT

Selected Major GFS Changes

- 5/2007
 - SSI (Spectral Statistical Interpolation) 🗆 GSI (Gridpoint Statistical Interpolation).
 - Vertical coordinate changed from sigma to hybrid sigma-pressure
 - New observations (COSMIC, full resolution AIRS, METOP HIRS, AMSU-A and MHS)
- 2/2009
 - Flow-dependent weighting of background error variances
 - Variational Quality Control
 - METOP IASI observations added
- 7/2010
 - Resolution Change: T382L64
 T574L64 (38 km
 23 km)
 - Major radiation package upgrade (RRTM2, aerosol, surface albedo etc)
 - New mass flux shallow convection scheme; revised deep convection and PBL scheme
 - Positive-definite tracer transport scheme to remove negative water vapor

Selected Major GFS Changes (cont'd)

• 5/22/2012

* GSI Hybrid EnKF-3DVAR : A hybrid variational ensemble assimilation system is employed. The background error used to project the information in the observations into the analysis is created by a combination of a static background error (as in the prior system) and a new background error produced from a lower resolution (T254) Ensemble Kalman Filter.

• 01/14/2015

* Upgrade to T1534 Semi-Lagrangian (~13km) : Use Lagrangian instead Hermite vertical interpolation; Use high resolution daily RGT SST and daily sea ice analysis; Extend high resolution forecast from 8 days to 10 days;

* Use McICA radiation approximation; Reduced drag coefficient at high wind speeds; Hybrid EDMF PBL scheme and TKE dissipative heating

Selected Major GFS Changes (cont'd)

05/11/2016

- * Hybrid EnKF-3DVAR --> 4D Hybrid Ensemble-Variational Data Assimilation.
- * Assimilate all-sky (clear and cloudy) radiances

07/19/2017

- * Implement GSM source code in NOAA Environmental Modeling System (NEMS) framework
- * Implement Near Surface Sea Temperature (NSST) for analysis and forecast
- * High-resolution MODIS snow-free albedo, soil type and vegetation type.

Outline

· 3.1

x

四日

 $\mathbf{\Lambda}$

12

ž

- History of NCEP Global Forecast System (GFS)
- GFS Performance
- Recent Changes and Upgrades
 - The Future

NH 500-hPa HGT Day-5 ACC Frequency Distribution

Annual Mean 500-hPa HGT Day-5 Anomaly Correlation

Increase by 0.1 per decade

Annual Mean 500-hPa HGT Day-5 Anomaly Correlation

NOAF

Day at which forecast loses useful skill (AC=0.6) N. Hemisphere 500hPa height calendar year means

Outline

जौ

x

四日

 $\mathbf{\Lambda}$

12

ž

- History of NCEP Global Forecast System (GFS)
- GFS Performance
- Recent Changes and Upgrades
 - The Future

GFS.v15 Transition to Operation

Finite-Volume Cubed-Sphere Dynamical Core (FV3)

Microphysics Scheme with Multiple Prognostic Cloud Hydrometers

Configuration:

In Operation: June 12, 2019

- High-res: C768 (~13km)
- Data Assimilation: C384 (~25km, 80 member ensemble)
- 64 layer, top at 0.2 hPa
- Uniform resolution for all 16 days of forecast
- Dycore: FV3, non-hydrostatic, single precision
- Physics: GFS Physics + GFDL Cloud Microphysics, double precision

Model: Infrastructure & Physics Upgrades

Integrated FV3 dycore into NEMS

- Added IPD in NEMSfv3gfs
- \triangleright Newly developed write grid component -- write out model history in native cubed sphere grid and Gaussian grid
- **Replaced Zhao-Carr microphysics with** the more advanced **GFDL** microphysics
 - Updated parameterization of ozone photochemistry with additional production and loss terms

New parameterization of middle atmospheric water vapor photochemistry

- a revised bare soil evaporation scheme.
- **Modify convection schemes to reduce** excessive cloud top cooling

Improved NSST in FV3

Updated Ozone Physics in FV3GFS

Funded by NOAA Climate Program Office

Naval Research Laboratory CHEM2D Ozone Photochemistry Parameterization (CHEM2D-OPP, <u>McCormack et al. (2006)</u>)

Reference tendency $(P-L)_0$ and all partial derivatives are computed from odd oxygen (Ox \equiv O₃+O) reaction rates in the CHEM2D photochemical transport model.

CHEM2D is a global model extending from the surface to \sim 120 km that solves 280 chemical reactions for 100 different species within a transformed Eulerian mean framework with fully interactive radiative heating and dynamics.

- χ_{O3} prognostic Ozone mixing ratio
- T Temperature
- c_{O3} column ozone above

From: Shrivinas Moorthi

- This new scheme is based on "Parameterization of middle atmospheric water vapor photochemistry for high-altitude NWP and data assimilation" by McCormack et al. (2008), from NRL
- Accounts for the altitude, latitude, and seasonal variations in the photochemical sources and sinks of water vapor over the pressure region from 100–0.001hPa (~16–90km altitude)
- Monthly and zonal mean H₂O production and loss rates are provided by NRL based on the CHEM2D zonally averaged photochemical-transport model of the middle atmosphere

Parallelized NEMS FV3 Write Grid Component

GFDL FMS writes files in native cubed sphere grid in six tiles, one file for each tile in netcdf format with *all output times at once*.

NEMSIO writes

- history files in cubed sphere grid in six tiles, one file one tile in netcdf format at a *specific output time*
- history files in global Gaussian grid, one file for global at a specific output time in either netcdf format or NEMSIO format

GFS.v15: Improved 500-hPa HGT ACC (2015 ~ 2018)

Increase is significant up to day 10

AND ATMOSA

NOAP

MENT

GFS.v15 - Improved Precipitation Forecast

Improved Precipitation Diurnal Cycle

SUMMER 2018 CONUS DOMAIN-AVG PCP 0.5 04

- Improved ETS scores for almost all thresholds and at all forecast length
- Reduced wet bias for light rains
- Slightly worsened dry bias for moderate rainfall categories

GFS.v15 - Improved Wind-Pressure Relationship

GFS.v15 shows a much better wind-pressure relation than GFS.v14 (GSM) for strong storms

> Graph made by HWRF group

- Excessive cold bias in the winter season
- Progressive bias for synoptic scale systems
- Less skillful TC track forecasts, especially for stronger storms
- Temperature cold bias in the stratosphere
- Poor representation of boundary layer inversions

Change History of GFS Configuration

AND ATMOSP

NOAA

TMENT

GFS.v16 Vertical Structure

ND ATMOS

NOAA

MENT

GFSv16: Major Changes to the Forecast Model

Model resolution:

Increased vertical layers from 64 to 127 & raised model top from 54 km to 80 km

Physics updates:

- PBL/turbulence: Replaced K-EDMF with sa-TKE-EDMF (Revised background diffusivity as a stability dependent function)
- GWD: Added a parameterization for subgrid scale nonstationary gravity-wave drag
- Radiation: Updated calculation of solar radiation absorption by water clouds; Updated cloud overlap assumptions.
- Microphysics: Updated GFDL microphysics scheme for computing ice cloud effective radius
- Noah LSM: Revised ground heat flux calculation over snow covered surface; Introduced vegetation impact on surface energy budget over urban area

Coupling to Wave Model:

One-way coupling of atmospheric model with Global Wave Model (WaveWatch III, Multi_1)

GFSv16: Major Changes to the Forecast Model

DORR TO SPHERE

New TKE-EDMF PBL:

- Higher-order accuracy in turbulence representation, less diffusive than K-EDMF
- Advection of turbulence by the grid-mean flows
- Inclusion of **moist processes**
- Mass-flux representation for the **nonlocal momentum mixing**
- EDMF parameterization for the stratocumulus-top-driven turbulence mixing
- <u>Scale awareness</u>
- Interaction of TKE with cumulus convection

GFSv16: Major Changes to the Forecast Model

Non-Stationary GWD: Impact on QBO/SAO In collaboration with CIRES, UCB

- Current operational model cannot simulate the QBO
- A QBO-like feature is captured in GFS.v16 "climate" run with the non-stationary GWD physics included; However, the periodicity is too short, appears to be a downward propagating SAO.

NNA

Forecast improvements in the Stratosphere

Improved 1-hPa Temperatures : 60N-90N Dec 2019 – Jan 2020

Figures courtesy: Craig Long, CPC

Captured water vapor seasonal cycle in the stratosphere, compares well with UARS HALOE observations (Sept. 2019-May 2020)

NCEP PRFV3R3E SPECIFIC HUMIDITY FOR 201910 : 8

NCEP PRFV3R3E SPECIFIC HUMIDITY FOR 202004 : 0

One-Way Coupling to Wave Model

Operational Multi_1 (GWMv3)

- Arctic Polar Stereographic
 - 18 km resolution
 - **50°N to 90°N**
- Global grid: 30 arc min
- Regional grids: 10 arc min
 - ak_10m; wc_10m; at_10m; ep_10m
- Coastal grids: 4 arc min
 - ak_4m; wc_4m; at_4m
- No ocean current interactions

GFSv16-Wave Component

- Arctic Polar Stereographic: 9 km resolution
 - **50°N to 90°N**
- Global grid: 16 km (10 arcmin)
 15°S to 52.5°N
- Southern Ocean : 25 km (15 arcmin)
 10.5°S to 79.5°S
- Removal of regional and coastal grids
- New RTOFS ocean surface current forcing up to 192h
- Forecasts will be extended from 180 hr to 384 hr.
- Improved Wave Physics

Major Upgrades to GDAS

- Local Ensemble Kalman Filter (LETKF) with model space localization and linearized observation operator to replace the Ensemble Square Root Filter (EnSRF)
- 4-Dimensional Incremental Analysis Update (4D-IAU)
- Turn on SKEB in EnKF forecasts
- New variational QC
- Apply Hilbert curve to aircraft data
- Correlated observation error for CrIS over sea surfaces and IASI over sea and land
- Update temperature aircraft bias correction with safeguard
- Assimilate AMSU-A channel 14 and ATMS channel 15 w/o bias correction

- Assimilate CSR data from ABI_G16, AHI_Himawari8, and SEVIRI_M08; AVHRR from NOAA-19 and Metop-B for NSST
- Assimilate additional GPSRO (add Metop-C GRAS, More Cosmic-2)
- Assimilate high-density flight-level wind, temperature, and moisture observations (HDOBS) in tropical storm environment (first time in operations for GFS)
- Reduce the distance threshold for inner core dropsonde data to 55km (from 111km or 3*RMW) and add a wind threshold of 32 m/s to allow more dropsonde data being assimilated
- Use CRTM v2.3.0

RMS O-F (2019112400-2019122306)

In collaboration with OAR/PSL

New Assimilation of HDOBS

MODEL FORECAST – TRACK ERROR (NM) STATISTICS GFSv16 HDOB Impact Atlantic 2019–2020 MODEL FORECAST - TRACK ERROR (NM) STATISTICS GFSv16 HDOB Impact Atlantic 2019-2020 - STRONG STORMS

Significant improvements in track forecast errors, especially for strong storms

NOA

Infrastructure changes

- Change the model output format from nemsio to compressed netCDF
 - A new parallel I/O was developed with updated netCDF and HDF libraries
 - 3D Atmospheric fields will have 5x compression (33.6 GB to 6.7 GB, lossy compression)
 - Surface 2D fields will have 2.5x compression (2.8 GB to 1.1 GB, lossless compression)
- Pre-Processing Changes
 - obsproc_global and obsproc_prep was updated to process new satellite observations, high density aircraft observations, and to work with model history files in netCDF format.
- Inline Post-Processing
 - Inline post makes use of forecast data saved in memory for post processing, <u>reduces I/O activity, and</u> <u>speeds up the entire forecast system.</u>
 - A Post library was created using the offline post Fortran programs. It can be called by the Write Grid Component within the forecast model.
 - Since lossy compression is applied for writing out forecast history files, <u>inline post generates more</u> <u>accurate products</u> than the standalone offline post.
 - Simulated satellite radiance and WAFS files are still made by the offline post.

Impact on Computational Resources

GFSv16 HWM

	GFS time (min)	v15 nodes	GFS v16 time (min) nodes				
gfs_analysis	28.0 - 28.7	240	28.1 - 29.4	250			
gdas_analysis_high	32.2 - 33.0	240	38.2 - 39.3	250			
gfs_forecast_high	100.8 - 103.4 (6.38 min/day)	148	122.8 - 124.2 (7.72 m/day)	484			
wave_fcst	53.8 - 54	18	122.8 - 124.2	60			
gdas_forecast_high	11.5 - 11.7	28	21.10-21.5	119			
enkf_update	6.5 - 6.8	90	25.6 - 26.7	240			
enkf_fcst_XX	19.7 - 19.8	14 x 20 = 280	28.5 - 31.5	15 x 40 = 600			

Retrospective and Real-Time Parallels

	Machine & Throughput	Period to be covered (total days)	Wave starting Cycle	CAPE/CIN fix starting cycle	Completion Date	Notes
v16retro0e	Mars Dell 3.5 7 cycles/day	05/10/19~05/31/ 19 (26)	No WAVE	rerun fcst completed	July 4	For MEG evaluation of significant weather events.
v16retro1e	Mars Dell 3.5 7 cycles/day	06/1/19~08/31/1 9 (92)	2019060712	2019081512	July 23	MDL and NCAR need data for JJA 2019
v16retro2e	Mars Dell 3.0 4 cycles/day	09/1/19~11/30/1 9 (91)	2019090918	2019102712	August 8	
v16retro3e	HERA 7 cycles/day	12/01/19~ 05/19/20 (169)	2020013106	2020040112	August 1	MDL and NCAR need data for DJF 2019/20
v16retro5e	Venus Dell 3.5 4 cycles/day	08/31/18~10/12/ 18 (43)	No Wave	2018091012	August 10	Forecast length is 10 days for all cycles.
v16rt2	Mars Dell 3.0	05/19/20 ~	2020051900	2020071300	Ongoing	38

GFSv16 Evaluation

Carried out by EMC Model Evaluation Group with contributions from GFS.v16 model developers, NWS STI Science Operations Officers (SOO), and community collaborators.

https://www.emc.ncep.noaa.gov/users/meg/gfsv16/

- The GFSv16 official evaluation included analyses of:
 - Retrospectives (5/5/19–5/18/20; added 8/31/18–10/12/18)
 - Statistics
 - 50 Case Studies
 - Real-time Parallel (5/19/20–09/16/20)
 - Statistics
 - Representative examples

Common Strengths From All Evaluations

- Notable improvements in synoptic-scale performance in the medium-range
 - Progressive bias in GFSv15 appears mitigated with better consistency catching correct solutions earlier
 - Improved frontal positions and QPF
 - Improvement in low-level temperature forecasts (mitigation of the winter low-level cold bias)
 - Better ability to resolve shallow, cold air masses and some associated cold air damming events
 - Improvements to TC intensity and increased lead time for genesis
 - With stronger TCs, GFSv16 has overall better track, size, and intensity

NATION	NAL OCEANIC AND ATMOSPHERIC	ADMINISTRATION	SUNC AND ATMOSPHERIC PART
GFSv16	AC Scores (NH 500-h	Pa Z at Day 5)	NOLLY ES ARMENT OF COMMENCE
	GFSv15 (OPS)	GFSv16 (RETR	RO)
Fall 2018	0.916	0.916	
May 2019	0.880	0.897	
Summer 2019	0.880	0.888	
Fall 2019	0.897	0.901	
Winter/Spring 2020	0.909	0.913	
Real-Time Parallel	0.864	0.871	
Full Retro Period	<u>0.890</u>	<u>0.896</u>	41

Strengths: Captures Synoptic Pattern Better

TC Olga Case Fcst: 00z 10/20/20 (F144) Valid: 00Z 10/26/20

- GFSv16 forecasted the location of this and other cutoff lows earlier and more consistently than GFSv15, with some mitigation of the progressive issue noted in the GFSv15 evaluation
- Several evaluators noted that GFSv16 showed more run-to-run continuity than GFSv15

Strengths: Improved QPF ETS and Bias

West Coast Bomb Cyclone Case Fcst: 00z 11/22/19 (F132) Valid: 12Z 11/27/19

 GFSv16 consistently had (correctly) higher QPF amounts inland over N California and Oregon for this case

GFSv16 has lower track error than **GFSv15** for strong TCs (≥65 kt) during most of the medium range in both the North Atlantic and East Pacific

GFSv16 has less of a weak bias than **GFSv15** at longer lead times

Common Concerns Across the Evaluations

- Increased right-of-track bias at longer lead times for North Atlantic TCs
- Larger TC False Alarm Rate (FAR) in the western North Atlantic (70°W–50°W)
- Exacerbation of low instability (i.e., CAPE) bias that already existed in GFSv15, driven largely by dry soil moisture
- Lack of considerable improvement in forecasting radiation inversions

Larger TC False Alarm Rate

From Dan Halperin, ERAU

Large number of false alarms in GFSv16, relative to v15, between 50° and 70° W

ATMOS

NOAA

CAPE Magnitudes Are Reduced in GFSv16

- Operational GFSv15 CAPE analyses/forecasts are consistently lower than obs
- CAPE magnitudes in GFSv16 analyses/forecasts are consistently lower than those from GFSv15

ND ATMOS

NOAF

Tendency to Overmix the Boundary Layer

GFSv15 GFSv16 Obs

• **GFSv16** PBL was drier/warmer/deeper than **GFSv15** and **obs** in the unstable air

NOA

GFSv16 Development and T20 Timeline

- Development started after GFS.v15 implementation 6/12/2019
- Project Plan and Charter drafted and approved 9/5/2019
- Freeze GFSv16 configuration (including waves) for retrospectives **5/19/2020**
- Produce full retrospective and real-time experiments: 8/31/2020
- Deliver PNS to HQ:
- Complete field evaluation: 9/25/2020
- EMC CCB: 9/30/2020
- MEG final briefing: 10/1/2020
- Science briefing to NCEP OD: 10/05/2020
- Final IT and EE2 compliance 10/08/2020
- Deliver final package to NCO: 10/09/2020
- Transition to Operations: 02/03/2021 (Planned)

Outline

. ज्रौ

x

四日

 $\mathbf{\Lambda}$

12

ž

- History of NCEP Global Forecast System (GFS)
- GFS Performance
- Recent Changes and Upgrades
 - The Future

Scope of NWS Applications

NOAA NGGPS to UFS Strategic Implementation **Plan** (FY19-21):

- UFS is a community-based, coupled comprehensive end-to-end Earth system prediction system, including data assimilation.
- UFS applications span local to global domains and sub-hourly analyses to seasonal predictions.
- UFS will support the Weather Enterprise and be the source system for NOAA's operational NWP applications.
- UFS will serve both the R&D and Operational communities engaged in numerical prediction of the Earth System.

Shared Community Infrastructure Support for UFS Development

Infrastructure for data assimilation:

Joint Effort for Data assimilation Integration (**JEDI**)

Infrastructure for coupling models together:

- NOAA Environmental Modeling System
 (NEMS) coupler
- based on the Earth System Modeling Framework (ESMF)
- using National Unified Operational Prediction Capability (NUOPC) conventions

Infrastructure for interoperable physics:

 Common Community Physics Package (CCPP) framework

Infrastructure for Code Management:

• Git based repositories with Gitflow

1. Coupling components New ESMF/NUOPC mediator (CMEPS/NEMS)

2. Interoperable atmospheric physics CCPP & CPF frameworks

3. Community-friendly workflow CIME - CROW unification, CIME Case Control System

4. Hierarchical model development capabilities Extensions of CIME data models, unit, & system testing

5. Forecast Verification: Comparison to Observations Extension of MET+

6. Software Repository Management NCAR manage_externals tool

7. User / Developer Support DTC and CESM Capabilities

NOAA-NCAR MoA Work Areas

Operational Models Consolidation Timeline

NPS Modeling System	Current Version	Q1 FY 20	Q2 FY 20	Q3 FY 20	Q4 FY 20	Q1 FY 21	Q2 FY 21	Q3FY 21 - Q2F MORATORIU	FY22 Q3	22	Q4	Q1 FY 23	Q2 FY 23	Q3 FY 23	Q4 FY 23	Q1 FY 24	Q2 FY 24	Q3 FY 24	Q4 FY 24	UFS Application
Global Weather & Global Analysis	GFS/ GDASv15						GFSv16	5												
Global waves	GWMV3				_															
Ensembles	GEFSv11				GEESv12					- 1							050 471			UFS Medium Range &
Global Wave Ensembles	GWESv3				OLI OTIL					_							GEESV13			Sub-Seasonal
Global Aerosols	NGAC v2																OEI SVIS			
Short-Range Regional Ensembles	SREFv7												_							
Global Ocean & Sea-Ice	RTOFSv1.2					RTOF Sv2						RTOF Sv3								UFS Marine &
Global Ocean Analysis	GODASv2											GODASv3								Cryosphere
Seasonal Climate	CDAS/ CFSv2																	20	SFSv1	UFS Seasonal
Regional Hurricane 1	HWRFv12			HWRFv13																
Regional Hurricane 2	HMONv2			HMONv3					HAFS	5V1				HAF SV2				HAF SV3	_	UFS Hurricane
Regional High Resolution CAM 1	HiRes Window v7			-																
Regional High Resolution CAM 2	NAM nests/ Fire Wxv4																			
Regional High Resolution CAM 3	RAPv4/ HRRRv3			RAPv5/ HRRRv4									RRF Sv1				RRESv2			HES Short Dango
Regional HiRes CAM Ensemble	HREFv2				HREFv3												HILI SVE			Regional HiRes CAM & Regional
Regional Mesoscale Weather	NAMv4																			Air Quality
Regional Air Quality	CMAQv5								CMAG	Qv6										
Regional Surface Weather Analysis	RTMA/ URMA v2.7			RTMA/ URMA v2.8										3DRTMA /URMAv3						
Atmospheric Transport & Dispersion	HySPLITv7								Hy SP v8	LIT								HySPLIT v9		UFS Air Quality & Dispersion
Coastal & Regional Waves	NWPSv1.2			NWPS v1.3					NWF v1.	PS 4						RWPSv1				UFS Coastal
Great Lakes	GLWUv3.4								GLWL	Jv4								GLWUv5		UFS Lakes
Regional Hydrology	NWMv2					NWMv3								NWMv4						UFS Hydrology
Space Weather 1	WAM/IPEv1																			UFS Space
Space Weather 2	ENLILv1																		WAMV2	Weather
					←		Yea	rs 1-2		→	←	_		Yea	rs 3-	-5			\rightarrow	

UFS - the Next Chapter

Fully coupled atm-ocn-ice-wave model for MRW/S2S operation in 2024

NPS Modeling System	Current Version	Q1 FY 20	Q2 FY 20	Q3 FY 20	Q4 FY 20	Q1 FY 21	Q2 FY 21	Q2 FY 24	Q3 FY 24	Q4 FY 24	UFS Application
Global Weather & Global Analysis	GFS/ GDASv15			S			GFSv16			9	
Global Waves	GWMv3						Sector of				
Global Weather Ensembles	GEFSv11										UFS Medium Range &
Global Wave Ensembles	GWESv3				GEFSv12		GFSv17/			Sub-Seasonal	
Global Aerosols	NGAC v2							GEFSv13			
Short-Range Regional Ensembles	SREFv7										
Global Ocean & Sea-Ice	RTOFSv1.2					RTOF Sv2					UFS Marine &
Global Ocean Analysis	GODASv2										Cryosphere
Concernal Climate	CDAS/									SFSv1	UFS Seasonal

