

Ben Root
Senior Scientific Programmer
Atmospheric and Environmental Research, Inc.
ben.v.root@gmail.com

The Future of Statistical Post-processing in NOAA and the Weather Enterprise
Jan. 19-22, 2016

©2016, CC-Attribution-3.0 Unported license

Best Practices for Building and
Using Community Software

Repositories

What is Community
Software?

●All development is performed openly
●Anybody can review any aspect of the project
●Anybody can submit patches
●No “membership requirement” to be a part of the
community

Seven Habits of Highly Effective
Community Software Projects

1. Mailing list/Stack Overflow discussions for users

2. Issue Tracker (bug reports, feature requests)

3. Code reviews / Enhancement proposals

4. Timely responses

5. Unit Tests

6. Documentation

7. Accessible Community Software Repository

Version Control Systems

● CVS
● Subversion
● BitKeeper
● Bazaar
● Mercurial
● Git

Git

Git

“If that doesn't fix it, git.txt contains the phone
number of a friend of mine who understands git.
Just wait through a few minutes of 'It's really
pretty simple, just think of branches as...' and
eventually you'll learn the commands that will
fix everything.”

https://xkcd.com/1597/

Git
● Considerations

● Training
● Expertise (to guide new users)
● Export of existing non-git projects
● Documented workflow (e.g., GitFlow)

● Resources
● http://software-carpentry.org/lessons/
● https://www.atlassian.com/git/tutorials/comparing-workflows/
● http://nvie.com/posts/a-successful-git-branching-model/

http://software-carpentry.org/lessons/
https://www.atlassian.com/git/tutorials/comparing-workflows/
http://nvie.com/posts/a-successful-git-branching-model/

What are Community
Software Repositories?

●It is where the community collaborates!
● GitHub
● Gitorious / GitLab
● Apache Allura
● Atlassian BitBucket

Community Software
Repositories

● Navigable view of your projects
● Access control (groups, members, etc.)
● Issue Tracker
● Wiki
● Code Reviews
● Web Hooks
● Major productivity boost

● https://www.openhub.net/p/matplotlib

https://www.openhub.net/p/matplotlib

Code Reviews
● a.k.a. RFCs, Merge Request, Pull
Requests

● Anybody can submit
● Anybody can comment
● Only members can accept and merge
● Example:

● https://github.com/matplotlib/matplotlib/pull/4686

https://github.com/matplotlib/matplotlib/pull/4686

Web Hooks

● Trigger actions on each Pull Request
● Unit Tests (TravisCI, GitLab-CI,

JenkinsCI, etc)
● Test Coverage Reports (Coveralls, etc.)
● Documentation builds (devdocs)
● Binary releases (Appveyor)

Large File Support
● Tough to define threshold
● Highly dependent upon situation

● Frequency of updates to “large files”
● How many “large files”
● Binary or text-like (e.g., .shp, .svg, .eps)

● Version control is notoriously bad at handling these gracefully
and efficiently

● GitHub and GitLab both support “git-lfs”, which keeps chosen
files on third-party serivces like DropBox

● Clone of a LFS repository is tiny until calling git lfs fetch

Conclusions
● Change how we usually think of software
development

● People outside NOAA can help
● Avoid silo'ed code – utilize git's strengths to
foster collaboration between Ops and
researchers

● Solutions for handling large files are still being
developed

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

