

Generalization of Multigrid Beta Filter Scheme for Modeling Background Error Covariance

Miodrag Rancic R, James Purser Manuel dePondeca Teppei Kinami

IMSG at EMC/NCEP/NOAA, College Park, MD, USA

3D RTMA Project and MG (Multigrid) Beta Filter

Real Time Mesoscale Analysis (RTMA) provides current conditions for transportation customers, verification of forecasts and is used as the reference for bias correction in the National Blend of Models.

The major development underway is a fully three-dimensional (3D) RTMA system which will provide analyses of a range of parameters at

- high horizontal resolutions (~2.5 km)
- frequent time intervals (~15 min)

The key prerequisite for the success of this enterprise is a vastly improved efficiency in producing those analyses.

The new approach to modeling of background error covariance (**B**), an estimation of the weight by which the background field participates in formulation of the cost function that is minimized within a data assimilation procedure, is one of the key components for the success of that effort.

Modeling of the Background Error Covariance

For calculation of **B** in data assimilation system at EMC so-far we were using recursive filters (e.g., Wu et al., 2002; de Pondeca et al., 2011).

Though recursive filters are a very good and efficient approximation of Gaussian (e.g., Purser et al. 2002, 2003) they have a series of shortcomings. The most serious one is that they are essentially sequential operators, very <u>difficult to successfully parallelize</u>.

Our solution to this problem within the UFS effort is the development of a new filter based on Beta distributions, incorporated within a parallel multigrid structure, which:

Describes covariances across various scales

Includes cross-correlations

Provides negative sidelobes, which realistic covariances do posses

Has a finite support and is more parallelizable, resulting in much better scaling

Description of Beta-filter

Our alternative to recursive filters is based on the Beta distribution filters. In 2D case, the radial Beta filter is defined as

$$\beta(x, y) = (1 - \rho)^p \qquad , \rho \le 1$$

where *p* is a small positive integer and, in the isotropic case,

$$\rho = \frac{1}{s^2} \boldsymbol{r} \cdot \boldsymbol{r}^T$$

Here, *s* is a radial scale and *r* a position vector (x, y). Such a function also has a quasi-Gaussian shape, but with a finite support.

In an anisotropic generalization, s^2 is replaced by a 2×2 symmetric, positive definite "aspect tensor", used as a matrix inverse A^{-1} , so that

$$\rho = \mathbf{r} \mathbf{A}^{-1} \mathbf{r}^{\mathrm{T}}$$

A larger *p* implies a more Gaussian shape, but also a narrower one. The 3D radial Beta filter has a similar formulation.

Basic MG Beta filter

Beta filter is further used at a hierarchy of different scales, combined into a parallel multigrid scheme in order to achieve a larger coverage and potentially a more versatile synthesis of anisotropic covariances, allowing a greater control over the shape.

There are four stages of this process:

Adjoint interpolate from the analysis grid to generation one (g1) of the filter grid Adjoint filter (conservative) stage Forward filter(smoothing) stage Interpolate from g1 to the analysis grid

Conservative Stage

Adjoint interpolate ("up-send") from g1 to g2. Then repeat procedure all the way to g4 Apply weights at all generations <u>in parallel</u>

Apply adjoint of Beta filter at all generations <u>in</u> <u>parallel</u>

Interpolate ("down-send") result of adjoint filter from g4 to g3 and add it to adjoint at g3. Then repeat procedure all the way to g1

Smoothing Stage

Identical to the Conservative stage except that we apply **Beta filter** instead of it adjoint In the stage of up-sending we half the resolution in transition from one generation to another. Consistently, we half the number of processors in each direction. Thus, ideally, the number of processors arranged in each direction of generation g1 must be divisible by 2^{n-1} where *n* is the number of generations. The opposite happens in the stage of down-sending, when we double the resolution and double the number of processors in each direction.

In practice, the analysis grid has its own resolution and decomposition. Thus, at each inner iteration, we need to remap and re-decompose between the analysis grid and g1.

Analysís gríd decomposítíon

Filter grid generations need to be **collocated** with the analysis processors:

Generalization of MG

The described paradigm has two problems:

- 1. Re-decomposition between analysis and filter grid is a bottleneck which slows down filtering process
- 2. The whole procedure is very hard to generalize for various arrangements of processors

In <u>Rancic et al. (2020)</u> we considered a series of possible solutions, none of which able to fully overcome both issues. Here we present a new solution which eliminates the bottleneck and allow us to generalize MG Beta filter without degrading its performance

- 1. Keep the g1 at the same decomposition as the analysis grid
- 2. In construction of higher generations we allow inclusion of "empty space" (keeping the boundaries of the physical domain unchanged).

Example of new decomposition

Pros:

Generation 1

77	78	79	80	81	82	83	84	85	86	87
66	67	68	69	70	71	72	73	74	75	76
55	56	57	58	59	60	61	62	63	64	65
44	45	46	47	48	49	50	51	52	53	54
33	34	35	36	37	38	39	40	41	42	43
22	23	24	25	26	27	28	29	30	31	32
11	12	13	14	15	16	17	18	19	20	21
0	1	2	3	4	5	6	7	8	9	10

111	87 76	86 110 75	85 74	84 109 73	83 72	82 108 71	81 70	80 107 69	79 68	78 106 67	77 66
105	65 54	64 104 53	63 52	62 103 51	61 50	60 102 49	59 48	58 101 47	57 46	56 100 45	55 44
99	43 32	42 98 31	41 30	40 97 29	39 28	38 96 27	37 26	36 95 25	35 24	34 94 23	33 22
93	21	20	19	18	17	16	15	14	13	12	11

Generation 2

There is no more need for redecomposition between analysis and filter grid

Filter grid is run on more PEs

The code is automatically adjustable to any decomposition

Cons:

Higher generations are executed in parallel among themselves but sequentially with g1

Generation 3

106	107	108	109	110	111
11	.5	11	.6	11	7
100	101	102	103	104	105
94	95	96	97	98	99
11	2	11	.3	11	4
88	89	90	91	92	93

		Genera	ation 4		
115		116		117	
	118				119
112		113		114	

Collocation of PEs in the new paradigm

77	78	79	80	81	82	83	84	85	86	87
66	67	68	69	70	71	72	73	74	75	76
55	56	57	58	59	60	61	62	63	64	65
44	45	46	47	48	49	50	51	52	53	54
33	34	35	36	37	38	39	40	41	42	43
110 22	111 23	112 24	113 25	114 26	115 27	116 28	117 29	118 30	119 31	32
99 11	100 12	<mark>101</mark> 13	102 14	103 15	<mark>104</mark> 16	105 17	<mark>106</mark> 18	<mark>107</mark> 19	<mark>108</mark> 20	109 21
88 0	89 1	<mark>90</mark> 2	91 3	<mark>92</mark> 4	<mark>93</mark> 5	<mark>94</mark> 6	<mark>95</mark> 7	96 8	97 9	98 10

a1 a2 a3	
	94

In this original form the higher generations do not take the full advantage of the available processing capabilities. In principle, by using lower vertical resolution for 3D arrays of higher generations, and by judiciously vertically splitting and sharing their load among processors, it is possible to solve this issue

_											94 - upper
165	<mark>166</mark>	<mark>167</mark>	168	169	170	171	172	173	174	175	
77	78	79	80	81	82	83	84	85	86	87	
154	155	156	157	158	159	<mark>160</mark>	161	<mark>162</mark>	<mark>163</mark>	164	94 - Lower
66	67	68	69	70	71	72	73	74	75	76	
143	144	145	146	<mark>147</mark>	148	149	150	151	<mark>152</mark>	153	gз-иррег
55	56	57	58	59	60	61	62	63	64	65	
132	133	134	135	136	137	138	139	140	141	142	
44	45	46	47	48	49	50	51	52	53	54	
121	122	123	124	125	126	127	128	129	130	131	g3 - lower
33	34	35	36	37	38	39	40	41	42	43	
110	111	<mark>112</mark>	113	114	115	<mark>116</mark>	117	118	119	<mark>120</mark>	92 - upper
22	23	24	25	26	27	28	29	30	31	32	
99	100	101	<mark>102</mark>	103	<mark>104</mark>	<mark>105</mark>	106	107	<mark>108</mark>	109	
11	12	13	14	15	16	17	18	19	20	21	
0 ⁸⁸	89 1	<mark>90</mark> 2	91 3	92 4	<mark>93</mark> 5	<mark>94</mark> 6	95 7	<mark>96</mark> 8	97 9	<mark>98</mark> 10	92 - MIU
											g2 - lower
1		1									
1	eve	els									
1	eve	els		• {	Spl	it	in	31	av	ers	5
1		.1.			יי ר_ר	•	•	ດ 1			- 📥 ~ 30% fas

- **g3**: 30 levels \rightarrow Split in 2 layers
- g4: 30 levels \longrightarrow Split in 2 layers

g1:

g2:

11

than g1

Examples of performance

Timings per PEs derived in tests on 88 PEs with old and generalized scheme (new). There is a gain of about 10% in efficiency.

Timings in tests of generalized MG Beta filter code.

Future developments

- A new version of MG Beta filter is developed which requires only one onset of up- and down-sending. Through application of a differential Helmholtz operator it will allow inclusion of negative sidelobes of the covariances. In addition, we are working on a version that will allow inclusion of cross-covariances (for this first time to our knowledge)
- We are working on a series of novelties, such as, a new method for normalization of covariances; extension for global cubed sphere domain; application of AI for definition of scale weights, etc. Among them, perhaps the most important place takes the replacement of the radial filters with a sequence of line filters (Purser 2020).
- A Triad (3-components, in 2D) and Hexad (6-components in 3D) versions have been developed that will replace radial filter. A consistent extension of this approach lead us to a fully 4D extension (so-call Decad algorithm) giving us a tool that would enable future extension of the RTMA procedure into a fully 4D scheme
- We begin integrating the first version of MG Beta filter code in GSI and JEDI

References

- Purser, R. J., 2005: A geometrical approach to the synthesis of smooth anisotropic covariance operators for data assimilation. NOAA/NCEP Office Note 447.
- Purser, R. J., 2020: A formulation of the Hexad algorithm using the geometry of the Fano projective plane. Draft NOAA/NCEP Office Note (In preparation).
- Purser, R. J., 2020: A formulation of the Decad algorithm using the symmetries of the Galois field GF(16). Draft NOAA/NCEP Office Note (In preparation).
- Purser, R. J., W.-S. Wu, D. F. Parrish, and N. M. Roberts: 2003: Numerical aspects of the application of recursive filters to variational statistical analysis. Part II: Spatially inhomogeneous and anisotropic general covariances. *Mon. Wea. Rev.*, **131**, 1536–1548.
- Rancic, M., M. Pondeca, R. J. Purser, and J. R. Carley, 2020:
 - Boston, Massachusetts, 13-16 January 2020.
- Wu, W.-S., R. J. Purser, and D. F. Parrish, 2002: Three-dimensional variational analysis with spatially inhomogeneous covariances. *Mon. We. Rev.*, **130**, 2905–2916.