Workflow Requirements
An R20 perspective

What 1s a workflow from an NWP perspective?

e A number of interdependent jobs that are run at regular intervals in a predefined order
based on the application

e Together these jobs typically make up a single cycle (here cycle refers to a single
completion of a workflow process from beginning to end) and are run in order in an
automated process, given certain conditions are satisfied

e A workflow system is designed so that you can run parts of a cycle, a single cycle, or
multiple cycles

e In an operational framework a workflow that executes a cycle is typically run ad
infinitum

Global Workflow (an example)

Global Model Parallel Sequencing

prep Hybrid EnKF prep

fest

efcs01
efcs02
ofosN
postN
ot |]

Jabeuew uoneinbyuod

Parts of a workflow system

Workflow manager/engine -- A system that 1s used to control all the steps in a

particular cycle of the workflow and interface with the HPC scheduler, Examples are
o ecFlow (from ECMWF)
o Cylc (from NIWA/UKMO)
o Rocoto (from GSL/NOAA)

Application scripts/codes -- A collection of scripts called by the workflow engine to
complete the underlying tasks associated with an end to end system. These scripts /
codes are independent of the driving workflow manager

Configuration System -- A set of tools that based on choice of application and
workflow engine

o Defines the tasks and order in the workflow, resource requirements, workflow engine setup (e.g. xml,
ecf)

o Sets up the necessary directories, gathers initial data, configures a baseline experiment

Desired Features in a workflow system

Requirement for R20 workflow: Scientists should be able to update their components without spending
considerable time or effort on the workflow

Well documented

Modular (reusable common functions to ensure optimal use of resources)

Reliable with thorough error checking and logging

If possible, can restart from failure points and give bit-identical results

Should be easy to set up for different kinds of configurations

Easy to add new features and capabilities (critical for multiple groups working together)
Easily configurable and portable to multiple platforms and architectures

Can run both DA and forecast cycles

Can run in deterministic or ensemble mode

Can work with coupled systems

Can be transitioned to operations

Workflows, applications and model suites

e A model suite is defined as a collection of codes that are used to propagate an initial
carth state forward in time

e UFS model suites are umbrella repositories that connect one or more component
repository to make a model suite

e An application is defined as the end to end system that includes

o The model suite
o The workflow
o All the configuration files that make up the application

e Two applications can share the same model suite (and maybe the same workflow)

UFS weather model

UFS weather model umbrella repository has hierarchical code structure

- All the repositories are currently located in GitHub with public access to the broad community

- Each component has its own authoritative repository

ufs-weather-model https://github.com/ufs-community/ufs-weather-model

|

|------- FMS https://github.com/NOAA-GFDL/EMS

|-=----- FV3ATM https://github.com/NOAA-EMC/fv3atm

| |-==----- atmos_cubed_sphere https://github.com/NOAA-GFDL/GFDL_atmos_cubed_sphere
| |-------- cepp

| |------- framework https://github.com/NCAR/ccpp-framework

| |------- physics https://github.com/NCAR/ccpp-physics

|------- NEMS https://github.com/NOAA-EMC/NEMS

| |--=----- prod_util https://github.com/NOAA-EMC/NCEPLIBS-pyprodutil

|------- stochastic_physics https://qgithub.com/noaa-psd/stochastic_physics

https://github.com/ufs-community/ufs-weather-model
https://github.com/ufs-community/ufs-weather-model
https://github.com/NOAA-GFDL/FMS
https://github.com/NOAA-GFDL/FMS
https://github.com/NOAA-EMC/fv3atm
https://github.com/NOAA-EMC/fv3atm
https://github.com/NOAA-GFDL/GFDL_atmos_cubed_sphere
https://github.com/NOAA-GFDL/GFDL_atmos_cubed_sphere
https://github.com/NCAR/ccpp-framework
https://github.com/NCAR/ccpp-framework
https://github.com/NCAR/ccpp-physics
https://github.com/NCAR/ccpp-physics
https://github.com/NOAA-EMC/NEMS
https://github.com/NOAA-EMC/NEMS
https://github.com/NOAA-EMC/NCEPLIBS-pyprodutil
https://github.com/NOAA-EMC/NCEPLIBS-pyprodutil
https://github.com/noaa-psd/stochastic_physics
https://github.com/noaa-psd/stochastic_physics

Where does the build system sit?

e An application should be able to build the system and run it
e A model suite needs a build system / regression test capability to ensure that
individual components when updated work with the full model suite

e EMC philosophy has been

o Keep the build system with the model suite
o Use the same build system at the application level
o This has allowed us to have a separation of concerns

e At model suite level we test

o Code compilation
o Bit and restart reproducibility
o Limited configuration level testing

e At the application level we test
o End to end solution
o Multiple configurations needed by the application

Does each application need its own workflow?

e Pro: Each application can develop on its own schedule without worrying about other
use cases
e Con: This will lead to an explosion of workflows, with large parts repeating the same
thing
e At EMC we are currently coalescing around 3 workflows
o Global -- for medium range and sub seasonal (need to see if we can make this work for seasonal)

o Regional -- for short range CAM applications
o Hurricane -- for hurricane applications

e NOTE : Common tools for these workflows are being unified
e NOTE : Still are a collection of applications that do not fall into these categories (e.g.
marine, space weather etc.)

Questions to ponder

e (Can we build common tools that can then be configured into a handful of unique
workflows?

e Our primary focus has been on cycled workflows. Can we build something that can
meet both the R20 criteria -- an end to end system that goes from DA to product
generation with cycling, and a research criteria -- testing solutions with incremental
systems

e I[s it possible to build a workflow system that does everything for the user (passes
Graduate Student Test) but at the same time make it easy for multiple developers to
work together and make changes?

e Workflows at EMC have historically been shell based. Is it time to look at alternatives
like Python?

e How complex should the full system be?

