
Workflow Requirements
An R2O perspective

What is a workflow from an NWP perspective?

● A number of interdependent jobs that are run at regular intervals in a predefined order
based on the application

● Together these jobs typically make up a single cycle (here cycle refers to a single
completion of a workflow process from beginning to end) and are run in order in an
automated process, given certain conditions are satisfied

● A workflow system is designed so that you can run parts of a cycle, a single cycle, or
multiple cycles

● In an operational framework a workflow that executes a cycle is typically run ad
infinitum

Global Workflow (an example)

Parts of a workflow system

● Workflow manager/engine -- A system that is used to control all the steps in a
particular cycle of the workflow and interface with the HPC scheduler, Examples are

○ ecFlow (from ECMWF)
○ Cylc (from NIWA/UKMO)
○ Rocoto (from GSL/NOAA)

● Application scripts/codes -- A collection of scripts called by the workflow engine to
complete the underlying tasks associated with an end to end system. These scripts /
codes are independent of the driving workflow manager

● Configuration System -- A set of tools that based on choice of application and
workflow engine

○ Defines the tasks and order in the workflow, resource requirements, workflow engine setup (e.g. xml,
ecf)

○ Sets up the necessary directories, gathers initial data, configures a baseline experiment

Desired Features in a workflow system
● Requirement for R2O workflow: Scientists should be able to update their components without spending

considerable time or effort on the workflow
● Well documented
● Modular (reusable common functions to ensure optimal use of resources)
● Reliable with thorough error checking and logging
● If possible, can restart from failure points and give bit-identical results
● Should be easy to set up for different kinds of configurations
● Easy to add new features and capabilities (critical for multiple groups working together)
● Easily configurable and portable to multiple platforms and architectures
● Can run both DA and forecast cycles
● Can run in deterministic or ensemble mode
● Can work with coupled systems
● Can be transitioned to operations

Workflows, applications and model suites

● A model suite is defined as a collection of codes that are used to propagate an initial
earth state forward in time

● UFS model suites are umbrella repositories that connect one or more component
repository to make a model suite

● An application is defined as the end to end system that includes
○ The model suite
○ The workflow
○ All the configuration files that make up the application

● Two applications can share the same model suite (and maybe the same workflow)

UFS weather model
UFS weather model umbrella repository has hierarchical code structure

- All the repositories are currently located in GitHub with public access to the broad community

- Each component has its own authoritative repository

ufs-weather-model https://github.com/ufs-community/ufs-weather-model
|
|------- FMS https://github.com/NOAA-GFDL/FMS
|------- FV3ATM https://github.com/NOAA-EMC/fv3atm
| |-------- atmos_cubed_sphere https://github.com/NOAA-GFDL/GFDL_atmos_cubed_sphere
| |-------- ccpp
| |------- framework https://github.com/NCAR/ccpp-framework
| |------- physics https://github.com/NCAR/ccpp-physics
|------- NEMS https://github.com/NOAA-EMC/NEMS
| |-------- prod_util https://github.com/NOAA-EMC/NCEPLIBS-pyprodutil
|------- stochastic_physics https://github.com/noaa-psd/stochastic_physics

https://github.com/ufs-community/ufs-weather-model
https://github.com/ufs-community/ufs-weather-model
https://github.com/NOAA-GFDL/FMS
https://github.com/NOAA-GFDL/FMS
https://github.com/NOAA-EMC/fv3atm
https://github.com/NOAA-EMC/fv3atm
https://github.com/NOAA-GFDL/GFDL_atmos_cubed_sphere
https://github.com/NOAA-GFDL/GFDL_atmos_cubed_sphere
https://github.com/NCAR/ccpp-framework
https://github.com/NCAR/ccpp-framework
https://github.com/NCAR/ccpp-physics
https://github.com/NCAR/ccpp-physics
https://github.com/NOAA-EMC/NEMS
https://github.com/NOAA-EMC/NEMS
https://github.com/NOAA-EMC/NCEPLIBS-pyprodutil
https://github.com/NOAA-EMC/NCEPLIBS-pyprodutil
https://github.com/noaa-psd/stochastic_physics
https://github.com/noaa-psd/stochastic_physics

Where does the build system sit?
● An application should be able to build the system and run it
● A model suite needs a build system / regression test capability to ensure that

individual components when updated work with the full model suite
● EMC philosophy has been

○ Keep the build system with the model suite
○ Use the same build system at the application level
○ This has allowed us to have a separation of concerns

● At model suite level we test
○ Code compilation
○ Bit and restart reproducibility
○ Limited configuration level testing

● At the application level we test
○ End to end solution
○ Multiple configurations needed by the application

Does each application need its own workflow?

● Pro: Each application can develop on its own schedule without worrying about other
use cases

● Con: This will lead to an explosion of workflows, with large parts repeating the same
thing

● At EMC we are currently coalescing around 3 workflows
○ Global -- for medium range and sub seasonal (need to see if we can make this work for seasonal)
○ Regional -- for short range CAM applications
○ Hurricane -- for hurricane applications

● NOTE : Common tools for these workflows are being unified
● NOTE : Still are a collection of applications that do not fall into these categories (e.g.

marine, space weather etc.)

Questions to ponder

● Can we build common tools that can then be configured into a handful of unique
workflows?

● Our primary focus has been on cycled workflows. Can we build something that can
meet both the R2O criteria -- an end to end system that goes from DA to product
generation with cycling, and a research criteria -- testing solutions with incremental
systems

● Is it possible to build a workflow system that does everything for the user (passes
Graduate Student Test) but at the same time make it easy for multiple developers to
work together and make changes?

● Workflows at EMC have historically been shell based. Is it time to look at alternatives
like Python?

● How complex should the full system be?

