A few slides on forecast bias correction

Matt Newman, University of Colorado/CIRES and NOAA/ESRL/PSD

Bias corrections

- Mean error
 - forecast error based on forecast lead time alone
- State-dependent error
 - systematic mean errors for different forecast states
- Correction of forecast ensemble spread
 - Models typically are too "certain" (ensemble has toosmall spread)

Gross bias correction

• Given sample of past forecasts x_1, \ldots, x_n and observations y_1, \ldots, y_n , gross bias correction is simply $\overline{y} - \overline{x}$

In surface-temperature calibration experiments with NCEP's GFS and ECMWF, simple gross bias correction achieved a large percentage of the improvement that was achieved through more sophisticated, bias+spread correction.

HiCOM-FIM 850mb zonal wind hindcast skill (rms forecast error)

^{1 1.2 1.4 1.6 1.8 2 2.2 2.4} 0.6 0.8

Model Output Statistics ("MOS") many elements based on multiple linear regression

KBID) GFS MOS			GUIDANCE				2/16/2005 1800 UTC													
DT	/FEB 17							/FEB			18						/FEB		19		
HR	00	03	06	09	12	15	18	21	00	03	06	09	12	15	18	21	00	03	06	12	18
N/X					32				40				25				35			19	
TMP	42	39	36	33	32	36	38	37	35	33	30	28	27	30	32	31	28	25	23	19	27
DPT	34	29	26	22	19	18	17	17	17	17	17	15	14	13	11	8	7	б	5	2	4
CLD	OV	FW	CL	CL	SC	BK	ΒK	BK	ΒK	BK	ΒK	BK	SC	BK	BK	BK	BK	FW	CL	CL	CL
WDR	26	30	32	32	32	31	29	28	30	32	31	31	31	31	30	29	31	32	33	33	27
WSP	12	12	12	11	08	08	09	80	09	09	10	10	10	12	13	13	15	16	15	09	80
P06			17		0		0		0		4		0		10		6		8	0	0
P12					17				0				10				17			8	
Q06			0		0		0		0		0		0		0		0		0	0	0
Q12					0				0				0				0			0	
T06		0,	/ 2	0,	/ 0	1/	΄ Ο	1/	2	0 /	'1	0 /	/ 1	1,	/ 0	0,	/ 1	0 /	0 ⁄	0 /	/ 0
T12						1/	΄ Ο			1/	2			1,	/ 1			0 /	/ 1	0 /	/ 0
POZ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
POS	13	47	70	84	911	L00	961	L001	1001	1001	00	921	L00	981	L001	1001	L00	94	921	001	L00
TYP	R	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S
SNW													0							0	
CIG	7	8	8	8	8	8	8	8	8	7	7	7	8	7	7	7	8	8	8	8	8
VIS	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
OBV	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν

US: Statistical corrections to operational US NWS models, some fixed (NGM), some not (Eta, GFS). Refs: <u>http://www.nws.noaa.gov/mdl/synop/index.htm</u>, Carter et al., *WAF*, **4**, p 401, Glahn and Lowry, *JAM*, **11**, p 1580. **Canadian** models discussed in Wilson and Vallee, *WAF*, **17**, p. 206, and *WAF*, **18**, p 288. **Britain**: Met Office uses "updateable MOS" much like perfect prog.

Ensemble calibration: rank histogram techniques

Questions to consider

- How many samples do we need to determine bias?
- How much data/hindcasts do we actually have?
- What kind of bias do we need to remove?