Rocoto History,
Philosophy, and Future
Plans

UFS Workflows Workshop
April 28-30 2020

Christopher Harrop, CIRES/NOAA GSL

Contents

History
Philosophy
Current capabilities

Future plans

History

How it all began ... reliability of RUC forecast model runs was ~70-75%

Forecast Lead Time

I
|___Cycle J00] 01]02]03]04]05]06]07]08]09]10] 11] 12 | Success Rate
2002010100zf { { f ¥ } { I ¥ | I I I 1 69%

Cumulative

N

002-01-01 012}
002-01-01 02

002-01-0
002-01-0
002-01-0
002-01-0
002-01-0
002-01-01 082
002-01-01 0
002-01-01 10

{1 1 1P r. r.r.rrrr 1 8% |
56%
I D I O I I D O O 67%
I D I O I I O O O 72%
77%
77%
75%
67%
] 70%
] 73%

ii
N

i

4

ii
NININININ

10
10
10
10
10

I\Di

3
5
6
7
S

ii
NIN

History

Why such poor reliability?

e Run scripts assumed every command worked perfectly every time
o No error checking
o Cascading failures
o No option to resubmit failed runs

e HPC system (Jet) had the reliability of ... an HPC system

o Batch system failures
o File system failures
o Network failures

e Model code contained bugs
o Uninitialized variables
o Index-out-of-bounds errors

History

Why such poor reliability?

e Run scripts assumed every command worked perfectly all the time
o No error checking
o Cascading failures
o No option to resubmit failed runs

e HPC system (Jet) had the reliability of an HPC system

o Batch system failures
o File system failures
o Network failures

e Model code contained bugs
o Uninitialized variables
o Index-out-of-bounds errors

History

wait_job utility

I

History

Workflow Manager is born

wait_job utility

————————————eee

o w
S S
WV V

History

Workflow Manager core established

Workflow Manager is born

wait_job utility

A

History

Workflow Manager core established

A

Workflow Manager is born Workflow Manager — Rocoto 1.0

wait_job utility

History

Workflow Manager core established

A

Workflow Manager is born Workflow Manager — Rocoto 1.0

wait_job utility

Rocoto 1.1

History

Workflow Manager core established

A

Workflow Manager is born Workflow Manager — Rocoto 1.0

wait_job utility Rocoto 1.1

Rocoto 1.2

History

Workflow Manager core established

A

Workflow Manager is born Workflow Manager — Rocoto 1.0

wait_job utility

Rocoto 1.2

History

Workflow Automation Achievements

e RUC20/RUC13 reliability mid 70s% — ~99% (early 2000’s)

e Portable to any HPC system (mid 2000's)

e Support for SGE, LSF, Cobalt, MOAB, Torque, PBS, PBSPro, Slurm

e Adoption by FSL / GSD/ GSL modelers for WRF, HRRR, RAP, ... (mid 2000's)

e Adoption by the DTC (Development Testbed Center) at NOAA/NCAR (mid 2000’s)
e Adoption by EMC, starting with HWRF (early 2010’s)

Philosophy

Workflow Automation Challenges #

e Unreliable hardware and software

e Scale l_)j |

o 100s - 1000s of tasks per instance
o 100s - 1000s of instances per experiment

e Complexity
o Dependencies on time, data, execution order |
e Realtime delivery constraints

e Retrospective resource management

Philosophy

Design Principles and Goals

Philosophy

Design Principles and Goals

e Installable & usable entirely in user space by end users

Philosophy

Design Principles and Goals

e Installable & usable entirely in user space by end users
e Domain-specific, but general purpose

Philosophy

Design Principles and Goals

e Installable & usable entirely in user space by end users
e Domain-specific, but general purpose
e No specific knowledge of models, codes, or HPC systems

Philosophy

Design Principles and Goals

Installable & usable entirely in user space by end users
Domain-specific, but general purpose
No specific knowledge of models, codes, or HPC systems

Every feature driven by demonstrable need and wide applicability

Philosophy

Design Principles and Goals

Installable & usable entirely in user space by end users
Domain-specific, but general purpose

No specific knowledge of models, codes, or HPC systems

Every feature driven by demonstrable need and wide applicability
Portable across HPC systems

Philosophy

Design Principles and Goals

Installable & usable entirely in user space by end users
Domain-specific, but general purpose

No specific knowledge of models, codes, or HPC systems

Every feature driven by demonstrable need and wide applicability
Portable across HPC systems

Portable workflow definitions

Philosophy

Design Principles and Goals

Installable & usable entirely in user space by end users
Domain-specific, but general purpose

No specific knowledge of models, codes, or HPC systems

Every feature driven by demonstrable need and wide applicability
Portable across HPC systems

Portable workflow definitions

Hands-off resiliency to system problems

Common Workflow Strategies

Monolithic “run” script

Relies on long up times
Requires manual restart
All or nothing reruns
Fragile

Workflow state embedded in script

Philosophy

Run task 1
jobid =
wait job $jobid

Run task 2
jobid =
wait job $jobid

Run task N

Jjobid =
wait job $jobid

"gsub first task.sh®

"gsub second task.sh’

"gsub nth task.sh’

Philosophy

Common Workflow Strategies

Monolithic “run” script 4
Workflow state embedded in script :
Relies on long up times

Requires manual restart

All or nothing reruns |

Fragile

Common Workflow Strategies

Philosophy

taskl.sh

Job chains

Workflow state distributed in scripts
Relies on a perfect batch system
Failures are difficult to diagnose
Requires manual restart

Can restart in middle, but hard
Fragile

gsub task2.sh/4

taskN.sh

task2.sh

gsub task3.sh/4

task3.sh

gsub task4.sh/4

Philosophy

Common Workflow Strategies

Job chains
Workflow state distributed in scripts
Relies on a perfect batch system

« ‘
q A v
Failures are difficult to diagnose ¢
Requires manual restart | @
Can restart in middle, but hard < - »
r

Fragile

Philosophy

Common Workflow Strategies

Batch job dependency shotgun
Workflow state tracked in bgs
Relies on a perfect batch system
Can result in complex train wrecks
Requires manual restart

Fragile

$ gsub task1.sh
Submitted job 123456

$ gsub task2.sh -W depends=123456
Submitted job 123457

$ gsub task3.sh -W depends=123457
Submitted job 123458

$ gsub taskN.sh -W depends=123456, \
123457,123458,123459,1234560,1234561, \
1234562,1234563,1234564,1234565,...

Philosophy

Common Workflow Strategies

Batch job dependency shotgun
Workflow state tracked in bgs
Relies on a perfect batch system
Can result in complex train wrecks
Requires manual restart

Fragile

$ gsub t=
Submr’

$ v depends=1234.
(£ 7

-

task3.sh 'R=123457
ted job 123-.

$q “h -w depends="
1234, - o1\
123456, 1234566

Philosophy

Rocoto Workflow Strategy

Iterative submission & monitoring
Workflow state in database

Recovery from batch system outages
Task-level failure diagnosis and restart
Automated hands-off restart

Resilient to system disruptions

> = workflow state

v

$ rocotorun -d workflow.db -w workflow.xml

y

workflow state

Philosophy

Rocoto Workflow Strategy

Cron / Login Node

Shared file system

$ rocotorun -w workflow.xml -d workflow.db

Read last
known 3 Update current
- workflow workflow state
state *
Save new € Submit and/or
workflow state resubmit tasks

Philosophy

Prerequisites for success

e Tasks correctly report their own success or failure

e Tasks do not start or monitor other tasks

e Tasks are idempotent (facilitates at least once execution semantics)
e Prefer small, composable, tasks

e Task granularity that balances flexibility and restart efficiency

Current Capabilities

Design Overview

DAG (directed acyclic graph) workflow model

XML workflow descriptions

Support for all major batch systems

Workflow instances specified as “cycles” (analysis times)

Realtime & retrospective modes for “cycle” activation

Task, Data, and Time dependencies (arbitrary boolean expressions)
Generic specification of task properties

Current Capabilities

Commands Overview

e Advance workflow state: rocotorun

e Retrieve workflow status: rocotostat, rocotocheck

e Force workflow tasks to run: rocotoboot

e Undo completed workflow tasks: rocotorewind (from Sam Trahan)

e Force successful task completion: rocotocomplete (from Sam Trahan)

e Purge old database entries: rocotovacuum

Current Capabilities

Features Overview

e Throttling to manage resources
o Cycles, cores, tasks (global and per task)
Cycle life span for real-time mode

Task retries to increase reliability

Task deadlines to manage real-time constraints
Hang dependencies for detection of hung tasks
Task environment specification

Customizable membership of tasks to workflow “cycles”

Future Plans

Known Gaps

e XML workflow specification is tedious and error prone
e Lack of support for non-HPC machines without a batch system

e DAG model not expressive enough

o Evaluation of runtime conditionals is difficult, loops are impossible
o Artifacts discovered at runtime can’t be used in dependencies

e Static workflow definitions

e Long queue wait times due to submission when dependencies are satisfied
e Awkward override control of sub-workflows

e Errors are difficult for end-users to interpret

Future Plans

Planned Enhancements / Refactor

e Improved software development process
e Add Domain-Specific Language (DSL) to generate XML
e Replace DAG model with High-Level Petri Net (HLPN) model

o Turing complete, allows “if” and “while” constructs

e Add support for laptops and workstations

e Add support for cloud-based workflows

Future Plans

Planned Enhancements / Refactor (cont)

e Explore resource pools to minimize workflow makespans

e Explore cross-site workflow management

e Arbitrary control (play, pause, resume, cancel) of sub-workflows

e Improved mechanism for users to run tasks directly outside workflow system

e Provide hooks for GUI development

Future Plans

Development and Support

e No funding currently dedicated to Rocoto development and support
e Management fully committed to ongoing development and support
e Current development and support team is: me

o Support has been very easy to manage so far
e Previous contributions and EMC support from Sam Trahan

e Collaborators are welcome

Questions?

