
Rocoto History,
Philosophy, and Future

Plans

UFS Workflows Workshop
April 28-30 2020

Christopher Harrop, CIRES/NOAA GSL

Contents

● History

● Philosophy

● Current capabilities

● Future plans

History

How it all began … reliability of RUC forecast model runs was ~70-75%
Forecast Lead Time Cumulative

Success RateCycle 00 01 02 03 04 05 06 07 08 09 10 11 12
2002-01-01 00Z 69%
2002-01-01 01Z 85%
2002-01-01 02Z 56%
2002-01-01 03Z 67%
2002-01-01 04Z 72%
2002-01-01 05Z 77%
2002-01-01 06Z 77%
2002-01-01 07Z 75%
2002-01-01 08Z 67%
2002-01-01 09Z 70%
2002-01-01 10Z 73%

History

Why such poor reliability?

● Run scripts assumed every command worked perfectly every time
○ No error checking
○ Cascading failures
○ No option to resubmit failed runs

● HPC system (Jet) had the reliability of … an HPC system
○ Batch system failures
○ File system failures
○ Network failures

● Model code contained bugs
○ Uninitialized variables
○ Index-out-of-bounds errors

History

Why such poor reliability?

● Run scripts assumed every command worked perfectly all the time
○ No error checking
○ Cascading failures
○ No option to resubmit failed runs

● HPC system (Jet) had the reliability of an HPC system
○ Batch system failures
○ File system failures
○ Network failures

● Model code contained bugs
○ Uninitialized variables
○ Index-out-of-bounds errors

History
20

02

wait_job utility

History

20
04

20
02

wait_job utility

Workflow Manager is born

History

20
08

20
04

20
02

wait_job utility

Workflow Manager is born

Workflow Manager core established

History

20
08

20
12

20
04

20
02

wait_job utility

Workflow Manager is born Workflow Manager → Rocoto 1.0

Workflow Manager core established

History

20
08

20
12

20
13

20
04

20
02

wait_job utility

Workflow Manager is born Workflow Manager → Rocoto 1.0

Rocoto 1.1

Workflow Manager core established

History

20
08

20
12

20
13

20
15

20
04

20
02

wait_job utility

Workflow Manager is born Workflow Manager → Rocoto 1.0

Rocoto 1.1

Rocoto 1.2

Workflow Manager core established

History

20
19

20
08

20
12

20
13

20
15

20
04

20
02

wait_job utility

Workflow Manager is born Workflow Manager → Rocoto 1.0

Rocoto 1.1

Rocoto 1.2
Rocoto 1.3

Workflow Manager core established

History

Workflow Automation Achievements

● RUC20 / RUC13 reliability mid 70s% → ~99% (early 2000’s)

● Portable to any HPC system (mid 2000’s)

● Support for SGE, LSF, Cobalt, MOAB, Torque, PBS, PBSPro, Slurm

● Adoption by FSL / GSD/ GSL modelers for WRF, HRRR, RAP, … (mid 2000’s)

● Adoption by the DTC (Development Testbed Center) at NOAA/NCAR (mid 2000’s)

● Adoption by EMC, starting with HWRF (early 2010’s)

Philosophy

Workflow Automation Challenges

● Unreliable hardware and software
● Scale

○ 100s - 1000s of tasks per instance
○ 100s - 1000s of instances per experiment

● Complexity
○ Dependencies on time, data, execution order

● Realtime delivery constraints
● Retrospective resource management

Data

Task

Task

Philosophy

Design Principles and Goals

Philosophy

Design Principles and Goals

● Installable & usable entirely in user space by end users

Philosophy

Design Principles and Goals

● Installable & usable entirely in user space by end users
● Domain-specific, but general purpose

Philosophy

Design Principles and Goals

● Installable & usable entirely in user space by end users
● Domain-specific, but general purpose
● No specific knowledge of models, codes, or HPC systems

Philosophy

Design Principles and Goals

● Installable & usable entirely in user space by end users
● Domain-specific, but general purpose
● No specific knowledge of models, codes, or HPC systems
● Every feature driven by demonstrable need and wide applicability

Philosophy

Design Principles and Goals

● Installable & usable entirely in user space by end users
● Domain-specific, but general purpose
● No specific knowledge of models, codes, or HPC systems
● Every feature driven by demonstrable need and wide applicability
● Portable across HPC systems

Philosophy

Design Principles and Goals

● Installable & usable entirely in user space by end users
● Domain-specific, but general purpose
● No specific knowledge of models, codes, or HPC systems
● Every feature driven by demonstrable need and wide applicability
● Portable across HPC systems
● Portable workflow definitions

Philosophy

Design Principles and Goals

● Installable & usable entirely in user space by end users
● Domain-specific, but general purpose
● No specific knowledge of models, codes, or HPC systems
● Every feature driven by demonstrable need and wide applicability
● Portable across HPC systems
● Portable workflow definitions
● Hands-off resiliency to system problems

Philosophy

Common Workflow Strategies

● Monolithic “run” script
● Workflow state embedded in script
● Relies on long up times
● Requires manual restart
● All or nothing reruns
● Fragile

Run task 1
jobid = `qsub first_task.sh`
wait_job $jobid

Run task 2
jobid = `qsub second_task.sh`
wait_job $jobid
.
.
.
Run task N
jobid = `qsub nth_task.sh`
wait_job $jobid

Philosophy

Common Workflow Strategies

● Monolithic “run” script
● Workflow state embedded in script
● Relies on long up times
● Requires manual restart
● All or nothing reruns
● Fragile

Run task 1
jobid = `qsub first_task.sh`
wait_job $jobid

Run task 2
jobid = `qsub second_task.sh`
wait_job $jobid
.
.
.
Run task N
jobid = `qsub nth_task.sh`
wait_job $jobid

Philosophy

Common Workflow Strategies

● Job chains
● Workflow state distributed in scripts
● Relies on a perfect batch system
● Failures are difficult to diagnose
● Requires manual restart
● Can restart in middle, but hard
● Fragile

task1.sh

…

qsub task2.sh

task2.sh

…

qsub task3.sh

task3.sh

…

qsub task4.sh

taskN.sh

…

Philosophy

Common Workflow Strategies

● Job chains
● Workflow state distributed in scripts
● Relies on a perfect batch system
● Failures are difficult to diagnose
● Requires manual restart
● Can restart in middle, but hard
● Fragile

task1.sh

…

qsub task2.sh

task2.sh

…

qsub task3.sh

task3.sh

…

qsub task4.sh

taskN.sh

…

Philosophy

Common Workflow Strategies

● Batch job dependency shotgun
● Workflow state tracked in bqs
● Relies on a perfect batch system
● Can result in complex train wrecks
● Requires manual restart
● Fragile

$ qsub task1.sh
Submitted job 123456

$ qsub task2.sh -W depends=123456
Submitted job 123457

$ qsub task3.sh -W depends=123457
Submitted job 123458
.
.
.
$ qsub taskN.sh -W depends=123456, \
123457,123458,123459,1234560,1234561, \
1234562,1234563,1234564,1234565,...

Philosophy

Common Workflow Strategies

● Batch job dependency shotgun
● Workflow state tracked in bqs
● Relies on a perfect batch system
● Can result in complex train wrecks
● Requires manual restart
● Fragile

$ qsub task1.sh
Submitted job 123456

$ qsub task2.sh -w depends=123456
Submitted job 123457

$ qsub task3.sh -w depends=123457
Submitted job 123458
.
.
.
$ qsub taskN.sh -w depends=123456, \
123457,123458,123459,1234560, 1234561 \
1234562,1234563,1234564,1234565,1234566

Philosophy

Rocoto Workflow Strategy

● Iterative submission & monitoring
● Workflow state in database
● Recovery from batch system outages
● Task-level failure diagnosis and restart
● Automated hands-off restart
● Resilient to system disruptions

workflow state

workflow state

$ rocotorun -d workflow.db -w workflow.xml

Rocoto Workflow Strategy

Philosophy

Shared file system

workflow.db

workflow.xml Batch
System
Server

Cron / Login Node

$ rocotorun -w workflow.xml -d workflow.db

Read last
known

workflow
state

Update current
workflow state

Submit and/or
resubmit tasks

Save new
workflow state

Philosophy

Prerequisites for success

● Tasks correctly report their own success or failure

● Tasks do not start or monitor other tasks

● Tasks are idempotent (facilitates at least once execution semantics)

● Prefer small, composable, tasks

● Task granularity that balances flexibility and restart efficiency

Current Capabilities

Design Overview

● DAG (directed acyclic graph) workflow model
● XML workflow descriptions
● Support for all major batch systems
● Workflow instances specified as “cycles” (analysis times)
● Realtime & retrospective modes for “cycle” activation
● Task, Data, and Time dependencies (arbitrary boolean expressions)
● Generic specification of task properties

Current Capabilities

Commands Overview

● Advance workflow state: rocotorun

● Retrieve workflow status: rocotostat, rocotocheck

● Force workflow tasks to run: rocotoboot

● Undo completed workflow tasks: rocotorewind (from Sam Trahan)

● Force successful task completion: rocotocomplete (from Sam Trahan)

● Purge old database entries: rocotovacuum

Current Capabilities

Features Overview

● Throttling to manage resources
○ Cycles, cores, tasks (global and per task)

● Cycle life span for real-time mode
● Task retries to increase reliability
● Task deadlines to manage real-time constraints
● Hang dependencies for detection of hung tasks
● Task environment specification
● Customizable membership of tasks to workflow “cycles”

Future Plans

Known Gaps

● XML workflow specification is tedious and error prone
● Lack of support for non-HPC machines without a batch system
● DAG model not expressive enough

○ Evaluation of runtime conditionals is difficult, loops are impossible
○ Artifacts discovered at runtime can’t be used in dependencies

● Static workflow definitions
● Long queue wait times due to submission when dependencies are satisfied
● Awkward override control of sub-workflows
● Errors are difficult for end-users to interpret

Future Plans

Planned Enhancements / Refactor

● Improved software development process

● Add Domain-Specific Language (DSL) to generate XML

● Replace DAG model with High-Level Petri Net (HLPN) model
○ Turing complete, allows “if” and “while” constructs

● Add support for laptops and workstations

● Add support for cloud-based workflows

Future Plans

Planned Enhancements / Refactor (cont)

● Explore resource pools to minimize workflow makespans

● Explore cross-site workflow management

● Arbitrary control (play, pause, resume, cancel) of sub-workflows

● Improved mechanism for users to run tasks directly outside workflow system

● Provide hooks for GUI development

Future Plans

Development and Support

● No funding currently dedicated to Rocoto development and support

● Management fully committed to ongoing development and support

● Current development and support team is: me

○ Support has been very easy to manage so far

● Previous contributions and EMC support from Sam Trahan

● Collaborators are welcome

Questions?

