The Atmosphere During Sea State 2015

Ola Persson^{1,2} B. Blomquist^{1,2}, C. Fairall², S. Pezoa², P. Guest³

- Sea State, Oct 2 Nov 5, 2015

 R/V Sikuliaq
 - Beaufort Sea/Canada Basin
- 2) Objectives: Overall, atmospheric
- Atmospheric observations
 instrumentation
 - sampling methodology
 - QC
-) Preliminary Measurements
 - BL characterization
 - turbulent and radiative fluxes

(1) Cooperative Institute for the Research in the Environmental Sciences, University of Colorado, Colorado, Boulder, Colorado, USA
 (2) NOAA/ESRL/PSD, Boulder, Colorado, USA
 (3) Naval Postgraduate School, Monterey, CA

Acknowledgements: Funding provided by Office of Naval Research and NOAA.

Overall Objective: Improve understanding of air-ice-ocean interactions, with an emphasis on the role of waves, during fall ice advance

Atmospheric Objectives

- **1. For various ice and wave surface conditions**
 - a) better understand air-wave and air-ice momentum transport,
 - b) better understand surface energy fluxes
 - c) improve bulk flux parameterizations
- 2. For conditions near an advancing ice edge (ice, edge, open water), characterize
 - a) lower tropospheric stability,
 - b) kinematic/thermodynamic structure,
 - c) clouds, and
 - d) their impacts on surface winds & fluxes
- 3. How the atmospheric structure and surface fluxes interact with the ice and ocean to bring about the observed changes in sea ice

Sea State Instrument Placements

Surface Conditions - temperature; ice conc., type, thickness; wave height, wavelength

2

0 x [km]

-2

Measurements for understanding

Lower tropospheric wind, temperature, humidity, cloud profiling, photography

Sea State 2015 Cruise

- Chukchi/Beaufort Sea freeze-up conditions; Oct 2 - Nov 5, 2015

- R/V Sikuliaq

Sea State T_{air}, T_{sfc}, Winds, Oct 2 – Nov 4, 2015

Ice Interior

(YD278-283; 288-289; 293-297; 301-303) (Oct 5-10; 15-16; 20-24; 28-30)

- > 70 km from nearest ice edge

Ice Interior – Atmospheric Structure

Boundary Layer

- often well-mixed to 200-400 m
- some very shallow BL, including surface-based inversion Oct 19-23
- depth variability governed by variability of flow aloft & surface flux
- LLJs observed both above & within BL

Ice Interior – Atmospheric Structure

Boundary Layer

- often well-mixed to 200-400 m
- some very shallow BL, including surface-based inversion Oct 19-23
- depth variability governed by variability of flow aloft & surface flux
- LLJs observed both above & within BL

Clouds

- low, within BL
- extend to just above BL top

Ice Edge

Boundary Layer

- often well-mixed to 200 -1100+ m
- depth variability governed by variability of on-ice/off-ice flow & ice-relative location
- LLJs observed both above & within BL

Ice Edge

Boundary Layer

- often well-mixed to 200 -1100+ m
- depth variability governed by variability of on-ice/off-ice flow & ice-relative location
- LLJs observed both above & within BL

Clouds

- low, within BL, cloud base 100-400 m
- extend to just above BL top

Flux Station #4 Oct 3 1825 UTC 3.5 m/s /324° $T_{a15} = -2.9^{\circ} C$ $T_{s} = -0.4^{\circ} C$

Example Good Underway Fluxes

Sea State Bulk SEB Oct 2 – Nov 4

Sea State Field Program successful in obtaining data to address most objectives

Atmospheric data

a) covariance turbulent heat/momentum fluxes for large variety of ice/water conditions (973 30-min periods; 486 hours)

- understand momentum and heat transfers when (pancake) ice present
- data for significant waves limited to one case
- b) turbulent and radiative fluxes for surface energy budget calculations
 - ice-relative wind direction key for flux magnitude
 - match with underway CTDs to better understand system energy flow
 - valuable for validation of models (atmospheric and coupled)

c) lower tropospheric kinematic/thermodynamic/cloud characterization within advancing (thin) pack ice and at ice edge

- significant differences over ice and at ice edge
- key for validation of atmospheric models and understanding of surface fluxes

The End Slut Ende Fini

Martin Doble

Tick