
Common Community Physics Package 
(CCPP) Overview

Grant Firl1,2, Dom Heinzeller1,3,4, Ligia Bernardet1,3,
Laurie Carson1,2, Man Zhang1,3,4, Julie Schramm1,2

1DTC
2NCAR/RAL/JNT
3NOAA GSL
4CIRES

UFS Training ⏤ November 5, 2020



Outline
� What is the CCPP?
� How does the CCPP fit within a modeling system?
� How are CCPP physics suites defined?
� What makes a piece of code CCPP-compliant?
� How does a host model use the CCPP?
� What is the history of the CCPP and where is it being used?
� What does the near-term future hold for the CCPP?

2



3

� Consolidated: Single library of operational and developmental 
parameterizations and suites for all applications

� Supported:Well-supported community code
� Open: Have accessible development practices (GitHub)
� Clear interfaces:Well documented and defined interfaces to facilitate 

using/enhancing existing parameterizations and adding new parameterizations 
� Interoperable: usable with other dycores/hosts to increase scientific 

exchange
� Single-Column Model
� Etc.

Common Community Physics Package (CCPP)

Goals for the UFS Physics



What is the CCPP? (1 of 2)
• Library of physical parameterizations
• Authoritative fork contains:

• Operational
• Candidates for upcoming 

implementations
• Third-party forks can be used to 

contain compliant schemes 
used/developed in other institutions

4



What is the CCPP? (2 of 2)
Generalized software framework for 
connecting a set of physical 
parameterizations with a host 
application
• Model-agnostic
• Multi-institutional

5



The CCPP Within the Model System

6



CCPP Physics Suite Definition
� Individual CCPP-compliant physics parameterizations are assembled and 

controlled via an XML file called a 
“Suite Definition File” (SDF)

� The SDF XML schema has the following hierarchy:
� Suite

� Group

� Subcycle

o Scheme

Top-level element; defines the suite name and XML schema version

Schemes under one group always get called together in-sequence; 
non-physics code can be executed between physics groups

Schemes within a subcycle element are executed N times 
according to the element’s “loop” variable

Each scheme element contains the name of the scheme to run.

7



Primary vs “Interstitial” Schemes
� Primary Scheme: a parameterization, such as PBL, microphysics, 

convection, and radiation, that fits the traditionally-accepted 
definition. 

� Interstitial Scheme: a modularized piece of code to perform 
data preparation, diagnostics, or other “glue” functions that allows 
primary schemes to work together as a suite.
�AKA: the code in a traditional physics “driver” between physics 

scheme calls

8



What’s “special” about a CCPP scheme?
� The interface!

1. Contained within FORTRAN module
2. Special init, run, and finalize subroutines
3. Metadata to describe all arguments in special 

subroutines
4. Special error-handling
5. Scientific/technical documentation using Doxygen
6. Modern coding standards

9



Basic code structure
module myscheme

implicit none

contains

subroutine myscheme_init ()
end subroutine myscheme_init

!> \section arg_table_myscheme_run Argument Table
!! \htmlinclude myscheme_run.html
!!
subroutine myscheme_run(ni, psfc, errmsg, errflg)
integer,          intent(in)    :: ni
real,             intent(inout) :: psfc(:)
character(len=*), intent(out)   :: errmsg
integer,          intent(out)   :: errflg
...

end subroutine myscheme_run

subroutine myscheme_finalize()
end subroutine myscheme_finalize

end module myscheme

myscheme.F90

“Hook” for 
CCPP metadata

10



CCPP scheme metadata
[ccpp-table-properties]

name = myscheme
type = scheme
dependencies = other_file.F90

[ccpp-arg-table]
name = myscheme_run
type = scheme

[stress]
standard_name = surface_wind_stress
long_name = surface wind stress
units = m2 s-2
dimensions = (horizontal_loop_extent)
type = real
kind = kind_phys
intent = in
optional = F

...

myscheme.meta

Start of new metadata “table”

type = [scheme, module, 
DDT, host] 

name of attached subroutine/module

11



CCPP scheme metadata

the key by which this data is 
known in the CCPP

more descriptive name if 
standard name is not sufficient

note the format; possibility of 
automatic unit conversion 
among schemes and between 
host

name of variable in 
subroutine

12

[ccpp-table-properties]
name = myscheme
type = scheme
dependencies = other_file.F90

[ccpp-arg-table]
name = myscheme_run
type = scheme

[stress]
standard_name = surface_wind_stress
long_name = surface wind stress
units = m2 s-2
dimensions = (horizontal_loop_extent)
type = real
kind = kind_phys
intent = in
optional = F

...

myscheme.meta



CCPP scheme metadata

standard names of array dimensions;
() for scalar;
can specify start:end for dimension 
(default is 1)

FORTRAN intrinsic type or 
DDT name

precision or character length

FORTRAN argument intent

FORTRAN optional argument

13

[ccpp-table-properties]
name = myscheme
type = scheme
dependencies = other_file.F90

[ccpp-arg-table]
name = myscheme_run
type = scheme

[stress]
standard_name = surface_wind_stress
long_name = surface wind stress
units = m2 s-2
dimensions = (horizontal_loop_extent)
type = real
kind = kind_phys
intent = in
optional = F

...

myscheme.meta



CCPP scheme metadata
Applies to entire scheme; 
dependencies attribute allows 
compiling only those files that 
are necessary for a given list of 
suites

New in CCPP v4.1

14

[ccpp-table-properties]
name = myscheme
type = scheme
dependencies = other_file.F90

[ccpp-arg-table]
name = myscheme_run
type = scheme

[stress]
standard_name = surface_wind_stress
long_name = surface wind stress
units = m2 s-2
dimensions = (horizontal_loop_extent)
type = real
kind = kind_phys
intent = in
optional = F

...

myscheme.meta



CCPP error handling
� Schemes should make use of CCPP 

error-handling variables and not 
stop/abort/print errors within

� ccpp_error_flag and 
ccpp_error_messagemust 
be arguments (intent OUT)

� In the event of an error, assign a 
meaningful error message to 
errmsg and set errflg to a value 
other than 0:

[errmsg]
standard_name = ccpp_error_message
long_name = error message for error 

…
units = none
dimensions = ()
type = character
kind = len=*
intent = out
optional = F

[errflg]
standard_name = ccpp_error_flag
long_name = error flag for error …
units = flag
dimensions = ()
type = integer
intent = out
optional = F

15



CCPP inline scientific/technical documentation
� Uses Doxygen inline markup
� Additive to existing source code documentation
� Metadata table is parsed into HTML to be included on generated 

documentation website
� Includes information about scheme provenance, scientific papers, 

figures, code layout, and scheme algorithm

16



CCPP coding miscellany
� All external information required by the scheme must be passed in via the argument list.

� No ‘use EXTERNAL_MODULE’ for passing in data
� Physical constants should go through the argument list

� Code must comply to modern Fortran standards (Fortran 90/95/2003/2008).
� Use labeled end statements for modules, subroutines and functions, example:

� module scheme_template→ end module scheme_template.
� Use implicit none.
� All intent(out) variables must be set inside the subroutine, including the mandatory 

variables errflg and errmsg. [Watch out for partially set intent(out) variables.]
� No permanent state of decomposition-dependent host model data inside the module, i.e. 

no variables that contain domain-dependent data using the save attribute.
� No goto statements.
� No common blocks.

Additional coding rules are listed under the Coding Standards section of the NOAA NGGPS Overarching System team document on Code, Data, and 
Documentation Management for NEMS Modeling Applications and Suites (available at 
https://docs.google.com/document/u/1/d/1bjnyJpJ7T3XeW3zCnhRLTL5a3m4_3XIAUeThUPWD9Tg/edit#heading=h.97v79689onyd). 17

https://docs.google.com/document/u/1/d/1bjnyJpJ7T3XeW3zCnhRLTL5a3m4_3XIAUeThUPWD9Tg/edit


How can a host use the CCPP?
� See Chapter 6 in the CCPP Documentation:

� https://ccpp-techdoc.readthedocs.io/en/v4.1.0/HostSideCoding.html

� Host metadata (which variables it can provide to physics)
� Calls within code
� Parallelism
� CCPP at build-time
�Multi-suite compilation (static)
�What is produced?

18

https://ccpp-techdoc.readthedocs.io/en/v4.1.0/HostSideCoding.html


CCPP Host metadata
� Most of the host metadata is in 
FV3/gfsphysics/GFS_layer/GFS_typedefs.meta

� Other files also have metadata to help define DDTs or provide other variables 
to the physics (e.g. machine.F)

� Differences compared to scheme metadata:
� Uses type = DDT or module
� Optional and intent metadata attributes are not used
� Variables can have active attribute:

� active = logical expression
� Since host models may conditionally allocate memory, the logical expression uses CCPP 

standard names and represents when the given variable is allocated for use in physics:
� e.g., active = (flag_diagnostics_3D)

New in CCPP v5.0

19



CCPP API calls
� Suite initialization and finalization

� ccpp_init
� parses the SDF corresponding to the given suite name and initializes the state of the suite and its 

schemes
� ccpp_finalize

� deallocates data used by the CCPP suite

� Physics initialization, running, and finalization
� ccpp_physics_init

� calls the init stage of all schemes in the suite (in SDF order)
� ccpp_physics_run

� can call the run phase of the entire suite at once or just one group
� ccpp_physics_finalize

� deallocates memory and/or any other run-once finalization work

20

Autogenerated in ccpp_static_api.F90



Parallelism using the CCPP
Overarching paradigms
� Physics are column-based, no communication during time integration in physics
� Physics initialization/finalization are independent of threading strategy of the model

MPI
� MPI communication only allowed in the physics initialization/finalization

� Use MPI communicator provided by host model, not MPI_COMM_WORLD

OpenMP
� Time integration (but not init./final.) can be called by multiple threads
� Threading inside physics is allowed, use # OpenMP threads provided by host model

21



CCPP @ build time
� A Python script is the “workhorse”of the CCPP framework and is called at build-

time
� The script is given a set of SDFs representing the suites to be compiled and those 

available to use at run-time
� Reads all scheme metadata for each given suite
� Reads all host metadata
� Matches variables provided with variables requested
� Autogenerates suite and group caps
� Autogenerates ccpp_static_api.F90
� Autogenerates makefile information for compiling physics and caps within host’s build 

system

22



CCPP History
Ideas
2016

Requirements
2017

Design
2017-ongoing

Develop 
2017-ongoing

Public releases   
v1-v2-v3: 

2018-2019

NCAR/NRL 
collaboration

2018-ongoing

Adopted by EMC
2019

Training for NOAA
2019

UFS MRW v1 Public Releases
v4-v4.0.1:

3/2020, 10/2020

UFS Training
11/2020

UFS SRW v1 Public Release
v5:

12/2020

Operations 
2022-2023

23



CCPP ReleasesCCPP Releases

11

V Date Physics Host

1.0 2018 Apr GFS v14 operational SCM

2.0 2018 Aug GFS v14 operational updated
GFDL microphysics

SCM
UFS WM for developers

3.0 2019 Jul GFS v15 operational
Developmental schemes/suites

SCM
UFS WM for developers

4.0 2020 Mar GFS v15 operational
Developmental schemes/suites

SCM
UFS WM / UFS MRW App v1.0

4.1 2020 Oct GFS v15 operational
Developmental schemes/suites

SCM
UFS WM / UFS MRW App v1.1

5.0 2020 Nov GFS v15 operational
Developmental schemes/suites

SCM
UFS WM / UFS SRW App v1.0

New in CCPP v 4.1: Compatibility with Python 3

2020 Dec

24



Current CCPP supported suitesSupported CCPP Suites

8

Type Operational Developmental

Suite Name GFS_v15p2 GFS_v16beta csawmg
 *

GSD_v1
 * RRFS_v1beta

Host MRW v1, SCM MRW v1, SCM SCM SCM SRW v1, SCM

Microphysics GFDL GFDL M-G3 Thompson Thompson

PBL K-EDMF TKE EDMF K-EDMF saMYNN saMYNN

Surface Layer GFS GFS GFS GFS MYNN

Deep 
Convection

SAS saSAS Chikira-
Sugiyama

Grell-Freitas Grell-Freitas

Shallow 
Convection

SAS saSAS saSAS MYNN and GF MYNN and GF

Radiation RRTMG RRTMG RRTMG RRTMG RRTMG

Gravity Wave 
Drag

uGWP uGWP uGWP uGWP RAP/HRRR 
drag suite

Land Surface Noah Noah Noah RUC Noah-MP

Ozone NRL 2015 NRL 2015 NRL 2015 NRL 2015 NRL 2015

H2O NRL NRL NRL NRL NRL

Under development 
for CCPP v5 
(Nov 2020)

25

sa

sa

denotes supported CCPP suites in the UFS v1.1 application



Models using CCPP

CCPP
framework

CCPP
physics

NOAA
physics

user
physics

NCAR
physics

common
physics

26

SCM
DTC

UFS
NOAA

CESM
NCAR

NEPTUNE
NRL

MPAS
NCAR



Future Direction
� Continue to expand contributions and partner with other organizations
� CCPP-physics

� Continue adding and improving existing schemes to improve UFS applications 
(e.g. chemistry schemes from NOAA GSL)

� CCPP-framework
� Transition to new cap generation software (capgen.py; in coordination with 

NCAR)
� Usability improvements (e.g. in-suite variable tracking)
� NUOPC interface for CCPP suites (unfunded)

27



Other CCPP support/training resources
� Forums

� https://dtcenter.org/forum/ccpp-user-support
� https://forums.ufscommunity.org/

�YouTube
� Developmental Testbed Center Channel
� CCPP playlist
� https://www.youtube.com/watch?v=ut1mfK5K84w&list=PLFqIc

1m9FLQxCpogp6x_KQMYvY0BBqY2c

�CCPP Technical Documentation
� https://ccpp-techdoc.readthedocs.io/en/v4.1.0/

�CCPP Physics Scientific Docs
� https://dtcenter.ucar.edu/GMTB/v4.1.0/sci_doc/index.html

28

https://dtcenter.org/forum/ccpp-user-support
https://forums.ufscommunity.org/
https://www.youtube.com/watch?v=ut1mfK5K84w&list=PLFqIc1m9FLQxCpogp6x_KQMYvY0BBqY2c
https://ccpp-techdoc.readthedocs.io/en/v4.1.0/
https://dtcenter.ucar.edu/GMTB/v4.1.0/sci_doc/index.html

