

Current status of sea ice coupling in NEMS/NGGPS

David Bailey
National Center for Atmospheric Research

Fei Liu, Cecelia DeLuca (CU/NOAA); Xingren Wu, Bob Grumbine (NOAA EMC); Anthony Craig

NGGPS Community Sea Ice Model Recommendation Workshop February 3-4, 2016

- Coupled sea ice in NEMS/NGGPS
- Bringing a component into NEMS
- The NEMS mediator and coupling
- Status: early results and next steps

Overview of Sea Ice in NEMS

- A team involving NCAR, NOAA EMC, NOAA ESRL, GFDL and others has developed a prototype of sea ice coupled to atmosphere/land and ocean components.
- The coupled code uses the NOAA Environmental Modeling System (NEMS) infrastructure including the National Unified Operational Prediction Capability (NUOPC) driver.
- The initial configuration includes:
 - NEMS mediator (coupler)
 - Modular Ocean Model 5 (MOM5) ocean
 - Los Alamos Sea CICE model
 - Global Spectral Model (GSM) atmosphere

This prototype can serve as an example of how other sea ice models may be coupled into NEMS applications.

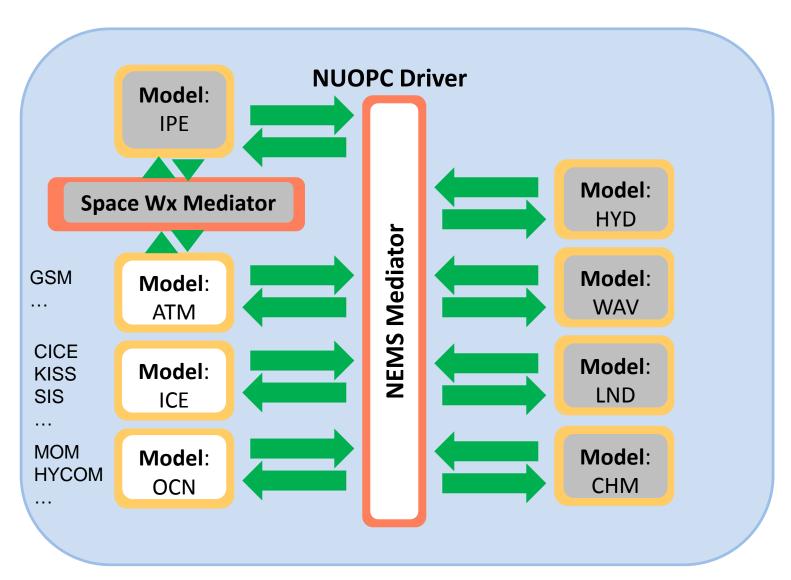
NEMS Applications

- The NEMS infrastructure supports multiple applications, at different timescales, and involving different sets of components.
- The MOM-CICE-GSM coupling development is part of the Unified Global Coupled System (UGCS), one of the applications based on NEMS.
- UGCS is expected to have weather, sub-seasonal, and seasonal scales.
- An initial version of MOM-CICE-GSM was delivered in August 2015 as UGCS 0.1. It was tested using 5 day runs.
- An updated version UGCS version 0.2 is being prepared for delivery. It is being tested using 15 day runs.

NEMS Mediator

- Currently supports ATM, OCN, ICE, LND, and HYD components.
- Slow (ocean) and fast (atmosphere and ice) coupling phases
- Performs the following functions:
 - Connects fields whose standard names match
 - Accumulates and averages atmosphere and ice fields between calls to the ocean model
 - Merges fields with a generic merge method that allows for weighting
 - Performs custom coupling operations, along with unit transformations
 - Performs interpolation (fluxes are mapped conservatively, states bilinearly, higher order also available)

More information about the mediator:


http://cog-esgf.esrl.noaa.gov/projects/couplednems/mediator_design

Worksheet of planned coupling fields across all modeling applications:

https://docs.google.com/spreadsheets/d/11t0TqbYfEqH7lmTZ7dYe1DSCh6vOUFgX-3qvXgce-q0/edit#gid=0

Components in NEMS

Bringing a Components into NEMS: Caps

The **NUOPC Model "cap" is a translation layer** on top of a model code that:

- wraps model data in ESMF data types and
- follows the NUOPC technical rules for behavior

A cap is implemented as a Fortran module.

Each cap:

- Maps coupling fields to standard names and advertises them as imports and/or exports
- Creates an ESMF Grid or Mesh to describe the model grid
- Instantiates ESMF Fields and connect them to model data
- Initializes export fields

Provides a routine to advance the model by a timestep

initialization sequence

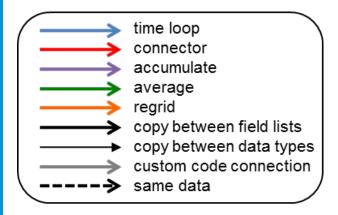
7.0 beta snapshot 59

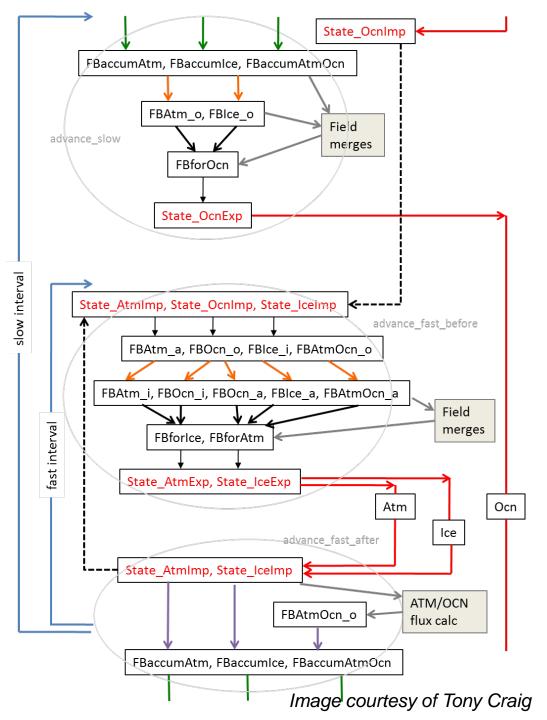
Search docs

- 1. Overview
- 2. The Big Idea
- 3. Writing and Testing a NUOPC Cap for Your Model
- 4. An Example Cap
- 5. Appendix: The Generic NUOPC Model
- 6. Glossary

Docs » Building a NUOPC Model

View page source


Building a NUOPC Model


Contents:

- 1. Overview
 - 1.1. Document Roadmap
 - 1.2. Additional NUOPC Resources
- 2. The Big Idea
 - 2.1. Specializing Generic Components
 - o 2.2. NUOPC Model Cap
 - 2.3. How Much of My Code Do I Need to Change?
 - 2.4. How Do I Know it Works?
- 3. Writing and Testing a NUOPC Cap for Your Model
 - o 3.1. Install ESMF and NUOPC on the Target Machine
 - o 3.2. Prepare Your Model Code
 - o 3.3. Choose a Configuration of Your Model for Development
 - o 3.4. Integrate a Cap Template into Your Codebase
 - 3.5. Modify Your Build to Generate a NUOPC Makefile Fragment
 - o 3.6. Initialize Your Model from the Cap
 - o 3.7. Call Your Model's Run Subroutine from the Cap
 - 3.8. Run the Cap with a NUOPC Driver
 - 3.9. Split Up the Initialization Phases
 - o 3.10. Test and Validate Your Cap
- 4 An Example Can

NEMS Mediator: Control and Data Flow

Status: UGCS Seasonal 0.1 Milestone

- Three-way coupled atmosphere-ocean-ice system with GSM (T126) -MOM5 and CICE (1 deg).
- Delivered June 2015.

GSM to MOM5

surface pressure merged momentum flux mean net longwave

banded shortwave radiation

precipitation

sensible heat flux

ATM GSM

cice fraction

masking information more fields will be

included here

GSM to CICE

wind, stress lowest level temperature

specific humidity

lowest height, radiation

precipitation

derived air density

MOM5 to CICE

ocean currents, SST

CICE to MOM5

MOM5 to GSM

SST

merged momentum flux

OCN MOM5 ICE CICE

Status: UGCS Seasonal 0.2 Milestone

- Interactions need to be updated with new additions. Three-way coupled atmosphere-ocean-ice system with GSM (T126), MOM5 and CICE (0.5 degree, 0.25 deg tropics)
- Running 15 days, not yet delivered. Delivery waiting on: 1) improved cold start capability, 2) full restart capability (GSM version needs to be updated for restart).

GSM to MOM5

surface pressure merged momentum flux mean net longwave banded shortwave radiation. precipitation MOM5 to GSM sensible heat flux

SST

ATM GSM

CICE to GSM

ice fraction masking information more fields will be included here

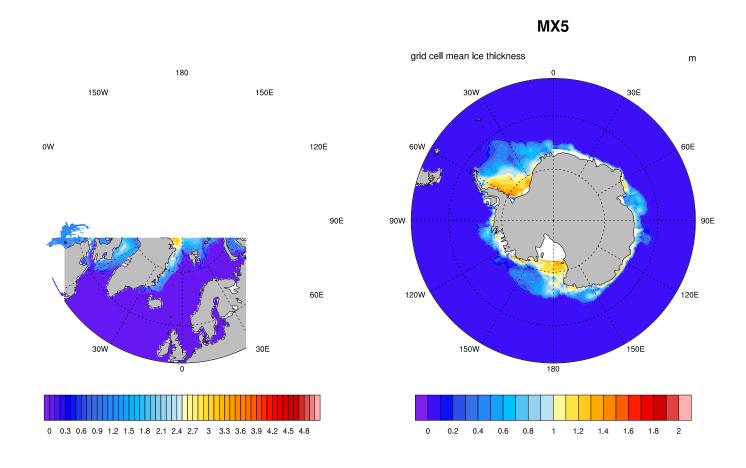
GSM to CICE

wind, stress lowest level temperature specific humidity lowest height, radiation precipitation derived air density

MOM5 to CICE

ocean currents, SST

CICE to MOM5


merged momentum flux

OCN MOM5

ICE CICE

Status: UGCS Seasonal 0.2 Milestone

- Currently use CFS initial states
- Initialization with snow depth and snowfall on sea ice
- Salinity coupling: Mushy-layer physics simulates salt profile in sea ice
- Heat, fresh water, salt coupling to MOM

Getting and Running Coupled NEMS Code

Coupled NEMS code can be checked out of the NEMS repository:

```
# $ svn co -r <revision> \
   https://svnemc.ncep.noaa.gov/projects/nems/apps/UGCS-Seasonal/trunk \
   UGCS-Seasonal
```

- Code can be checked out onto Yellowstone as well as EMC computers.
- Instructions for building and running are on the Coupled NEMS website: http://cog-esgf.esrl.noaa.gov/projects/couplednems/ugcs-seasonal

Sample NEMS Configure File

(nems.configure)

NEMS Run Time Configuration File

EARTH

EARTH_component_list: MED ATM OCN ICE

MED

med_model: nems med petlist bounds: 60 65

#ATM#

atm_model: gsm atm petlist bounds: 0 31

OCN

ocn_model: mom5 ocn petlist bounds: 32 55

ICE

ice_model: cice ice petlist bounds: 56 59

Processor layout

Run Sequence

runSeq::

@7200.0

MED MedPhase_slow

MED -> OCN :remapMethod=redist

OCN

@3600.0

MED MedPhase_fast_before

MED -> ATM :remapMethod=redist

MED -> ICE :remapMethod=redist

ATM

ICE

ATM -> MED :remapMethod=redist

ICE -> MED :remapMethod=redist

MED MedPhase_fast_after

@

OCN -> MED :remapMethod=redist

@

::

Colors show actions performed by:

- Connectors (->)
- Mediator (MED)
- Models

(@) indicates coupling interval

Mediator Run Phases

Advance_slow

Runs before OCN and prepares its import State

- Average accumulated ATM and ICE fields in FBaccumAtm, FBaccumIce, and FBaccumAtmOcn
- Regrid averaged fields to OCN grid
 - FBaccumATM → FBAtm_o
 - FBaccumICE → FBIce_o
- Copies fields in FBAtm_o, FBIce_o, FBaccumAtmOcn to FBforOcn
- Custom merges:
 - Precip, heat flux, LW flux scaled using ice fraction
 - Momentum fluxes and SW flux merged from ATM and ICE
- Reset accumulator FieldBundles
- Copy FBforOcn into NState_OcnExp

Mediator Run Phases

Advance_fast_before

Runs before ATM and ICE and prepares their import States

- Copies data from ATM, ICE, OCN import States into FieldBundles: FBAtm_a, FBOcn_o, FBIce_i
- Regrid:
 - FBAtm_a → FBAtm_i (ATM fields on ICE grid)
 - FBOcn_o → FBAtm_i (OCN fields on ICE grid)
 - FBOcn o → FBOcn a (OCN fields on ATM grid)
 - FBAtmOcn o → FBAtmOcn a (ATM/OCN flux fields on ATM grid)
 - FBIce_i → FBIce_a (ICE fields on ATM grid)
- Copy regridded fields to FBforAtm and FBforIce
- Determine OCN, ICE, and LND masks; determine OCN/ICE fractions
- Merge OCN+ICE fields to ATM (e.g., surface temp, heat & momentum fluxes)
- Copy FieldBundles to States for export from Mediator
 - FBforATM → NState_AtmExp
 - FBforICE → NState_IceExp

Mediator Run Phases

Advance_fast_after

Runs after ATM and ICE and accumulates fields for the OCN

- Regrid FBAtm_a → FBAtm_o (ATM fields on OCN grid)
- Compute ATM/OCN fluxes; store in FBAtmOcn_o
- Accumulate ATM, ICE and ATM/OCN fluxes
 - NState AtmImp accumulated into FBaccumATM
 - NState_IceImp accumulated into FBaccumICE
 - FBAtmOcn o accumulated into FBaccumAtmOcn
- Accumulation counters incremented