Post-processing Activities in WPC, Probabilistic Techniques, and Data Requirements

Mark Klein Science and Operations Officer - WPC

NOAA Statistical Post-processing Workshop January 19, 2016

Topics

- Current WPC post-processing activities
- Future considerations (1-5+ years)

WPC PQPF and Probabilistic Winter Precipitation Forecast (PWPF) methodology

- A binormal probability density function (from Toth and Szentimrey, 1990) is used to construct the PQPFs and PWPFs
 - QPF cannot be represented by a simple normal distribution
 - PDF consists of two normal curves that meet at the mode, with differing variances to the left and right of the mode
- Leverages the strengths of the human forecaster and ensembles
 - WPC deterministic forecasts of snow, freezing rain, and rain accumulations are considered the "most probable" solution and assigned as the mode of the distribution
 - The multi-model ensemble supplies the variance of the distribution
 - Placement of WPC forecast (mode) determines the skewness
- Computed at each grid point (20km CONUS grid), then PRISM-downscaled to 2.5km (PWPFs) or 5km (PQPF)
- Probabilities of exceedance and percentile accumulations calculated from the resulting PDFs

Creating the PQPF/PWFP Probability Density Function

Post-processed set bounds: PWPF: 12th %ile < WPC < 88th %ile PQPF: 7th %ile < WPC < 93rd %ile

Downscaling Techniques

- Using 2.5km resolution 1971-2010 daily PRISM climatology
 - More realistic representation of QPF in mountainous regions, especially cold season
 - Disadvantages
 - Provides little added value for lake effect situations
 - Will perform more poorly in non-climatological situations
- Utilizing high-resolution NWP
 - Advantages
 - More realistic representation of QPF in mountainous regions, especially cold season
 - Depicts banded lake effect precipitation
 - Better handle non-climatological patterns in terrain
 - Disadvantages
 - Only an "ensemble" of 3 deterministic models
 - Limited forecast projections

20km resolution vs 2.5km PRISM-downscaled 90th percentile of 24-hour snowfall

Consensus Downscaling Technique

- Based on combination of PRISM downscaling (up to 50% weight over Western 1/3 of CONUS) and consensus downscaling (up to 50% weight) of convection allowing models (NAMnest, High Res Window ARW, High Res Window NMB)
- Initial objective verification shows improvement over PRISM downscaling alone

Synthesizing Model Guidance

Spaghetti plots

Day 7 500mb 558 dam contour from ECMWF/GFS/CMC deterministic and ensembles, including verification (white)

GEFS/ECENS Ensemble clusters

Day 5 PMSL/1000-500mb thickness

Medium Range Forecasting

 Coarse resolution models are bias-corrected and downscaled to 2.5km using the URMA in a "decaying average" scheme

1º GFS Max Temp

Downscaled/bias corrected GFS Max

Downscaled/bias corrected forecaster-preferred model blend

Forecaster-modified Blend Max

Ensemble Situational Awareness Table (ESAT)

- Ensemble guidance contains very useful information, but how can forecasters extract the important information?
- The ESAT fills this role, enabling forecasters to identify the potential for high impact weather from NAEFS and/or GEFS ensemble products
- Compares NAEFS (GEFS) forecasts to reanalysis (model) climatology to assess both likelihood and significance of an event
- Output forecast products include:
 - Standardized anomalies
 - Percentile forecasts
 - Return Intervals
 - Probability of extreme events (outside reanalysis climatology)

GFE Extreme QPF Awareness Tool

- STI Extreme QPF Project
 - Multi-SOO/ESRL/CIRES team chartered to develop a tool to improve situational awareness of forecasting extreme precipitation (top 1%) events
- Compares NWP and WPC QPFs to NOAA Atlas 14 Annual Return Interval (ARI) rainfall data
- Fully integrated into AWIPS 2 GFE

Prototype (below) displays return interval associated with highest QPF in the grid area

	— ×				÷				v	W ALLA	SIPSU		м				E>	treme	QPF
File Duration	1 hr 3 hr																		
n	6 hr			Dec 18 (Fri)			Dec 19 (Sat)				Dec 20 (Sun)				Dec 21 (Mon)				
1	12 hr	в <u> </u>	06 12 18			06 12 18				06 12 18				06 12 18					
AllBlend	24 111	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CONSAII		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ECMWFHiRes		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Fcst		10	25	50	100	200	500	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	
GFS		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HIRESWarwWest		0	0	0	0	0	0	0											
HIRESWnmmWest		0	0	0	0	0	0	0											
MOSGuide		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NAM12		0	0	0	0	0	0	0	0	0	0	0	0	0					
SREF		0	0	0	0	0	0	0	0	0	0	0	0	0					
SuperBlend		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
WPCGuide																			
																	, ,		

Product and Data Requirements (1-2 years)

- *Operational* products from GEFS reforecast data set
- PWPF/PQPF
 - Incorporation of high-resolution ensemble guidance
 - User-specified ensemble membership
 - Regional blending techniques (e.g. use higher resolution models for LES situations)
- Additional post-processing, including:
 - Improved methods for utilizing ensemble products for QPF
 - Coalesced mean?
 - Probability-matched mean QPF
 - IVT (atmospheric river prediction)
 - Neighborhood probabilistic fields
 - Tools displaying joint probabilistic fields to better conceptualize potential impacts, e.g. probability of snowfall rates >1"/hour during rush hour.

Product and Data Requirements (2-5 years)

- Drive toward more probabilistic output and products
 - Extreme Forecast Index (EFI) products
 - Day 8-10 temperature and precipitation outlooks
 - Incorporation of hydrologic parameters to augment prediction of flash floods
- Increased focus on IDSS
 - Tools to measure uncertainty/predictability and provide forecast confidence information to users
 - Additional tools to synthesize the output of model data
- Toth concept Interactive Forecast Editing tool
 - Make targeted changes to a single parameter; using ensemble covariance data, tool propagates change across multiple variables
 - Similar to UKMO's Metmorph tool

Summary

- Majority of WPC's operational product suite incorporates a unique blend of forecaster input and objective computing
 - PWPF/PQPF
 - Forecaster → Mode of the ensemble distribution
 - Post-processing → Binormal method to create suite of products
 - Medium Range
 - Pre-processing \rightarrow Downscale/bias correction of coarse resolution models
 - Forecaster → Determine preferred blend and target regional changes
 - Post-processing → Day 3-7 Max/min temperatures, dew point, sky and weather at 2.5km
- Multiple ongoing efforts to mine critical data (ESAT and GFE Extreme QPF tools)
- Future post-processing will be tailored for IDSS, more impact-based guidance, for example:
 - Probability of 1" snow at rush hour in a populated region
 - Probability of minimum temperatures below freezing at Day 9

Extra Slides

Synthesizing Model Guidance

Plume Diagrams

GFS/ECMWF/CMC ensemble 850mb temperature forecasts from 00Z 12 Jan 2016

Downscaling Techniques

PRISM

- Uses 2.5km resolution 1971-2010 daily PRISM climatology
- Process for QPF
 - 1. Smooth PRISM grid to 40km (WPC forecaster draws QPF contours at effectively ~40km)
 - 2. Compute ratio of unsmoothed to smoothed PRISM values
 - 3. Multiply this ratio by the WPC QPF \rightarrow downscaled QPF
- Constraints
 - Minimum correction factor determined by monthly-varying lower bound (.3 in winter to .9 in summer). Allow more terrain influence in the cold season
 - Maximum factor is 80% of the maximum value on the grid (to limit overcorrections to the original QPF)
- Provides realistic representation of QPF in mountainous regions, especially cold season
- Disadvantages
 - Provides little added value for lake effect situations
 - Will perform more poorly in non-climatological situations

Day 3-7 Post-processing

- Coarse resolution models are bias-corrected and downscaled to 2.5km for temperature, winds (only speed bias-corrected) and dew point
- Bias correction and downscale vector for each parameter use a "decaying average" scheme incorporating the URMA as the analysis

DV|Bias = (1-w)*Dvprior|Biasprior + w*(MODEL – URMA)

- MODEL: GDAS for DV
- w = decaying weight:
 - DV \rightarrow Winds 10%, Dew point 1%, Temperature 2%
 - Bias correction \rightarrow 4% for all variables

PWPF Ensemble Composition

63 members total (equally weighted)

- 26 SREF members
- 25 ECMWF ensemble members, randomly selected
- 1 NAM operational run
- 1 GFS operational run
- 1 ECMWF operational run
- 1 Canadian Global Model (CMC) operational run
- 1 ECMWF ensemble mean
- 1 GFS ensemble mean
- 5 GFS ensemble members, randomly selected
- WPC deterministic forecast