

Weather data for agriculture Holly Dail Staff Researcher

©2015 The Climate Corporation, All Rights Reserved.

Rapid developments in hardware, data, and modeling are enabling new precision agriculture tools

©2015 The Climate Corporation – All Rights Reserved

Remote sensing enables field health monitoring

Color scale is constant throughout the season to allow tracking of biomass accumulation.

Identify subfield changes across time that may require corrective action.

Weather

Numerical Weather Models

Multi-Sensor Derived Data

Field

Public, MON and TCC Trials

As Harvested Maps

Other Variables plant tissue samples crop phenology as-applied maps topography

Soil

Variables soil chemistry and texture soil moisture soil temperature

-

Imagery

Types multispectral & hyperspectral ground, air and satellite based coarse to fine spatial resolution

Weather data are critical for agronomic models

Accurate, real-time weather data are needed for operational planning

Can I work my fields today?

Will it be calm enough to spray?

Should I plant drought-resistant seed?

Is the crop dry enough to harvest?

Data requirements for precision agriculture

Feature	Requirement	Unique aspects
Variables	Temperature Dewpoint / relative humidity Precipitation amount (QPE) QPF and PoP Direct and diffuse solar insolation Wind speed and direction; gust risk Soil moisture and temperature Snow cover (depth, SWE)	Near-surface focus (< 1 m)
Critical datasets	Analyses with uncertainties Ensembles / multi-model ensembles Forecast uncertainty Precipitation QPE, QPF High-resolution forecasts in near real-time	Accuracy in rural areas Crop-land representations

Data requirements for precision agriculture

Feature	Requirement		Unique aspects
Spatial resolution	As high as possible		Rural focus
Temporal extent	~30 years ago to several years in the future		Need for consistency across all timescales
Frequency	Reconstructions Backcasting Nowcasting Short-range Medium-range Subseasonal Seasonal	daily hourly 5 to 15 minutes hourly daily weekly monthly	Diurnal cycle at all timescales

Reforecast dataset requirements

- Storage approach:
 - Same methodology as production system \rightarrow same error structure
 - Updated with each model version change
 - Available on public servers
 - Structured for automated download and ingest
- Reforecast characteristics
 - Full spatial resolution
 - Temporal resolution appropriate to use case
 - e.g. for short-range, 3-hourly reforecasts okay
 - Production frequency appropriate to use case
 - medium-range: prefer every 5th day for 5 years to every day for 1 year
 - seasonal: higher-frequency supports pseudo-ensembles

We contribute to, and rely on, open source

NumPy Base N-dimensiona array package

Matplotlib Comprehensive 2D Plotting

Sympy Symbolic mathematics pandas Data structures & analysis

SciPy library

Fundamental

computing

IPvthon

Enhanced

IP[y]:

IPython

library for scientific

Interactive Console

Python 'properscoring' crps_ensemble crps_gaussian crps_quadrature brier_score threshold brier score

Docs » N-D labeled arrays and datasets in Python © Edit on GitHub

N-D labeled arrays and datasets in Python

xray is an open source project and Python package that aims to bring the labeled data power of pandas to the physical sciences, by providing N-dimensional variants of

☆ 〇 표

CLIMATE FIED VIEW

QUESTIONS?

Thank you. hdail@climate.com

©2015 The Climate Corporation, All Rights Reserved