Development of Hybrid Ensemble-Variational Aerosol Data Assimilation System with JEDI

Bo Huang¹,², Mariusz Pagowski¹,², Cory R. Martin³, Dan Holdaway⁴, Daryl T. Kleist⁵, Shobha Kondragunta⁶, Xiaoyang Zhang⁹

Collaborators: Arlindo da Silva⁷, Benjamin Johnson⁴, Georg A. Grell², Sarah Lu⁸

Acknowledgements for help with METplus, GFS-FV3-GOCART, and workflow: Shih-Wei Wei⁸, Li Zhang¹,², Judy Henderson²

¹CIRES, CU Boulder
²NOAA/ESRL/GSL
³RedLine Performance Solutions at NCEP EMC
⁴Joint Center for Satellite Data Assimilation (JCSDA)
⁵NOAA NWS NCEP EMC
⁶NOAA/NESDIS/STAR
⁷NASA/GMAO
⁸SUNY Albany
⁹South Dakota State University

“Development of the National Global Data Assimilation Ensemble-based System for Forecasting of Aerosols” by Pagowski and Kleist, grant from Weather Program Office, 2019-2022
Outline

- JEDI-based Hybrid Ensemble-Variational Aerosol Data Assimilation System
- Assimilation Experiments and Evaluation using METPlus
- Ongoing/Future Work
Data assimilation (DA) combines model forecasts (background) with information from observations to obtain the best estimate of the true state.

Joint Effort for Data assimilation Integration (JEDI) - the next-generation unified DA system is being developed at JCSDA.

Developed 3DEnVar-FGAT ensemble-based DA capability within JEDI for assimilating AOD retrievals to improve global aerosol analyses and forecasts:

- Thinning of MODIS and VIIRS 550 nm AOD retrievals and formatting in IODA;
- AOD observation operator using aerosol optical properties in the Community Radiative Transfer Model (CRTM) and included in UFO;
- FV3-JEDI interface for GOCART aerosols for variational minimization;
- Modified NCEP’s EnKF to operate on native FV3 grid (using until KF’s available in JEDI);
- HofX Forward operator for EnKF;
- All integrated within NCEP’s operational global DA workflow for the future operational application.
GFS-FV3-GOCART Model
--- GEFS-Aerosols model at reduced resolution

- FV3-based GFS coupled with the Goddard Chemistry Aerosol Radiance and Transport (GOCART) aerosol scheme at C96 (~100 km)
 - Dust with five size bins
 - Sea salt with five size bins
 - Hydrophobic and hydrophilic organic and black carbon
 - Sulfate

- Blended Global Biomass Burning Emissions Products (GBBEPx) and Fire Radiative Product (FRP)

- Chemistry coupled with the core meteorological model via NUOPC interface
AOD Assimilation

- AOD retrievals at 550 nm derived from NOAA VIIRS onboard the Suomi-NPP satellite
- Six-hourly AOD assimilation within 3 hours of the analysis time
- Serial EnKF and 3D-EnVar to calculate increments for aerosol concentration
- Meteorological variables are corrected by adding regridded increments from operational GDAS analyses.
- 20-member ensemble at C96 (~100km)
- Cycled AOD DA experiments were performed in June 2016 after three-week model spin-up in May 2016.
- A parallel experiment without AOD DA was performed for comparison.
Assimilation of AOD improves the intensity and pattern of the dust storm.
Innovation Statistics of VIIRS AOD at 550nm

- Assimilation of AOD at 550nm reduces negative bias and error of simulated AOD at 550nm.
- Insufficient spread in background ensemble.

NODA: 6-hour forecasts in exp. without AOD DA.
DA-Bckg /DA-Anal: 6-hour background/Analysis in exp. with AOD DA.
Monthly and Globally Averaged Mixing Ratio Profiles of Aerosol Species
--- 6-hour Forecasts Comparison with/without AOD DA

- After AOD assimilation, FV3-DA better matches NASA/EC reanalyses than FV3-NODA for dust and SO4.

- Due to insufficient spread for sea salt, difference between FV3-NODA and FV3-DA is relatively small.

- Largely different mixing ratio profiles between NASA and EC reanalyses suggest large uncertainty of aerosol forecasts and DA.

FV3-NODA: GFS-FV3-GOCART model 6-hour forecasts without AOD DA

FV3-DA: GFS-FV3-GOCART model 6-hour forecasts with AOD DA

M2/CAMS-Reanal: NASA MERRA-2/ECMWF CAMSiRA reanalysis
Monthly Averaged Dust Column Integral
--- 6-hour Forecasts Comparison with/without AOD DA

ECMWF CAMSiRA reanalysis

NASA MERRA-2 reanalysis

FV3-NODA

FV3-DA

Bias

RMSE
Monthly Averaged AOD at 550 nm
--- 6-hour Forecasts Comparison with/without AOD DA

NASA MERRA-2 reanalysis

ECMWF CAMSiRA reanalysis

FV3-NODA

FV3-DA

Bias

RMSE
Ongoing/Future Work

- Verify model AODs against the AErosol RObotic NETwork (AERONET) observations at different wavelengths and against a variety of independent retrievals.

- Develop static B-matrix for aerosol species.

- Recenter ensemble analysis around control analysis.

- Develop dual-resolution capability for ensemble and control.

- In collaboration, improve representation of radiative properties of aerosols in CRTM; in parallel, develop forward AOD operator based on NASA’s tables.

- Employ variational bias correction so that model biases are accounted for in the assimilation.

- Improve system performance through ensemble spread increased by stochastic perturbations to emissions and parameterizations.

- Account for the non-Gaussian error distribution of AOD.
Thanks for your attention!

Questions?

bo.huang@noaa.gov