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Why do post-processing?

 Create more accurate deterministic forecasts
 Remove systematic error
 Magnitude, location, timing

 Combine information from multiple models
 Downscale to user-relevant times and location

 Supply uncertainty information
 Error bars, PDFs, set of exemplars

 Predict derivative quantities
 Rare, high-impact, or multivariate events
 Decision support products

 “Good forecast” depends on the application



Consensus Weather Forecasting

•Use ensemble of NWP and MOS forecasts to 
construct more accurate predictions

•bias adjust to account for systematic error
•average using weights based on input forecast accuracy 
and independence

Bias-corrected 
input forecast



TWC 2nd Generation – In Operations Today
Ensembling concept applied to 

4km global grid
Model gradients used to 

interpolate from model grid 
resolution

Model data transformed to 
consumer weather variables

(Bourgouin, 2000) precipitation 
typing

(Knapp, et al 2006) 
Thunderstorm Potential Index

(Rasmussen, 1998) 
visibility and probability 

of fog

Global observation grid built 
using a combination of BCDG 

and Inverse Distance 
Weighting

Weights and bias adjustments 
occur via gradient descent (GD), 

or “nudging”

Produces 32 million global 
points, hourly forecasts to 16 

days, 17 variables

BIG DATA



TWC 2nd Generation - Limitations
Requires retention of 150 TB of 
forecast and observation data

Interpolation of observations to 
grid results in information loss

Interpolated observations and 
forecasts drive imprecise 

tuning of weights and biases

Inclusion of additional 
parameters/models requires 
significant engineering effort

Influence of bad observations 
is not easily corrected

Not straightforward to 
experiment with new weight 

and bias adjustment schemes
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TWC 3rd Generation
Preserve native resolution 

through final forecast creation 
- don’t pre-process models

Weight and bias calculated at 
observation points using local 

performance data

New empirics mathematics –
EMA Constrained, Regularized 

Regression (EMA-CRR)

Reduced operating costs –
lower storage requirements

Influence of bad observations 
is easily corrected

Addition of new models is 
straightforward
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KPDK forecast: 4C

KPDK observation:

+LAMP MOS ✔

+UKMO model ✔



Constrained Least-Squares Regression

 Compute bias from last M days

 Compute error covariance matrix

 Choose weights via the quadradic program

(e.g., via MATLAB’s ‘quadprog’)

site

Biases
Forecast Error 
Covariances

compute

historical database

Input 
Forecasts
“Truth” 

Observations

linear 
regression

“optimal”

Biases
Weights



Exponential Moving Average (EMA)

 Compute bias with learning rate γ (exponential decay 1 – γ)

 Compute Γ with learning rate η



Regularization

 Construct “aggregate” covariance …

 … and add a regularization term (“ridge regression”) 



Method Summary: EMA Constrained, Regularized 
Regression (EMA-CRR)

(1) Dataset: M days of forecasts and observations
(2) EMA : biases b (rate γ) and error covariances Γ (rate η)
(3) Γ Aggregation: give neighborhood sites weight α
(4) Regularization: inflate Γ diagonal by factor β
(5) Constrained solution: solve the quadratic program

(1) Spreading: interpolate weights and biases from 
observations to arbitrary forecasts points

(2) Integration: produce consensus forecast via



Evaluation
 Temperature at 1200+ CONUS sites

 0-72 hour forecasts from 22 NWP model and MOS inputs
 0900 UTC forecast generation time
 November 14, 2014 – January 2, 2016, some missing days

 “Spin up” November 14 – December 31, 2014
 Evaluated January 1, 2015 – January 2, 2016

 Parameters chosen by sensitivity tests on selected 
odd lead hours (not shown)
 M = 91, γ = 0.05, η = 0.03, α = 0.7, β = 0.1

 Evaluated RMSE on even forecast lead hours



• EMA-CRR and GD consistently 
better than equal weights

• EMA-CRR better than GD all but 6 
days 

GD
EMA-CRR

EMA-CRR RMSE (smaller values better)

• EMA-CRR and GD consistently better 
than equal weights

• EMA-CRR consistently better than GD

GD
EMA-CRR

Daily RMSE Lead hour RMSE



EMA-CRR RMSE Site Comparisons
darker shading  greater improvement

Median site improvement is 5.1%
(all but 1 site are improved)

Median site improvement is 3.0%
(all but 4 sites are improved)

EMA-CRR RMSE as % of 
Equal Weights RMSE

EMA-CRR RMSE as % of 
GD RMSE



Convective Nowcast Model/Radar Blending: 
Correcting Phase Errors
 FAA “CoSPA” system 

methodology
 Identify storm “objects” in 

NWP model and radar VIL
 Compute displacements and 

their trends
 Adjust model forecast 

intensity and storm locations 
 Compute weighted average 

with extrapolated radar 
based on lead-time

 Could a similar method be 
applied to temporal phase 
errors? Or creating “crisper” 
consensus forecasts?

Blending: symmetric extreme dependency 
score. From Sun et al., BAMS, 2014.
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Blending 

Blending Extrapolation and Model
Extrapolation Forecast 

Blended Forecast  (12-20 UTC)

Extrap

Model 

Dash : 15 to 00 UTC
Solid : 00 to 15 UTC

Calibration + Phase Corr

Radar Mosaic Model

Observations @ 1700  UTC

Presenter
Presentation Notes
Extrapolation – skill function of scale (finer scales are removed).
Model – Calibrated – to reduce intensity biases
          - Phase-corrected – to reduce position errors
Weights – Determined from past performance which has shown cross over around 4 hrs - model has more weight during storm growth period. 



Artificial Intelligence Methods “Family Tree”
lots of options to choose from ….

Artificial Intelligence / Computational Intelligence

“Soft” computing

Expert Systems

Fuzzy 
Logic

Machine Learning / Stat. Learning / Data Mining

Statistics

DRT
Decision/R
eg. Trees

Supervised Learning Unsupervised 
learning

Mathematics

Optimization Theory

Decision 
Trees

ANN
Art. Neural 
Networks

SVM
Support Vect. 

Machine

RF
Random 
Forests

KNN
k-Nearest 
Neighbors

FCM
Fuzzy c-

means clust.

PCA
Principal 

Comp. Anal.

GA
Genetic 

Algorithm

SA
Simulated 
Annealing

SOM
Self-organ. 

map

RL
Reinforc. 
Learning

NBC
Naïve Bayes 

Class

PR
Poly. Reg-

ression



• Very general method for creating predictions
• Uses “training set” of predictor variables and associated 

labels (for classification) or values (for regression)
 Tree strained with random subsets of data and predictors

• Produce estimates of predictor “importance” 
• “Votes” are calibrated to create reliable probabilities or 

deterministic predictions

Decision Tree Method: Random Forest (RF)

Vote: 1

E.g.,  40 votes for “0”, 60 votes for “1”

Data pt.

Tree 1

Vote: 0

Data pt.

Tree 2

Vote: 0

Data pt.

Tree 3

Vote: 1

Data pt.

Tree 4

Vote: 0

Data pt.

Tree 100

…



En-route Aviation Turbulence

 



En-route Aviation Turbulence
• NWP models don’t resolve aircraft-scale turbulence (~10 to 100+ m)

 TKE shows poor correlation with aircraft observations
• Compute a set of turbulence “diagnostics” from 3-D model output

 Richardson number, vertical wind shear, structure function EDR, …
 + Proximity to VIL, echo top, cloud top height contours, …

• Train using aircraft turbulence observations as “truth”
 Under-sample null turbulence cases, then recalibrate trained model
 Train separate combinations for different altitude bands

ROC curves for 
moderate or 
greater turb.

GTG_ma
x
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Ellrod1

DTF3

FRNTGth

UBF

CLIMO

TEMPG

NCSU1

NCSU2

EDRS10

VWS - NVA - SATRi

GTG
20060204 i18 f006

Merging a variety of 
turbulence diagnostics

into “Graphical 
Turbulence Guidance”

6 h forecast valid at 5 Feb 2006 00Z



RF Calibration to EDR
• RF models trained on even Julian days and evaluated on odd, and 

vice-versa, 64 cross-evaluations in all
• Calibration maps from vote distribution to a target EDR distribution

Calibration 
for 35 - 50 kft

RF votes 
distribution

Target EDR 
distribution

See Williams, 
Machine Learning, 
2014

Votes
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Spatio-temporal 
relational 

probability trees 
(SRPTs) and 

Random Forests 
(SRRFs)

• Object relational approach
• Work with Amy McGovern, 

DJ Gagne at OU
• Example schema for near-

storm turbulence prediction
 Method searches through 

methods and thresholds 
for useful “splits” when 
building trees

 trees output probabilities



Forecasting Convection
• Used random forest 

methodology to predict VIL 
at each pixel

• Truth: radar VIL advected
backwards to be 
coincident with antecedent 
observations

• Predictors: model and 
satellite data

• Used importances to 
choose regimes, predictors

• Outperforms competitive 
nowcasts

Predicting 
Convective 

Initiation
Max CSI Max TSS AUC

2h simple 
extrapolation

0.005 ±
0.002 0.17 ± 0.05 0.60 ±

0.03

CoSPA (2h) 0.012 ±
0.005 0.12 ± 0.03 0.56 ±

0.02

LAMP 1-3h 
(2hr)

0.023 ±
0.006 0.56 ± 0.03 0.83 ±

0.01

2h RF 0.032 ±
0.011 0.68 ± 0.02 0.91 ±

0.01
CSI = Critical Success Index, TSS = True Skill Score,
AUC = Area Under the ROC Curve



Forecasting MCS 
Initiation

• MCSs are hazardous to the 
public and significant for aviation

• MCS-I: 125-km buffer around  
VIL > 3.5 kg m-2 with extent ≥ 100 
km (allowing gaps ≤ 10 km)

• Dataset undersampled no-MCS-I 
cases

• RF used to create 2-hour MCS-I 
forecasts based on (smoothed) 
HRRR, satellite, and extrapolated 
radar

• Forward-backward variable 
selection used to select 
predictors 

From Ahijevych et al., WAF, 2016



M5’ Trees (Quinlan 1992): Cubist
• Regression using categorical and continuous predictors
• Automatically creates “rules”, with multi-linear predictive 

function for each
 i.e., can identify significant “regimes” for prediction

• E.g. for computing electrical load, simplified:
if    LocalHour in {13, 14, 15, 16} 

UtcDayOfWeek in {0, 1, 2, 3, 4}

Temperature >= 18.502

then  obLoad = 3.051 + 1.029 Temperature
- 0.0018 Cloud_cover

• Aggregates applicable rules to make predictions
• Can be run in “committee” mode 



Cubist for Net Load 
Forecasting

• Predictors include Month, 
Day of Week, Holiday, 
Local Hour, Season, 
temperature, probability of 
precip, dew point, cloud 
cover, EMA temperatures 
…

• Trained daily on previous 
load obs, applied to 
following week’s forecast

• Load obs dataset begins 
1 Sep 2012

• Results from 1 Oct 2013 
– 30 Sep 2014 

MAPE = 1.95%
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Week-ahead MAPE  = 2.88%



Forecast
System

Ensemble
Members

Probabilistic
Impact Forecast

(gridded)

deterministic realizations of potential weather outcome

pdf

for each airspace based
on all ensemble members

e.g., Number of Airlines     
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1 2 3

for each member
(overlay grid)

for each airspace (gridbox)

Weather Pattern
Analysis from an

Aviation Perspective

permeability, MinCuts, etc. How many air lanes fit through
evolving precipitation patterns?

Post-processing Ensembles for Decision Support 
slide courtesy of Matthias Steiner, NCAR



New way . . .

average 2 lanes 2 lanes 2 lanes

How many air lanes? Most likely 2 air lanes . . .

Old way . . .
Weather hazard

Post-processing Ensembles for Decision Support (2) 
slide courtesy of Matthias Steiner, NCAR



Crowdsourcing

• Contests for methods development
• Dataset preparation is a huge barrier to methods development
• Methods comparisons requires using exactly the same data
• Contest model: 

– Publish datasets and frame learning goal(s), verification metrics
– Evaluate methods based on holdout datasets 
– Declare a winner: cash prize will encourage entries 
– E.g., AMS AI contests, Kaggle

• “Markets” for real-time forecasting
• Prediction markets have proven valuable in many domains
• Fantasy sports, why not fantasy weather!

– Amateur forecasters put their money on different outcomes
– Consensus is likely a good synthesis of available information



Summary and Conclusion
•The Weather Company is implementing a new-generation 
forecast

• Point-based enables longer obs and model history
• New EMA-CRR method produces more skillful weights

•Appropriate post-processing may be use-specific
• Phase error correction
• AI methods to accommodate flexible predictors and predictands
• Calibration to event probabilities
• Decision support applications may ensemble outcomes from weather 

response model run on individual realizations or exemplars
•Crowdsourcing for model development or even forecasting
•There is unlikely to be a single “best method”

• User requirements and metrics differ
• Ensemble of methods may be useful
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