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Why statistical post-processing?

Despite continuous improvements to numerical weather prediction (NWP)
systems, certain forecasts still suffer from systematic biases:

I insufficient model resolution
I less-than-optimal initial conditions
I etc.
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Bias correction and MOS-type post-processing

If we have enough training data (past forecasts and observations) to
estimate the respective climatological means µcl ,fcst and µcl ,obs for each
day of the year, we can correct the systematic bias via

x̃ = x − µcl ,fcst + µcl ,obs

Or, we can go one step further and
fit a regression model to forecasts and
observations:

x̃ = µcl ,obs + a · (x − µcl ,fcst),

thus accounting also for forecast skill
and obtaining an adjusted forecast x̃ .
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Bias correction and MOS-type post-processing

These regression-type (“MOS”) adjustments
I result in mean squared error optimal forecasts
I can be extended to include additional predictors
I can be adapted to weather variables that require certain restrictions

(non-negativity, etc.)



Ensemble post-processing
The same kind of correction can also be applied to ensemble forecasts:



Ensemble post-processing
For ensembles, the spread needs to be adjusted in addition to the mean:



Ensemble post-processing
Approaches to ensemble post-processing:

I Kernel dressing methods, Bayesian Model Averaging (BMA)
I Nonhomogeneous Gaussian Regression (NGR, “EMOS”)
I Bayesian processor of Ensemble
I Similarity-based (“analog”) techniques
I Member-by-member approaches
I etc.
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Probability forecasts

Probability forecasts for events (e.g. “rainfall amounts exceed 10mm”) can
be derived from calibrated ensemble forecasts or predictive distributions.

Or, event probabilities can be modeled directly, e.g. via logistic regression:

logit
(
P(y > 10mm)

)
= β0 + β1 · x

Example:

60 to 72-h Precipitation accumula-
tions over Seattle during the winter
season.



Logistic regression and extended logistic regression

Logistic regression fits a separate model for each threshold:

Extended logistic regression links the different threshold probabilities and
estimates a joint model, thus yielding again a full predictive distribution.



Multivariate post-processing
Consider a probabilistic forecast of a multivariate quantity, where
multivariate may refer to different variables, or the same variable at
different time points and/or locations in space.

Example: Temperature forecasts at Denver for lead times up to 72-h



Multivariate post-processing
Applying the post-processing techniques discussed above yields calibrated
forecasts at each lead time separately. How can we re-create forecast
trajectories with adequate temporal correlations?
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Using multivariate information from raw ensemble forecasts

Ensemble copula coupling (ECC):
Idea: retain the
ordering (and
thus the rank
correlations) of
the raw ensemble
forecasts but
replace their
values by those
derived from the
calibrated margi-
nal distributions.

Special case:
member-by-
member
calibration



Using multivariate information from past observations

Schaake Shuffle:

Proceed as with ECC, but use the rank order of past obervations at the
same or similar days of the year instead of the ranks of today’s ensemble
forecasts.

Similarity-based Schaake Shuffle:

Use again observation ranks but select the historic dates based on
similarity of the respective forecasts.

Statistical dependence models:

Fit a statistical dependence model (Gaussian copulas, Gaussian random
fields) using forecast error statistics at historic dates.



Two main approaches for multivariate post-processing

1. Use multivariate information from raw ensemble forecasts

+ flow-dependent,
physics-based
correlations

+ potentially different
correlations for
different forecast
magnitudes

– spurious correlations in the raw
ensemble may be amplified

– multivariate features that are not
resolved by the NWP model are
not accounted for

– ensemble size limits the representa-
tiveness of multivariate features

2. Use multivariate information from past observations

+ more realistic error
structures

+ downscaling of
dependence
information

– multivariate information is not
flow-dependent

– extra efforts are required to model
correlations that depend on the
forecast magnitude
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Bivariate example: ECC vs. Schaake vs. SimSchaake

24 hour ahead
EMOS-calibrated
temperature
forecasts (in °C)
at Vienna and
Bratislava valid
on 9 July 2011,
1200 UTC.

Image courtesy
of Roman
Schefzik.



Probabilistic forecasts of rare events
Fitting a logistic regression model for high thresholds becomes
increasingly difficult:

Parametric assumptions can mitigate the problems that come with
modeling rare events, but limited training sample size remains a concern.
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Options for getting a sufficiently large training sample

1. Reforecasts!

+ no compromises, no biases
+ ideally cover several years, thus variations in climatology
– expensive

2. Regional post-processing, supplemental locations, random field
models that link locations statistically

+ can reduce the need for
reforecasts

– linking/combining less
than perfectly similar
locations entails biases

Image courtesy of Tom Hamill



Example: Loss of skill relative to a 11-year training sample
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Brier skill
scores for
an EMOS-
type post-
processing
method for
precipitation
amounts.



Rare event verification / Guide to immoral post-processing

Public and media attention usually focus on predictive performance for
the subset of cases where some high impact event has happened, e.g.

“Bad data failed to predict Nashville Flood”
NBC, 2011

Clearly, these cases are of higher public interest than more ’ordinary’
events. Scientifically, however, a verification strategy for probabilistic
forecasts of the form

I select the cases where the outcome was extreme
I discard all non-extreme cases
I proceed with the evaluation using standard proper scoring rules

is very problematic!

It discourages honest forecasting and encourages exaggeration.



Example: Bad verification rewards cheaters
Consider again the 60 to 72-h precipitation forecast dataset for cool
season precipitation over Seattle. We use cross-validation (leave out one
of the 12 years of data at a time) and compare two forecasters:

1. Dan: calibrates the GEFS
forecasts via extended
logistic regression

2. Mike: scales Dan’s predictive
distributions by a factor 1.5

Precipitation accumulation
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Continuous part of Dans's predictive distribution

Precipitation accumulation
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Continuous part of Mike's predictive distribution

all cases
CRPS: Dan 1.15
CRPS: Mike 1.24
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CRPS: Dan 1.15 2.31 5.02 8.70 19.5
CRPS: Mike 1.24 2.41 4.51 6.98 13.5
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