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Why statistical post-processing?

Despite continuous improvements to numerical weather prediction (NWP)
systems, certain forecasts still suffer from systematic biases:

I insufficient model resolution
I less-than-optimal initial conditions
I etc.



Why statistical post-processing?
Statistical post-processing removes biases and improves forecast accuracy:



Why statistical post-processing?
For ensembles, the spread needs to be adjusted in addition to the mean:



Multivariate post-processing

In some applications, accounting for dependence between

I different variables
I different forecast lead times
I different locations

is crucial for the reliability of the quantity
of interest.

Example:
Average precipitation accumulations over
seven stations in the Russian River basin.

We calibrate GEFS ensemble forecasts of 6-h precipitation accumulations
up to day 15 and study the corresponding plume diagrams.



Example: Need for multivariate post-processing

Accumulated average precipitation over the Russian River basin, starting
from 9 January 2010, 06 UTC.

a) Raw ensemble forecasts:

At longer lead times, the ensemble forecasts are overconfident; here, all
members underestimate the precipitation amounts after day 9 and the
observation plume lies way outside the ensemble range.



Example: Need for multivariate post-processing

Accumulated average precipitation over the Russian River basin, starting
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b) CSGD method, no modelling of spatial and temporal dependence:

Even though the CSGD method yields reliable and sharp predictions at
every location and for every 6-h period individually, the spatially averaged
and temporally accumulated precipitation forecasts are underdispersive.



Example: Need for multivariate post-processing

Accumulated average precipitation over the Russian River basin, starting
from 9 January 2010, 06 UTC.

c) CSGD method & Schaake Shuffle:

Performing an additional post-processing step to restore spatial and
temporal dependence of forecast errors results in increased ensemble
spread and thus in a better representation of forecast uncertainty.



Multivariate post-processing
Consider a probabilistic forecast of a multivariate quantity, where
multivariate may refer to different variables, or the same variable at
different time points and/or locations in space.

Example: Temperature forecasts at Denver for lead times up to 72-h



Multivariate post-processing
Applying the post-processing techniques discussed above yields calibrated
forecasts at each lead time separately. How can we re-create forecast
trajectories with adequate temporal correlations?
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Using multivariate information from raw ensemble forecasts

Ensemble copula coupling (ECC):
Idea: retain the
ordering (and
thus the rank
correlations) of
the raw ensemble
forecasts but
replace their
values by those
derived from the
calibrated margi-
nal distributions.

Special case:
member-by-
member
calibration



Using multivariate information from past observations

Schaake Shuffle:

Proceed as with ECC, but use the rank order of past obervations at the
same or similar days of the year instead of the ranks of today’s ensemble
forecasts.

Similarity-based Schaake Shuffle:

Use again observation ranks but select the historic dates based on
similarity of the respective forecasts.

Statistical dependence models:

Fit a statistical dependence model (Gaussian copulas, Gaussian random
fields) using forecast error statistics at historic dates.



Two main approaches for multivariate post-processing

1. Use multivariate information from raw ensemble forecasts

+ flow-dependent,
physics-based
correlations

+ potentially different
correlations for
different forecast
magnitudes

– spurious correlations in the raw
ensemble may be amplified

– multivariate features that are not
resolved by the NWP model are
not accounted for

– ensemble size limits the representa-
tiveness of multivariate features

2. Use multivariate information from past observations

+ more realistic error
structures

+ downscaling of
dependence
information

– multivariate information is not
flow-dependent

– extra efforts are required to model
correlations that depend on the
forecast magnitude
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Bivariate example: ECC vs. Schaake vs. SimSchaake

24 hour ahead
EMOS-calibrated
temperature
forecasts (in °C)
at Vienna and
Bratislava valid
on 9 July 2011,
1200 UTC.

Image courtesy
of Roman
Schefzik.



Probabilistic forecasts of rare events

For some weather variables, we are often interested in particular events
(e.g. “rainfall amounts exceed 10mm”).

These event probabilities can be modeled directly, e.g. via logistic
regression:

logit
(
P(y > 10mm)

)
= β0 + β1 · x

Example:

60 to 72-h Precipitation accumula-
tions over Seattle during the winter
season.



Probabilistic forecasts of rare events
Fitting a logistic regression model for high thresholds becomes
increasingly difficult:

Parametric assumptions can mitigate the problems that come with
modeling rare events, but limited training sample size remains a concern.
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Example of the parametric CSGD model
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Options for getting a sufficiently large training sample

1. Reforecasts!

+ no compromises, no biases
+ ideally cover several years, thus variations in climatology
– expensive

2. Regional post-processing, supplemental locations, random field
models that link locations statistically

+ can reduce the need for
reforecasts

– linking/combining less
than perfectly similar
locations entails biases

Image courtesy of Tom Hamill



Example: Loss of skill relative to a 11-year training sample

J F M A M J J A S O N D

0.10

0.08

0.06

0.04

0.02

0.00

BSS decrease, > 1 mm,
 12 to 24 h lead time

J F M A M J J A S O N D

0.10

0.08

0.06

0.04

0.02

0.00

BSS decrease, > 10 mm,
 12 to 24 h lead time

J F M A M J J A S O N D

0.10

0.08

0.06

0.04

0.02

0.00

BSS decrease, > 25 mm,
 12 to 24 h lead time

3 years + suppl.

3 years

1 year + suppl.

1 year

J F M A M J J A S O N D

0.05

0.04

0.03

0.02

0.01

0.00

BSS decrease, > 1 mm,
 108 to 120 h lead time

J F M A M J J A S O N D

0.05

0.04

0.03

0.02

0.01

0.00

BSS decrease, > 10 mm,
 108 to 120 h lead time

J F M A M J J A S O N D

0.05

0.04

0.03

0.02

0.01

0.00

BSS decrease, > 25 mm,
 108 to 120 h lead time

3 years + suppl.

3 years

1 year + suppl.

1 year

Brier skill
scores for
the CSGD
post-
processing
method for
precipitation
amounts.



New variables/products: How far should NOAA go?
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New variables/products: How far should NOAA go?

Avalanche danger is basically a
function of

I snowfall
I temperatures
I wind speed and direction
I (air pollution)

over a series of several days.

Could a machine learning method keep track of these variables and
produce more highly resolved maps of avalache danger?

Could / should avalache danger be predicted with a lead time of several
days to inform skiers / ski resort managers / rescuers?
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