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Why statistical post-processing?

Despite continuous improvements to numerical weather prediction (NWP)
systems, certain forecasts still suffer from systematic biases:

» insufficient model resolution
» less-than-optimal initial conditions

> etc.

Predicted and observed 2-m temperatures (°C) at Grand Junction Airport, 72h lead time
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Why statistical post-processing?

Statistical post-processing removes biases and improves forecast accuracy:

Predicted and observed 2-m temperatures (°C) at Grand Junction Airport, 72h lead time
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Why statistical post-processing?

For ensembles, the spread needs to be adjusted in addition to the mean:

Predicted and observed 2-m temperatures (°C) at Grand Junction Airport, 72h lead time
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Multivariate post-processing

In some applications, accounting for dependence between

» different variables

» different forecast lead times
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» different locations

is crucial for the reliability of the quantity
of interest.

Example:

Average precipitation accumulations over
seven stations in the Russian River basin.

We calibrate GEFS ensemble forecasts of 6-h precipitation accumulations
up to day 15 and study the corresponding plume diagrams.



Example: Need for multivariate post-processing

Accumulated average precipitation over the Russian River basin, starting
from 9 January 2010, 06 UTC.

a) Raw ensemble forecasts:
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At longer lead times, the ensemble forecasts are overconfident; here, all
members underestimate the precipitation amounts after day 9 and the
observation plume lies way outside the ensemble range.



Example: Need for multivariate post-processing

Accumulated average precipitation over the Russian River basin, starting
from 9 January 2010, 06 UTC.

b) CSGD method, no modelling of spatial and temporal dependence:
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Even though the CSGD method yields reliable and sharp predictions at
every location and for every 6-h period individually, the spatially averaged
and temporally accumulated precipitation forecasts are underdispersive.



Example: Need for multivariate post-processing

Accumulated average precipitation over the Russian River basin, starting
from 9 January 2010, 06 UTC.

c) CSGD method & Schaake Shuffle:

CSGD ensemble (Schaake Shuffle)
—— Observation
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Performing an additional post-processing step to restore spatial and
temporal dependence of forecast errors results in increased ensemble
spread and thus in a better representation of forecast uncertainty.



Multivariate post-processing

Consider a probabilistic forecast of a multivariate quantity, where
multivariate may refer to different variables, or the same variable at
different time points and/or locations in space.

Example: Temperature forecasts at Denver for lead times up to 72-h
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Multivariate post-processing

Applying the post-processing techniques discussed above yields calibrated
forecasts at each lead time separately. How can we re-create forecast
trajectories with adequate temporal correlations?

Example: Temperature forecasts at Denver for lead times up to 72-h

10°C 20°C 30°C

—— observed temperature
—— predicted temperature

-10°C  0°C

6h 12h 18h 24h 30h 36h 42h 48h 54h 60h 66h 72h

forecast lead time



Multivariate post-processing

Applying the post-processing techniques discussed above yields calibrated
forecasts at each lead time separately. How can we re-create forecast
trajectories with adequate temporal correlations?

Example: Temperature forecasts at Denver for lead times up to 72-h

10°C 20°C 30°C

—— observed temperature
—— predicted temperature

-10°C  0°C

6h 12h 18h 24h 30h 36h 42h 48h 54h 60h 66h 72h

forecast lead time



Multivariate post-processing

Applying the post-processing techniques discussed above yields calibrated
forecasts at each lead time separately. How can we re-create forecast
trajectories with adequate temporal correlations?

Example: Temperature forecasts at Denver for lead times up to 72-h

10°C 20°C 30°C

—— observed temperature
—— predicted temperature

-10°C  0°C

6h 12h 18h 24h 30h 36h 42h 48h 54h 60h 66h 72h

forecast lead time



Multivariate post-processing

Applying the post-processing techniques discussed above yields calibrated
forecasts at each lead time separately. How can we re-create forecast
trajectories with adequate temporal correlations?

Example: Temperature forecasts at Denver for lead times up to 72-h

10°C 20°C 30°C

—— observed temperature
—— predicted temperature

-10°C  0°C

6h 12h 18h 24h 30h 36h 42h 48h 54h 60h 66h 72h

forecast lead time



Using multivariate information from raw ensemble forecasts

Ensemble copula coupling (ECC):
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Using multivariate information from past observations

Schaake Shuffle:

Proceed as with ECC, but use the rank order of past obervations at the
same or similar days of the year instead of the ranks of today's ensemble
forecasts.

Similarity-based Schaake Shuffle:

Use again observation ranks but select the historic dates based on
similarity of the respective forecasts.

Statistical dependence models:

Fit a statistical dependence model (Gaussian copulas, Gaussian random
fields) using forecast error statistics at historic dates.



Two main approaches for multivariate post-processing

1. Use multivariate information from raw ensemble forecasts

+ flow-dependent, — spurious correlations in the raw
physics-based ensemble may be amplified
correlations — multivariate features that are not

+ potentially different resolved by the NWP model are
correlations for not accounted for

different forecast

- — ensemble size limits the representa-
magnitudes

tiveness of multivariate features



Two main approaches for multivariate post-processing

1. Use multivariate information from raw ensemble forecasts

+

flow-dependent, — spurious correlations in the raw
physics-based ensemble may be amplified
correlations — multivariate features that are not
potentially different resolved by the NWP model are
correlations for not accounted for

different forecast

- — ensemble size limits the representa-
magnitudes

tiveness of multivariate features

2. Use multivariate information from past observations

+
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more realistic error — multivariate information is not
structures flow-dependent

downscaling of — extra efforts are required to model
dependence correlations that depend on the

information forecast magnitude



Bivariate example: ECC vs. Schaake vs. SimSchaake
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24 hour ahead
EMOQOS-calibrated
temperature
forecasts (in °C)
at Vienna and
Bratislava valid
on 9 July 2011,
1200 UTC.

Image courtesy
of Roman
Schefzik.



Probabilistic forecasts of rare events

For some weather variables, we are often interested in particular events
(e.g. “rainfall amounts exceed 10mm”).

These event probabilities can be modeled directly, e.g. via logistic
regression:

logit(P(y > 10mm)) = Bo + f1 - x
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Probabilistic forecasts of rare events

Fitting a logistic regression model for high thresholds becomes
increasingly difficult:

Exceedance of 10mm
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Parametric assumptions can mitigate the problems that come with
modeling rare events, but limited training sample size remains a concern.



Probabilistic forecasts of rare events

Fitting a logistic regression model for high thresholds becomes
increasingly difficult:

Exceedance of 50mm
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Parametric assumptions can mitigate the problems that come with
modeling rare events, but limited training sample size remains a concern.



Example of the parametric CSGD model
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Options for getting a sufficiently large training sample

1. Reforecasts!

+ no compromises, no biases
+ ideally cover several years, thus variations in climatology
— expensive

2. Regional post-processing, supplemental locations, random field
models that link locations statistically

+ can reduce the need for
reforecasts

— linking/combining less
than perfectly similar
locations entails biases

Image courtesy of Tom Hamill

Forecast precipitation amount, 95th percentile (mm)



Example: Loss of skill relative to a 11-year training sample

BSS decrease, > 1 mm, BSS decrease, > 10 mm, BSS decrease, > 25 mm,
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New variables/products: How far should NOAA go?

WPC Probabilistic Winter Precipitation Guidance
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New variables/products: How far should NOAA go?

Extended Forecast for
Berthoud Pass CO
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New variables/products: How far should NOAA go?

Avalanche danger is basically a

function of
» snowfall
» temperatures ‘ : B v
» wind speed and direction e il &
» (air pollution) ‘ '

over a series of several days.
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New variables/products: How far should NOAA go?

)

Avalanche danger is basically a
function of

» snowfall

» temperatures

» wind speed and direction
» (air pollution)

over a series of several days.

Could a machine learning method keep track of these variables and
produce more highly resolved maps of avalache danger?

Could / should avalache danger be predicted with a lead time of several
days to inform skiers / ski resort managers / rescuers?



Literature |

@ Schefzik, R., Thorarinsdottir, T.L., and Gneiting, T.
Uncertainty quantification in complex simulation models using ensemble copula coupling.
Stat. Sci., 28:616-640, 2013.

@ Clark, M., Gangopadhyay, S., Hay, L., Rajagopalan, B., and Wilby, R.
The Schaake shuffle: A method for reconstructing spaceatime variability in forecasted
precipitation and temperature fields.
J. Hydrometeor., 5:243-262, 2004.

[§ Schefzik, R.
A similarity-based implementation of the Schaake shuffle.
preprint, http://arxiv.org/pdf/1507.02079.pdf

ﬁ Scheuerer, M. and Hamill, T.M.
Statistical post-processing of ensemble precipitation forecasts by fitting censored, shifted
Gamma distributions.
Mon. Wea. Rev., 143:4578-4596, 2015.

@ Hamill, T.M., Scheuerer, M. and Bates, G.T.
Analog probabilistic precipitation forecasts using GEFS Reforecasts and
Climatology-Calibrated Precipitation Analyses.
Mon. Wea. Rev., 143:3300-3309, 2015.


http://arxiv.org/pdf/1507.02079.pdf

