SELERE STORMS LABORATORY **Forecasting a Continuum of Environmental Threats (FACETs)**

ATIONAL

S DEPARTMENT of COMM

FACETs is...

SEVERE STORMS

DEPARTMENT of COMMUNIC and ATMOSPHERIC

RATOR

ATIONAL

- A proposed modernization of the NWS's >40-year old, deterministic, product-centric, WWA paradigm.
- A product of NOAA's Weather Ready Nation and a means of achieving WRN goals.
- An organizing framework for R2O.

FACETs is...

SEVERE STORMS

DEPARTMENT of COM

RATOR

ATIONAL

- A science-driven paradigm delivering a continuous stream of high-res, probabilistic hazard information (PHI) extending from days to within minutes of event.
- Optimized for user-specific decision-making through comprehensive integration of soc

Future of Severe Weather Services: Changing the Starting Point

Moving from "binary" polygon watches/warnings to Probabilistic Hazard Information (PHI)

- Grid-based threat probabilities.
 - Legacy warnings/watches "fall out."
 - New messages possible.
- Not only for tornadoes.
 - Winter weather, hail, lightning, flooding, etc.

Use of NWP Model Guidance in Operational Severe Storm Forecasting

- Prediction of Severe Storm Phenomena
 - Tornadoes, large hail and severe wind are not explicitly resolved by traditional models (NAM, GFS, RAP)
 - Severe weather forecasts historically based on environment and precipitation fields
 - Pattern, CAPE, shear, precipitation, sounding examination
 - These represent pre-convective and near-storm environments

500 mb Height, Temp, Isotachs

PMSL, CAPE, 6 km Shear, 3 km SRH

NSHARP Skew-T Sounding Analysis

Use of NWP Model Guidance in Operational Severe Storm Forecasting

- Prediction of Severe Storm Phenomena
 - Tornadoes, large hail and severe wind are not explicitly resolved by traditional models (NAM, GFS, RAP)
 - Severe weather forecasts historically based on environment and precipitation fields
 - CAPE, Shear, precipitation, sounding examination
 - These represent pre-convective and near-storm environments
 - Over the last decade, explicit storm attribute fields have been extracted from convection-allowing models (CAMs)
 - Provide information about convective mode, intensity, structure & evolution

Simulated Reflectivity: Discrete Cells

Simulated Reflectivity: Quasi-Linear Structure

Convection-Allowing Ensemble Systems

- Convective storm prediction is inherently probabilistic
- Ensemble approaches provide a range of possibilities and information about likelihood of occurrence
- SPC Storm-Scale Ensemble of Opportunity (2011)
 - Requires grids from all members for post-processing
- Post-processing techniques
 - Hourly Maximum Fields; Neighborhood Probabilities

Spaghetti: Simulated Reflectivity >40 dBZ

Hourly Max from any Member: UH

Neighborhood Prob: UH>25 m2/s2

Post-Processing Data Requirements for Convective Storm Analysis & Prediction

- Consistent derived environment (CAPE, etc.) and explicit storm attribute computations across platforms (obs, NWP)
- Environmental & Pattern Data
 - SREF/GEFS (hourly output) and HREF Data (15 min output)
 - 2-D grid of pattern/environmental fields
 - Full vertical resolution point soundings
 - Environment examples:
 - CAPE/CIN (SB, ML, MU parcels); layer specific (e.g., 0-3 km, -10C to -30C)
 - Bulk Shear (0-1 km, 0-3 km, 0-6 km, effective layer)
 - SRH (0-1 km, 0-3 km, effective layer)
 - SCP, STP composite parameters
 - Reforecast/Retrospective Data
 - Minimum one year per ensemble member for one cycle (00Z, 12Z...)

Fost-Processing Data Requirements for Convective Storm Analysis & Prediction

- HREF Data Storm Attribute Fields (@Full Horiz. Resolution)
 - 3-D grid of simulated reflectivity (15 min output)
 - 2-D storm attributes (15 min output)
 - Object ID and tracking
 - Open feature vector formats (e.g., JSON, GeoJSON)
 - Value is saving feature-time information
 - Examples of Hourly Maximum Fields (HMFs hourly output)
 - Reflectivity (1 km AGL, composite)
 - Maximum Updrafts/Downdrafts in lowest 400 mb
 - Updraft Helicity (low- and mid-level)
 - 10-m Wind
 - Severe Hail, Severe Wind, Tornado, and Lightning Diagnostics
 - As CAM and CAM Ensemble data extraction and development of new diagnostics progresses, unified post should be designed to easily add new guidance fields

Post-Processing Data Requirements for Convective Storm Analysis & Prediction

- Storm Attribute Fields/Objects
 - WoF and next-generation HREF Output
 - 4-D storm object attributes (5 min output)
 - Explore object identification and tracking algorithms
 - Potentially reduce output volume
 - Data fusion machine learning to combine real-time storms and analyses
 - Combine observed storm attributes (MYRORSS) with NWP
 - Exploit "in-the-model" computation of variables/diagnostics rather than post-processing
 - For very-fine scale variability in convective phenomena
 - Tornadoes, hail, damaging wind, and lightning
 - Captures fine temporal resolution evolution reducing I/O requirements
- HREF reforecast/retrospective data
 - Minimum of 12 total months of active severe weather periods
 - Should encompass multiple seasons/possibly multiple years

Fost-Processing Data Requirements for Convective Storm Analysis & Prediction

- Calibrated Probabilistic Guidance Development
 - Large dependency on observed severe storm data base for "truth"
 - Database contains many strengths/limitations (some non-meteorological)
 - Will need to explore blended event databases that include:
 - Local Storm Reports/Storm Data
 - Remotely Sensed Severe Weather Occurrence (e.g., MRMS)
 - Lightning Data
 - Rapidly Updated Analysis (RUA diagnosis of storms & environment)

Hail Reports from LSRs (Green Dots) and Practically Perfect Hindcast Probability

Hail Tracks from MRMS-MESH and Practically Perfect Hindcast Probability

[#] Post-Processing Data Requirements for Convective Storm Analysis & Prediction

- Specialized Calibrated Probabilistic Guidance Development
 - At SPC focused on severe and fire weather missions
 - Extraction of specialized fields/creation & testing of new diagnostics
 - Center-led post-processing of SREF, CAM & CAM ensemble guidance for SPC and NWS operations
 - partnership that builds upon decades-long SPC experience for specialized guidance
 - Calibrated probabilistic guidance for Lightning, Lightning Density, Total Severe, Individual Severe Hazards
 - Dissemination of specialized guidance throughout NWS and enterprise
 - Probabilistic impact forecasts to support consistent science-based IDSS

24-h Calibrated Tornado Probability 28 Apr 2014

24-h Calibrated Hail Probability 27 May 2014