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The FV3 Way
Ø Physical consistency
Ø Fully-FV numerics
Ø Component coupling
Ø Computational efficiency

FV3 for the 2020s
Rigorous Thermodynamics
Flexible dynamics
Adaptable physics interface
Variable-resolution techniques
Regional & periodic domains
Powerful initialization, DA, 

and nudging functions

Lin & Rood 1996 
Efficient 2D high-order 
conservative FV transport
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Figure 2. Schematics of the two-grid system: the 'CD-grid'. The time-centered advective winds (u * ,  v*) (the 
hollow arrows) are staggered as in the C-grid (as in Fig. 1) whereas the prognostic winds (u", u")  (the solid arrows) 

are staggered as in the D-grid. The cell-averaged relative vorticity is computed by the Stokes theorem. 

both cases, however, the diffusion is scale-dependent and nonlinear. As argued in Rood 
et al. (1992), there is some evidence that the nonlinear diffusion associated with monotonic 
advection schemes can be interpreted physically, at least for stratospheric tracer problems. 
Consequently, in the current implementation of the FFSL algorithm for solving the shallow- 
water equations no explicit diffusion will be needed. 

Another important difference between the FFSL algorithm and AL's method is in the 
way absolute vorticity is transported in a general divergent flow. In the current approach 
the discretized h and S-2 fields are taken as cell-averaged values, not point-wise values, and 
the same scheme is used for transporting h and a, regardless of the divergence of the flow. 
Functional relations between h and C2 can therefore be better preserved. In AL's approach, 
the equation for the fluid depth h (Eq. (10)) is centre-differenced in a straightforward 
manner while (1 1) and (12) are centre-differenced, in a more sophisticated way, to achieve 
the goal of vorticity transport by the Arakawa Jacobian for non-divergent flow. Therefore, 
the transport scheme for h and C2 in AL's approach will be, in general, different. As a 
consequence, an initial linear and/or nonlinear functional relationship between these two 
conservative variables will be lost during the course of time integration. Therefore, the 
AL approach does not maintain the analytic relationships which are derived from basic 
physical principles. 

To achieve the goal of transporting h and C2 by exactly the same manner, an obvious 
requirement is that h and C2 be defined at the same point (or, in the finite-volume sense, 
enclosed in the same cell). Since our prognostic variables are h and (u , v), rather than h and 
(a, q) ,  the D-grid arrangement (see Fig. 2) is the logical choice. As tangential winds are 
defined along the cell boundaries, the D-grid is ideally suited for computing the circulation 
(and hence, the cell-averaged relative vorticity, in the mean value theorem sense). It is 
also the best grid on which to compute geostrophically balanced flow. It is known that 
any single-grid system, other than the C-grid or the Z-grid (Randall 1994), generates two- 
grid-length gravity waves. This problem can be avoided by computing the time-centred 
advective winds (u*, v*) on the C-grid, as required by the multidimensional FFSL scheme 

Lin & Rood 1997
FV horizontal solver focusing on 
nonlinear vorticity dynamics 

Lin 1998–2004 FV core with “floating” Lagrangian 
vertical coordinate
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FIG. 2. The surface pressure perturbation and the temperature at the lowest model layer at day 10 for (top to
bottom) three different horizontal resolutions.

hydrostatic pressure as defined by Eq. (23) as the re-
mapping coordinate. We outline the remapping proce-
dure as follows:

Step 1: Define a suitable Eulerian reference coordi-
nate. The surface pressure typically plays an ‘‘an-

choring’’ role in defining the terrain-following Eu-
lerian vertical coordinate. The mass in each layer
(dp) is then computed according to the chosen Eu-
lerian coordinate.

Step 2: Construct vertical subgrid profiles of tracer
mixing ratios (q), zonal and meridional winds (u,

Putman & Lin 2007
Scalable cubed-sphere grid, 
doubly-periodic domain

Lin 2006, X Chen & Lin et al 2013 
Consistent Lagrangian nonhydrostatic 
dynamics

shows the Gaussian bubble results from the Eulerian
configuration, while the second row shows the same
results from the Lagrangian configuration. The output
times for the Gaussian bubble results are 0, 6, 12, and
18 min. The last row shows the uniform bubble test, with
the left two subplots from the Eulerian configuration
while the right two are from the Lagrangian configura-
tion. The grid size for all the results was Dx5 Dz5 5 m,
and the time step Dt 5 0.007 s scales with the grid
spacing. The color range is presented from 0 to 0.5 K for
comparison purposes with the results shown by Robert
(1993). The output times for the uniform bubble results
are at 7 and 10 min. The AUSM1-up method was also
tested with the Eulerian configuration and shows almost

identical results (figures omitted), but requires about
50% more computer time compared to the LMARS
method.
Since no limiter is applied in either interpolation

scheme for the variables or remapping, two grid-size
waves can be observed. These waves do not grow or
cause instability. Figure 2 provides a clearer picture of
theses small-scale oscillations. It shows the cross section
at the center of the uniform bubble test for the 7-min
plot (the dashed line in the bottom-left plot in Fig. 1).
The oscillations are especially present near the sharp
edges of the rising uniform bubble.
In Fig. 1, the 6- and 12-min results for the two different

coordinate configurations agree well with each other

FIG. 1. (top two rows) The potential temperature (PT) (K) for a Gaussian bubble pertur-
bation in a 1 km by 1.5 km domain using (top) the Eulerian coordinate and (middle)) the
Lagrangian coordinate: (left to right) t 5 0–18 min. (bottom) An initial uniform bubble per-
turbation in a 1 km by 1 km domain using (left two panels) the Eulerian coordinate and (right
two panels) the Lagrangian coordinate: (from left to right) t5 7–10 min. The grid spacing of all
results is 5 m. The cross section of the PT perturbation along the dashed line in the bottom-left
panel is presented in Fig. 2.

JULY 2013 CHEN ET AL . 2535

Harris & Lin 2013, 2016
Variable resolution with two-way 
nesting and Schmidt grid stretching

METHOD FOR COMPUTING PRESSURE GRADIENT FORCE 1751 

Figure 1. The finite-volume discretization in terrain-following coordinates. 

third law states that ‘to every action there is always opposed an equal reaction’. By the 
virtue of the finite-volume discretization (see Fig. l) ,  Newton’s third law is automatically 
satisfied. Referring to Fig. 1, the contour integral can be further decomposed as follows: 

and 

where points 1,2,3, and 4 are the four vertices of the finite volume. 

the following condition must hold 
The derivation so far is for the general non-hydrostatic flow. For a hydrostatic system, 

CF, = g A m  ( 5 )  

where g is the acceleration due to gravity. Equation ( 5 )  states that the vertical component 
of the resultant pressure force acting on the finite volume exactly balances the total weight 
of the finite volume. The horizontal acceleration, after eliminating Am from (2) using (3, 
can be written as 

du ‘CF, 
- = g- = g /  tan y 
dt XFz 

where y is the angle between the resultant pressure force and the horizontal surface. 
Equation (6) states that, for a hydrostatic system, the momentum acceleration due to the 
horizontal pressure gradient is simply the gravitational acceleration divided by the slope 
(tan y )  of the resultant pressure force acting on the finite volume. The slope should never 
vanish if the hydrostatic approximation is valid. The process of eliminating Am using 
(5) ,  the exact hydrostatic balance equation for the finite volume, ensures the hydrostatic 
consistency of the algorithm. 

Equation (6) is central to the finite-volume integration method, and it is exact for an 
arbitrary finite volume in a hydrostatic flow. To carry out the contour integration, assump- 
tions regarding the subgrid distribution of the thermodynamic variables must be made. 
The accuracy of the method thus depends on how well the assumed subgrid distribution 

Lin 1997 Efficient, 
mimetic FV PGF

FV3: The GFDL Finite-Volume 
Cubed-Sphere Dynamical Core



Usage Guide

FV3 is a dynamical core and not a model.
• Correct: “FV3 is the dynamical core of the GFDL Modeling Suite and 

other UFS Configurations”
• Correct: “FV3 uses a Lagrangian vertical coordinate and the Putman 

and Lin (2007) advection scheme”
• Incorrect: “The convection scheme and land surface in FV3 have been 

updated.”
• ????: “FV-3 [sic]…an inferior model [sic] which will lead to decades of 

isolation.”



Finite-volume methodology

• In FV3, all variables are 3D cell- or face-means…not gridpoint values
• We solve not the differential Euler equations but their cell-integrated forms 

using integral theorems
• Everything is a flux, including the momentum equation
• Mass conservation is ensured, to rounding error
• C-D grid: Vorticity computed exactly; accurate divergence computation
• Mimetic: Physical properties recovered by discretization, particularly Newton’s 3rd

law
• Fully compressible: calculation is horizontally local
• Flow-following Lagrangian vertical coordinate ensures preservation of vertical 

structures and up/down drafts while greatly reducing computational cost
• FV3 is a fully forward-in-time solver with backwards PGF and acoustic 

terms



fv_dynamics()
FV3 solver

dyn_core()
Lagrangian dynamics

fv_tracer2d()
Sub-cycled tracer transport

OpenMP on k

Lagrangian_to_Eulerian()
Vertical Remapping

GFDL In-line Microphysics
(i,k) OpenMP on j

c_sw(), etc.
C-grid solver

d_sw()
Forward Lagrangian dyn.

OpenMP on k

update_dz_d()
Forward δz evaluation

OpenMP on k 

one_grad_p()/nh_p_grad()
Backwards horizontal PGF

OpenMP on k

riem_solver()
Backwards vertical PGF, 
sound wave processes

(i,k) OpenMP on j

[physics]

fv_update_phys()
Consistent field update

dt_atmos
Physics timestep

k_split
“remapping” loop

n_split
“acoustic” loop

dt_atmos Physics Timestep
fv_dynamics calling frequency

dt_atmos ÷ k_split Tracer calling timestep
Vertical remapping
In-line microphysics

dt_atmos ÷
(k_split x n_split)

Gravity and sound wave processes



Time integration: Namelist Options

• dt_atmos (in atmos_model_nml): Timestep for the full FV3 solver 
and physics.
• Should be motivated by physics design: for GFS Physics recommend 150–225

• k_split: Number of vertical remappings per long timestep. 
• More k_splits tend to improve stability but slow down model

• n_split: Number of acoustic timesteps per remapping timestep. 
• Recommend values between 5–10.
• The acoustic timestep is equal to dt_atmos / (k_split x n_split)

• hydrostatic: whether to use the (much faster) hydrostatic solver. 



The Cubed-Sphere Grid
The 3 in FV3

• Gnomonic cubed-sphere grid: 
coordinates are great circles but non-
orthogonal
• Solution winds are covariant, advection is by 

contravariant winds
• Winds u and v are defined in the local 

coordinate: rotation needed to get zonal 
and meridional components
• Diagnostic winds always rotated into earth 

coordinates
• Special handling at edges and corners

�

D-grid winds

C-grid winds

Fluxes

Fig. 2. Geometry of the wind staggerings and fluxes for a cell on a non-orthogonal grid.
The angle � is that between the covariant and contravariant components; in orthogonal
coordinates � = ⇥/2.
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Cubed-Sphere Grid: Namelist Options

• npx, npy: Number of grid corners in each direction. 
• A global cubed sphere must use the same in both directions.
• Nested, regional, or doubly-periodic domains do not.

• ntiles: Number of tiles on a domain. 
• For the cubed-sphere this must be 6

• layout: 2-element array for the number of MPI domain 
decompositions in each direction on each tile. These values should be 
divisors of (npx - 1) and (npy - 1)
• Total number of cores is layout(1) x layout(2) x 6.



Lagrangian Dynamics in FV3

• The Euler equations can be written in 
Lagrangian or Eulerian forms…
or Eulerian in the horizontal, and 
Lagrangian in the vertical
• This constrains the flow along quasi-

horizontal surfaces
• Lagrangian surfaces deform during the 

integration. Vertical motion and 
advection is “free”
• Requires layer thickness δp (and δz for 

nonhydro) to be a prognostic variable

5.2. Dependent variables and governing equations

Variable Description
�p⇤ Vertical difference in hydrostatic pressure, proportional to mass
u D-grid face-mean horizontal x-direction wind
v D-grid face-mean horizontal y-direction wind

⇥v Cell-mean virtual potential temperature
w Cell-mean vertical velocity
�z Geometric layer height

Table 5.1: Solution variables in FV3

The continuous Lagrangian equations of motion, in a layer of finite depth
�z and mass �p⇤, are then given as

DL�p⇤ + r · (V�p⇤) = 0 (5.3)
DL�p⇤⇥v + r · (V�p⇤⇥v) = 0

DL�p⇤w + r · (V�p⇤w) = �g�z
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The operator DL is the “vertically-Lagrangian” derivative, formally equal
to @�

@t + @
@z (w�) for an arbitrary scalar �. The flow is entirely along the

Lagrangian surfaces, including the vertical motion (which deforms the
surfaces as appropriate, an effect included in the semi-implicit solver).
The vertical component of absolute vorticity is given as ⌦ and the ki-
netic energy is given as  = 1

2
(euu + evv), and p is the full nonhydrostatic

pressure. The nonhydrostatic pressure gradient term in the w equation
is computed by the semi-implicit solver described Chapter 7. There is no
projection of the vertical pressure gradient force into the horizontal; sim-
ilarly, there is no projection of the horizontal winds u, v into the vertical,
despite the slopes of the Lagrangian surfaces.

The vertically-Lagrangian discretization requires expressions for ei-
ther the mass or for z, as only one can be used as an independent variable;

33

DL� =
@�

@t
+

@

@z
(w�)



Prognostic Variables
δp Total air mass (including vapor and condensates)

Equal to hydrostatic pressure depth of layer
θv Virtual potential temperature
u, v Horizontal D-grid winds in local coordinate

(defined on cell faces)
w Vertical winds (nonhydrostatic)
δz Geometric layer depth (nonhydrostatic)
qi Passive tracers

Cell-mean pressure, density, divergence, and specific heat are all diagnostic quantities
All variables are layer-means in the vertical: No vertical staggering



FV Advection 
Lin and Rood Advection

• “Reverse-engineered” forward-in-time 2D 
scheme constructed from 1D Piecewise-Parabolic 
Method (PPM) operators
• Mass-conservative
• Correlation-preserving for monotonic limiter
• Cancels splitting error
• Separate Courant number limit in x and y
• Upwinding preserves hyperbolicity and causality 

• Tracers are advected with an adaptive timestep 
using the accumulated mass fluxes

• All quasi-horizontal processes, except PGF, can 
be represented as advection

• Highly adaptable: Positive-definite tracer 
advection greatly improves hurricane structure

FV3-based NASA GEOS

Axisymmetric 5-km W in Hurricane Irma 
Harris et al. (2020) JAMES ; K Gao et al., in prep.

Monotonic Advection Positive-Definite Advection



Advection Schemes: Namelist Options

hord_mt KE gradient term

hord_vt Vorticity and w fluxes

hord_tm Potential temperature

hord_dp δp, δz

hord_tr Tracers

• Strongly recommend hord_mt, 
hord_vt, and hord_tm use the 
same scheme

• hord_tr must use a monotone 
or positive-definite scheme

hord

5 Unlimited “fifth-order” scheme with weak 2∆x filter; fastest 
and least diffusive (“inviscid”)

6 Intermediate-strength 2∆x filter. Gives best ACC and storm 
structure but weaker TCs (“minimally-diffusive”)

8 Lin 2004 monotone PPM constraint (“monotonic”)

9 Hunyh constraint: more expensive but less diffusive than #8

-5 #5 with a positive-definite constraint



Vorticity Dynamics
• Fluids are strongly vortical at all scales. 

Vortical motions are especially critical 
in geophysical flows
• FV3’s discretization emphasizes 

vorticity dynamics:
• Vector-invariant equations
• C-D Grid Discretization
• Consistent advection of derived vorticial 

quantities

• FV3’s preservation of vorticity is 
superior to other solvers without these 
properties 
• S-J Lin et al, 2017, JAMES

Voyager 1, NASA, 1979 Reprocessed by Bjorn Jonsson

Leonardo c. 1508



Momentum equation
• FV3 solves the nonlinear flux-form vector 

invariant equations. One of the terms is the 
absolute vorticity flux.
• D-grid allows exact computation of absolute 

vorticity using Stokes’ theorem—no averaging! 
• The cell-integrated vorticity is advected as a 

scalar, using the same fluxes as other variables:
• Same flux as h à improves geostrophic balance à

SW potential vorticity advected as a scalar
• Same flux as w à improves nonlinear balance à

updraft helicity advected as a scalar

2. The Nested Grid Model126

a. Finite-Volume Dynamical Core and cubed-sphere grid127

The FV core is a hydrostatic, 3D dynamical core using the vertically-Lagrangian dis-128

cretization of L04 and the horizontal discretization of Lin and Rood (1996, 1997, hence-129

forth LR96 and LR97, respectively), using the cubed-sphere geometry of PL07 and Putman130

(2007). This solver discretizes a hydrostatic atmosphere into a number of vertical layers, each131

of which is then integrated by treating the pressure thickness and potential temperature as132

scalars. Each layer is advanced independently, except that the pressure gradient force is133

computed using the geopotential and the pressure at the interface of each layer (Lin 1997).134

The interface geopotential is the cumulative sum of the thickness of each underlying layer,135

counted from the surface elevation upwards, and the interface pressure is the cumulative136

sum of the pressure thickness of each overlying layer, counted from the constant-pressure137

top of the model domain downward. Vertical transport occurs implicitly from horizontal138

transport along Lagrangian surfaces. The layers are allowed to deform freely during the139

horizontal integration. To prevent the layers from becoming infinitesimally thin, and to ver-140

tically re-distribute mass, momentum, and energy, the layers are periodically remapped to141

a pre-defined Eulerian coordinate system.142

The governing equations in each horizontal layer are the vector-invariant equations:143

⇧�p

⇧t
+⌅ · (V�p) = 0144

⇧�p�

⇧t
+⌅ · (V�p�) = 0145

146

⇧V

⇧t
= �⇥k̂ ⇤V �⌅

�
⇥ + ⇤⌅2D

⇥
� 1

⌅
⌅p

⇤⇤⇤
z

147

where the prognostic variables are the hydrostatic pressure thickness �p of a layer bounded148

by two adjacent Lagrangian surfaces, which is proportional to the mass of the layer; the149

potential temperature �; and the vector wind V. Here, k̂ is the vertical unit vector. The150

6



The C-D grid solver

• FV3 solves for the (purely horizontal) 
D-grid staggered winds. But solver requires 
face-normal and time-mean fluxes.
• For time step-mean fluxes, the 

C-grid winds are interpolated and then advanced a half-timestep.
• A sort of simplified Riemann solver
• The C-grid solver is the same as the D-grid, but uses lower-order fluxes for efficiency

• Upstream flux also allows consistent computation of the KE gradient term, 
preventing the Hollingsworth-Kallberg instability
• Two-grid discretization and time-centered upwind fluxes avoid 

computational modes. 
• See the excellent discussion in Lin & Rood (1997, QJ).

�

D-grid winds

C-grid winds

Fluxes

Fig. 2. Geometry of the wind staggerings and fluxes for a cell on a non-orthogonal grid.
The angle � is that between the covariant and contravariant components; in orthogonal
coordinates � = ⇥/2.
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Backward horizontal
pressure gradient force

• Computed from Newton’s second and third 
laws, and Green’s Theorem
• Errors lower, with much less noise, 

compared to traditional evaluations
• Purely horizontal
no along-coordinate projection

• PGF equal and opposite—3rd law! 
Momentum is conserved

• Curl-free in the absence of density gradients
• Nonhydrostatic and hydrostatic components 

can be computed separately
• log(phyd) PGF more accurate



Vertical Levels in FV3

• Reference interface pressure: pk =  ak + bk * ps
• Top level is k=1

• Vertical level setups are pre-defined in 
fv_eta.F90 with differing npz, ptop, and level 
positions.
• These are carefully built to avoid instability and 

place levels where they are needed. Use extreme 
caution when creating new sets of vertical levels.

• npz: number of vertical levels
• npz_type: specific choice of level, depends 

on npz
GFS-like vertical level setups

Courtesy Linjiong Zhou



The Lagrangian Vertical Coordinate

• Vertical advection is implicit through the deformation of quasi-
horizontal layers. Computing δp and δz is sufficient for vertical 
advection.
• No Courant number restriction or time-splitting

• Periodically, a high-order conservative remapping back to the 
reference coordinate is done to avoid δp → 0 
• Longer remapping interval yields less artificial diffusion

• This is the only way cross-layer diffusion is introduced!!

• Remapping is from deformed layers back to the “Eulerian” reference coordinate



Vertical Remapping Schemes: 
Namelist Options

kord_mt u and v

kord_wz w

kord_tm Temperature (< 0, 
recommended) or 
potential temperature 
(> 0); and density

kord_tr Tracers

• Strongly recommend all options 
use the same remapping scheme

• Remapping temperature is 
geopotential conserving

kord

4 Monotone PPM

6 Vanilla PPM

7 PPM with Hyunh’s monotonicity constraint (more 
expensive but less diffusive)

9 Monotonic Cubic Spline

10 Selectively (local extrema retained) monotonic Cubic 
Spline with 2∆z oscillations removed

11 Non-monotonic cubic spline with 2∆z oscillations 
removed



Semi-implicit solver

• Vertical pressure gradient and non-advective changes to layer depth 
δz are solved by semi-implicit solver
• Vertically-propagating sound waves weakly damped

• This is all that is needed to make the classic FV hydrostatic algorithm 
nonhydrostatic
• Fully compressible and nonhydrostatic! Full Euler equations solved
• w, δz advected as other variables—consistent!
• Nonhydrostatic horizontal PGF evaluated same way as hydrostatic



Numerical Diffusion and Physical Dissipation

• All useful numerical models have grid-scale motions removed by 
numerical diffusion—whether they know it or not.
• Energy cascades to grid scales and must be removed since dissipative 

scales (~1 cm) are not explicitly resolved
• Grid-scale noise also arises from initial and boundary adjustment, 

physics interactions, and other imperfections, and must be removed
• C-grids produce particularly prodigious noise at discontinuities

X Chen et al. 2018, JAMES

• Diffusion is also a powerful tool to improve simulations
• S2S and climate models: Zhao, Held, and Lin 2012, JAS
• Convective scale and LES: Tompkins and Semie 2017; Pressel et al. 2017; see also Implicit LES



Damping in FV3

• FV3’s physical consistency produces very few computational modes and 
thus can be minimally-diffusive. 
But well-configured diffusion can give improved results
• FV3 applies no direct implicit diffusion to divergent modes which cascade 

to grid scale unimpeded. 
Scale-selective divergence damping represents their physical dissipation. 
• Rotational modes can be damped implicitly by monotonic advection or 

explicitly by vorticity damping. 
• For consistency also damps δp, δz, θv, w.
No explicit damping for tracers.

• Note that all implicit (except vertical remapping) and explicit diffusion is 
along Lagrangian surfaces. 



Numerical Damping: Namelists
• nord: Controls order of damping. 

• Higher values mean more scale-selective damping
• d4_bg: Nondimensional divergence damping coefficient. 

• Values between 0.1 and 0.15 recommended. 
• do_vort_damp: Logical flag for enabling vorticity damping.
• vtdm4: Nondimensional coefficient for vorticity damping. Should be much 

smaller than d4_bg. 
• Values between 0.02 and 0.06 are recommended.

• d_con: Fraction of damped KE restored as heat, conserving energy. 
• Set to 0.0 to disable this conversion; 1.0 restores all energy.

• delt_max: Limit on heating from damped KE (K/s). 
• Values between 0.002 and 0.008 are recommended.

nord
Damping order

Divg. Vort.

1 4th 4th

2 6th 6th

3 8th 6th



• d2_bg_k1: Strength of second-order damping in top layer (k=1). 
• Values between 0.15 and 0.2 recommended.

• d2_bg_k2: …in second layer (k=2). 
• Recommend values between 0.02 and 0.1. 

• tau: Timescale (days, smaller is stronger) of Rayleigh damping. 
• Recommend 5 for 13-km, 3 or 1.5 for 3-km.

• rf_cutoff: Level [Pa] above which Rayleigh damping is applied to u, v, w
• n_sponge (misleading artifact name): Number of layers from the top on 

which 2∆z energy-momentum-mass conserving filter is applied.
• Recommend applying to layers above 100 mb.

• fv_sg_adj: Timescale (s, smaller is stronger) of 2∆z filter. 
• Use values larger than dt_atmos to avoid interfering with the PBL scheme.

Upper Boundary: Namelist Options



A few debugging and diagnostic options

• print_freq: frequency (in hours if > 0; in timesteps if < 0) of 
diagnostic outputs (max/min/ave, global integrals, etc.)
• range_warn: whether to check the ranges of values at different 

places in the core, and print out location of bad values
• fv_debug: print great volumes of solver information
• no_dycore: turn OFF the dynamics, enabling the column physics 

mode.
• Good for debugging or testing “single column”.



Initialization: Namelist Options

• external_ic: enable module for reading ICs from external file
• nggps_ic: Read regridded GFS ICs. Does no horizontal interpolation.
• ecmwf_ic: Read lat-lon ECMWF ICs, including horizontal interpolation
• read_increment: whether to read a DA increment from an external 

file and apply it in an FV-consistent way
• res_latlon_dynamics: input file for ecmwf_ic or increments
• na_init: # of forwards-backwards initialization iterations.
• Spins up nonhydrostatic state when init from hydrostatic ICs
• Set to 0 for GFSv15 or later ICs



Restarts: Namelist Options

• external_eta: read vertical level coefficients (ak, bk) from restarts 
instead of hard-coded values
• agrid_vel_rst: write out interpolated A-grid winds to restart files; 

very useful for DA cycling
• npz_rst: number of vertical levels in a restart file, if different from 

npz; FV3 will remap to the correct level spacing
• make_nh: Whether to re-generate nonhydrostatic fields from existing 

hydrostatic restarts. Not used for nggps_ic.



When restarting

• Restarting FMS-based models is easy. Simply move the restart files 
from the RESTART/ directory to the INPUT/ directory
• Make sure to set several options to avoid solutions being reset:

• na_init = 0
• external_ic = .false.
• make_nh = .false.
• mountain = .true.
• n_zs_filter = 0
• full_zs_filter = .false.
• warm_start = .true.



For further reference

www.gfdl.noaa.gov/fv3/fv3-documentation-and-references/
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GFDL Tech Memos on the NOAA Institutional Repository
(more coming soon)


