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3D RTMA Project and MG (Multigrid) Beta Filter 

Real Time Mesoscale Analysis (RTMA) provides current conditions for transportation 
customers, verification of forecasts and is used as the reference for bias correction in the 
National Blend of Models.
The major development underway is a fully three-dimensional (3D) RTMA system 
which will provide analyses of a range of parameters at

• high horizontal resolutions (~2.5 km)
• frequent time intervals (~15 min)   

The key prerequisite for the success of this enterprise is a vastly improved efficiency in 
producing those analyses. 
The new approach to modeling of background error covariance (B), an estimation of the 
weight by which the background field participates in formulation of  the cost function 
that is minimized within a data assimilation procedure, is one of the key components 
for the success of that effort.  
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Modeling of the Background Error Covariance

For calculation of B in data assimilation system at EMC so-far we were using recursive 
filters (e.g., Wu et al., 2002; de Pondeca et al., 2011). 
Though recursive filters are a very good and efficient approximation of Gaussian (e.g., 
Purser et al. 2002, 2003)  they have a series of shortcomings.  The most serious one is 
that they are essentially sequential operators, very difficult to successfully parallelize.  
Our solution to this problem within the UFS effort is the development of a new filter  
based on Beta distributions, incorporated within a parallel multigrid structure, which:

Describes covariances across various scales

Includes cross-correlations

Provides negative sidelobes, which realistic covariances do posses

Has a finite support and is more parallelizable, resulting in much better scaling
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Description of Beta-filter 

Our alternative to recursive filters is based on the Beta distribution 
filters.  In 2D case, the radial Beta filter is defined as

𝛽𝛽 𝑥𝑥,𝑦𝑦 = 1 − 𝜌𝜌 𝑝𝑝 , 𝜌𝜌 ≤ 1
where 𝑝𝑝 is a small positive integer and, in the isotropic case,

𝜌𝜌 = 1
𝑠𝑠2
𝒓𝒓 � 𝒓𝒓𝑇𝑇

Here, 𝑠𝑠 is a radial scale and 𝒓𝒓 a position vector 𝑥𝑥,𝑦𝑦 . Such a 
function also has a quasi-Gaussian shape, but with a finite support.  
In an anisotropic generalization, 𝑠𝑠2 is replaced by a 2×2 symmetric, 
positive definite “aspect tensor”, used as a matrix inverse A−1, so 
that 

𝜌𝜌 = 𝒓𝒓A−1𝒓𝒓𝑇𝑇

A larger 𝑝𝑝 implies a more Gaussian shape, but also a narrower one.  
The 3D radial Beta filter has a similar formulation.
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Basic MG Beta filter

Beta filter is further used at a hierarchy of different scales, combined into a parallel multigrid 
scheme in order to achieve a larger coverage and potentially a more versatile synthesis of 
anisotropic covariances, allowing a greater control over the shape.  
There are four stages of this process:
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1. Adjoint interpolate from the analysis grid to 
generation one (g1) of the filter grid

2. Adjoint filter (conservative) stage 
3. Forward filter(smoothing) stage 

Interpolate from g1 to the analysis grid 

2.1  Adjoint interpolate (“up-send”)  from g1 to 
g2. Then repeat procedure all the way to g4
Apply weights at all generations in parallel

Apply adjoint of Beta filter at all generations in  
parallel
Interpolate (“down-send”) result of adjoint filter 
from g4 to g3  and add it to adjoint at g3. Then   
repeat procedure all the way  to g1
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Generally, g1 has a lower resolution 
than analysis grid
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Conservative Stage

Smoothing Stage
Identical to the Conservative stage except  that 
we apply Beta filter instead of it adjoint



In the stage of up-sending we half the resolution in transition from one generation to another. 
Consistently, we half the number of processors in each direction.  Thus, ideally, the number of 
processors arranged in each direction of generation g1 must be divisible by 2𝑛𝑛−1 where 𝑛𝑛 is the 
number of generations.  The opposite happens in the stage of down-sending, when we double the 
resolution and double the number of processors in each direction. 

6

g1

g2

g3
g4

Each PE (small 
square) has the same 

resolution

Beta filter is applied 
simultaneously at all 

generations



In practice, the analysis grid has its own resolution and decomposition.  Thus, at each 
inner iteration, we need to remap and re-decompose between the analysis grid and g1. 
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Filter grid generations need to be collocated with the analysis processors:
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Filter grid generations

Still yellow PEs do not 
participate in filtering!



Generalization of MG
The described paradigm has two problems:

In Rancic et al. (2020) we considered a series of possible solutions, none of which able to 
fully overcome both issues.  Here we present a new solution which eliminates the 
bottleneck and allow us to generalize MG Beta filter without degrading its performance
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1. Re-decomposition between analysis and filter grid is a bottleneck 
which slows down filtering process

2.  The whole procedure is very hard to generalize for various    
arrangements of processors 

1. Keep the g1 at the same decomposition as the analysis grid

2. In construction of higher generations we allow inclusion of “empty  
space” (keeping the boundaries of the physical domain unchanged). 



Example of new decomposition
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Pros:

There is no more need for re-
decomposition between  
analysis and filter grid

Filter grid is run on more PEs

The code is automatically 
adjustable to any decomposition 

Cons:

Higher generations are executed 
in parallel among themselves but 
sequentially with g1
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In this original form the higher 
generations do not take the full 
advantage of the available processing 
capabilities. 

In principle, by using lower vertical 
resolution for 3D arrays of higher 
generations, and by judiciously vertically 
splitting and sharing their load among 
processors, it is possible to solve this issue

Collocation of PEs in the new 
paradigm

g1 g2 g3 g4

g1:   50 levels
g2:   45 levels
g3:   30 levels
g4:   30 levels

Split in 3 layers
Split in 2 layers
Split in 2 layers

~ 30% faster  
than g1

g2 - lower

g2 - mid

g2 - upper

g3 - lower

g3 - upper

g4 - lower

g4 - upper



Examples of performance
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Future developments

• A new version of MG Beta filter is developed which requires only one onset of up- and 
down-sending.  Through application of a differential Helmholtz operator it will allow 
inclusion of negative sidelobes of the covariances. In addition, we are working on a 
version that will allow inclusion of cross-covariances (for this first time to our knowledge)

• We are working on a series of novelties, such as, a new method for normalization of 
covariances; extension for global cubed sphere domain; application of AI for definition of 
scale weights, etc.  Among them, perhaps the most important place takes the replacement 
of the radial filters with a sequence of line filters (Purser 2020).

• A Triad (3-components, in 2D ) and Hexad (6-components in 3D) versions have been 
developed that will replace radial filter. A consistent extension of this approach lead us to 
a fully 4D extension (so-call Decad algorithm) giving us a tool that would enable future 
extension of the RTMA procedure into a fully 4D scheme

• We begin integrating the first version of MG Beta filter code in GSI and JEDI
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