

The Path to Operations

Rebecca Cosgrove Implementation and Data Services Branch NCEP Central Operations

January 19, 2016

Outline

- Implementation Process
- Computing Platforms
- Data Availability
- Dissemination Options

Implementation Process

Implementation Process Stage 1: Development

- Get necessary approvals for your project first
 - requirements-based
- Come talk to my team early in the lifecycle of your project!
 - May be able to help run some of your testing or retrospective runs in the "white space"
 - Review software with SPA team
 - Discuss data needs and dissemination strategy
 - Review NCO Implementation Standards
 - http://www.nco.ncep.noaa.gov/pmb/docs/Implementation%20Standards%20v10.0.pdf
- Scientific review and approval prior to code handoff

Implementation Process Stage 2: Transition to Operations

- Submit project quad chart and resource usage to IDSB Chief one year in advance to be included in planning
 - For new applications, or those greatly expanded in scope, will need approval of the High Performance Computing Resource Allocation Council (HPCRAC)
- "EE (Environmental Equivalence) Coordination Meeting"
 - Meet with IDSB teams to discuss your application and all data-related items
 - Scheduled roughly 3 months before you submit your final code
- Once final code has been delivered:
 - IDSB conducts IT testing
 - Confirm it conforms to NCO standards
 - Run through test cases
 - Try to stress or break the application
 - Try to tune the application to maximize resources
 - IDSB conducts 30-day stability test
 - No changes to application during this period
 - Output is provided to user base for evaluation
- Conduct NCEP Director briefing to obtain approval to implement
- Development Organization must commit to providing tier 3 support

Computing Platforms

NOAA R&D HPCS Overview

Development HPC

Systems Integration Contract (CSC)

- May 2010-May 2019 / \$317M / IDIQ
- 9 yrs with 4-yr base, 4-yr option, 1-yr transition

Systems Configuration

Theia - Fairmont, WV (Zeus Replacement)

- -Short-term/seasonal/inter-annual predictions
- -1,024 teraflops Cray
- –1 petaflop fine-grained system to be installed Q3
- Jet Boulder, CO (NOAA Skaggs Facility)
 - -Hurricane forecast improvement
 - -722 teraflops Aspen & Cray
- Princeton, NJ (NOAA/GFDL)
 - -Climate post-processing and analysis
 - -106 nodes (8 core Intel Xeon) Dell

Performance Measures

- Minimum 96.0% System Availability
- Minimum 99.0% Data Availability

Research HPC

Interagency Agreement (DOE/ORNL)

- Aug 2009-Aug 2016 / \$108M / Cost Reimbursable
- 5 year agreement extended 2 years

Systems Configuration

Gaea - Oak Ridge, TN (Oak Ridge National Lab)

- -Climate change research and projections
- -1,100 teraflops Cray (C1 + C2)
- C1 decommissioned April, C2 decommissioned February
- -1,400 teraflops Cray (C3)

Titan - Oak Ridge, TN (Oak Ridge National Lab)

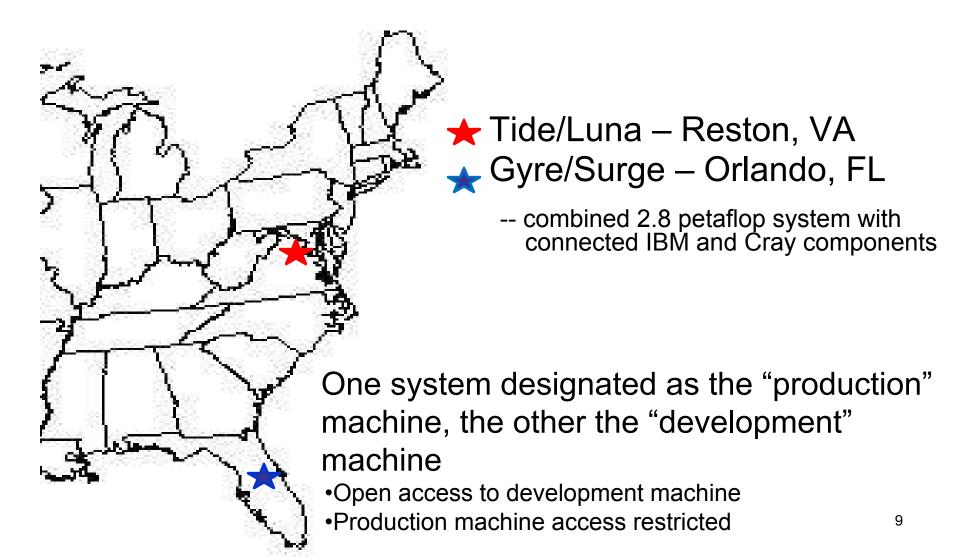
- -Applications for next generation architectures
- 500 teraflops allocation of 27,000 teraflops
 Cray using Nvidia Graphics Processing Units

Performance Measures

- Minimum 96.0% System Availability
- Minimum 99.0% Data Availability

R&D HPCS Allocation for Theia

Theia allocations assigned by Allocation Committee


Sandy Supplemental Theia Allocation

Portfolio	Percent	Avg. Monthly Allocation	Portfolio Managers	Backup
			1	niago Quirino and Molly
AOML	25	4,339,690	John Cortinas	Baringner
			Andrew	
EMC	29	5,034,040	Ostapenko	Mary Hart
ESRL	29	5,034,040	Kevin Kelleher	Forrest Hobbs
GFDL	9	1,562,288	Brian Gross	Frank Indiviglio
NESDIS	5	867,938	Sid Boukabara	Krishna Kumar
NOS	3	520,764	Jesse Feyen	Mary Erickson
Sum	100	17,358,760		

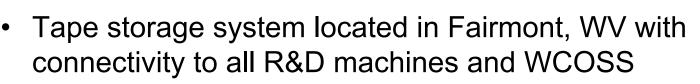
WCOSS

Weather and Climate Operational Supercomputing System

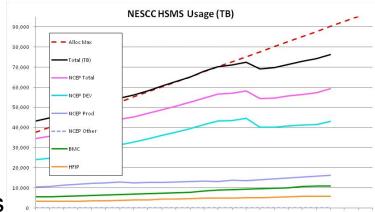
WCOSS

Weather and Climate Supercomputing System

		Tide/Gyre		Luna/Surge	
WCOSS Components	Task Order 002 IBM Phase I July 2013	Task Order 002 IBM Phase 2 Jan 2015	Task Order 003 IBM July 2013	Task Order 004 (Cray) Nov 2015	Totals
Compute NODES	440	1,080	180	2,048	3,748
Compute Racks	9	15		12	
Spare Nodes	20	18		30	68
Peak TFs	167	599	64	2,060	2,890
Cores (Compute and Service)	7,040	25,920	2,880	50,176	86,016
Spare Cores	320	432		768	1,520
Processor Type	Intel Sandy Bridge	Intel Ivy Bridge	Intel Sandy Bridge	Haswell & Sandy Bridge	
Processor Clock Speed	2.6 Ghz	2.7 Ghz	2.6 Ghz	2.6 Ghz	
Cores/node	16	24	16	24	
Service Nodes	54	58		100	212
Memory/core	2 GiB	2.66 GiB	2 GiB	2 GiB	
Disk Storage (useable)	1.152 PB	2.034PB	1.438 PB	3.5 PB	8.124 PB
Shared Storage	259 TB	266TB		300 TB	825 TB
Backup Tape Capacity	600 TB				600 TB
Interconnect Fabric	Mellanox FDR	Mellanox FDR	Mellanox FDR	Mellanox FDR	
Operating System	Red Hat Linux	Red Hat Linux	Red Hat Linux	CRAY and SUSE Linux	
Filesystem	GPFS	GPFS	GPFS	GPFS	
Scheduler	LSF	LSF	LSF	LSF	
Workflow Scheduler	ecFLOW	ecFLOW	ecFLOW	ecFLOW	



Data Availability



HPSS

High Performance Storage System

- Space is allocated by project, but we are nearing capacity
- Developers can save any data they choose within their quota
- NCO sends input data and operational output to HPSS as the "runhistories"
 - Input data needed to rerun models
 kept forever, and select output for 1 to 2 years
 - Catalog of datasets: <u>http://www2.nco.ncep.noaa.gov/pmb/docs/runhist.html</u>
 - Note that what is saved is being revisited due to HPSS being at capacity

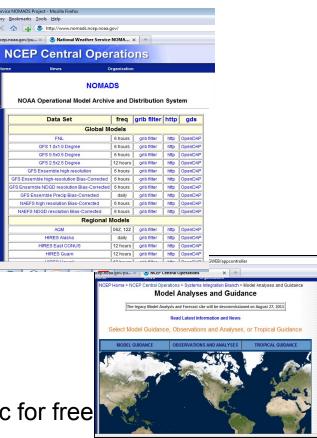
ARTMENT OF

Data on WCOSS

- Input Data (resides in /dcom for up to 10 days):
 - Real-time satellite data
 - Real-time observational data in "tanks" in BUFR format
 - NCEP/EMC submits code to NCO that controls the content of the tanks
 - Other US and international modeling centers' model output (some restrictions apply)
 - FNMOC, Air Force, ECMWF, CMC, UKMET
 - Data from the IDP system MRMS, MADIS
 - Radar and precipitation amount data
- NCEP Production Suite model output data (resides in "/com" directories for 2 to 60 days, depending on model)
- Operationally-critical data is mirrored to development machine, and a subset sent to Theia

Dissemination Options

Outgoing Data


- Major data destinations:
 - NWSTG
 - NWS FTP server, aka "tgftp", which includes National Digital Guidance Database (NDGD)
 - AWIPS2 and NOAAPORT
 - International Partners via GTS
 - Direct Dissemination to Partners
 - Pathways to NCEI

NCO Dissemination Systems

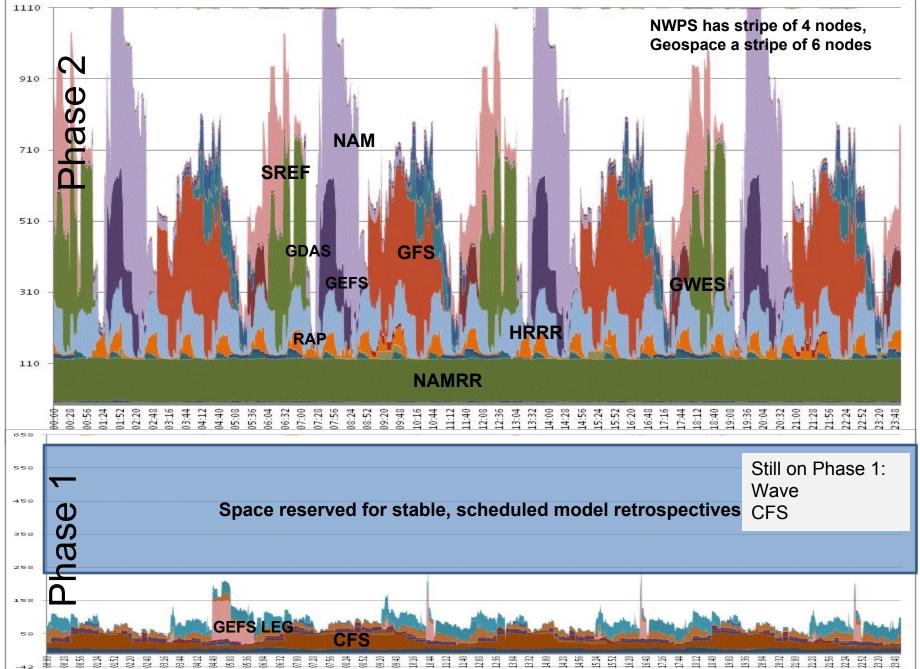
- NCEP FTP server, aka "ftpprd"
- NOMADS, providing "slice and dice" capability
- CONDUIT dissemination to university community
- MAG imagery from WCOSS applications

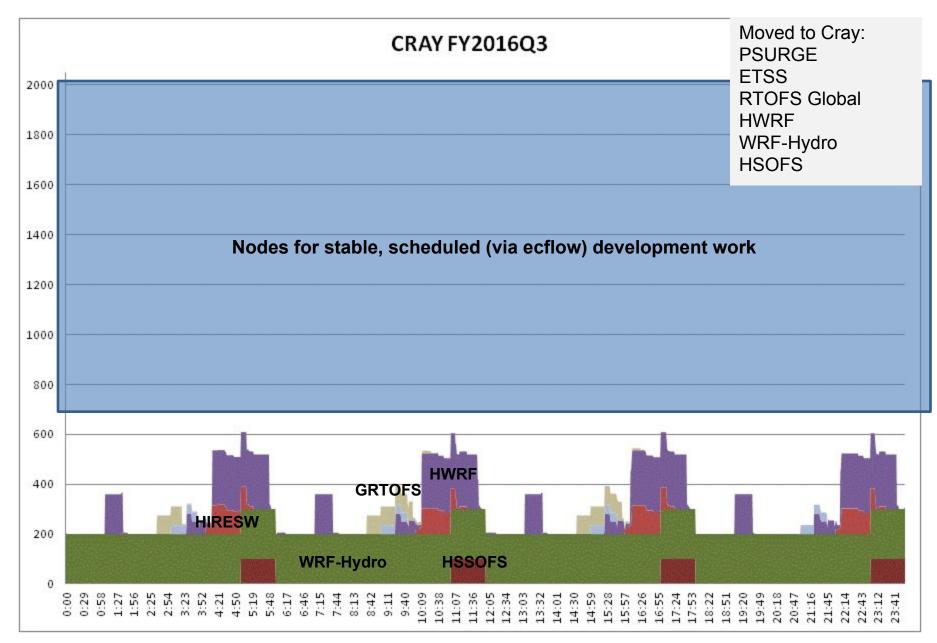
NCEP Centers/NAWIPS/AWIPS2

- Integrated Dissemination Program (IDP) System
 - nowCOAST and other GIS systems
- The majority of our data is made available to the public for free
 - Exception is restricted data that can not be widely distributed

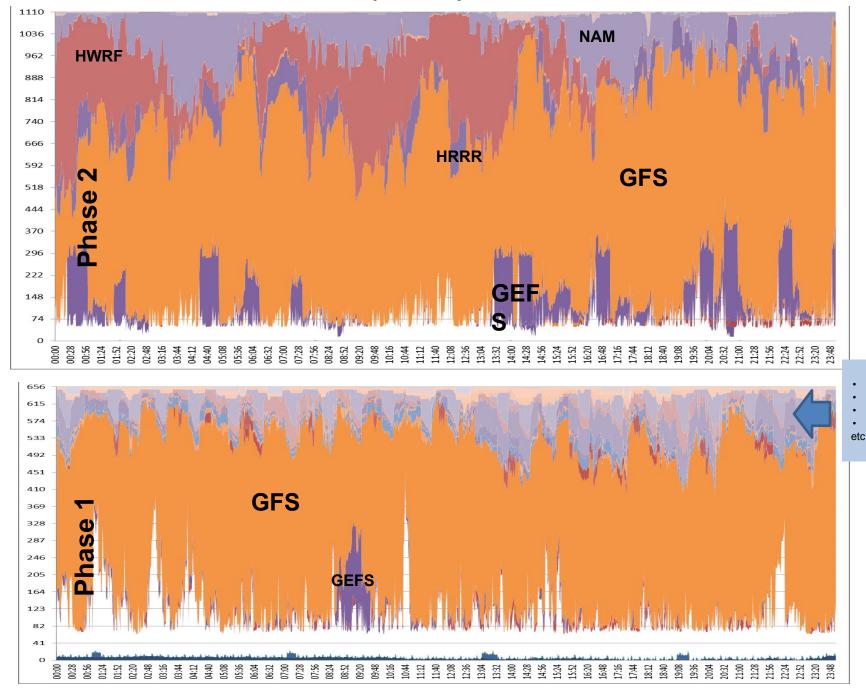
- HPSS tape system is nearing capacity
- R&D network is full
- Disk space on WCOSS has been allocated
- Making data available to users may require large amounts of disk space on ftp servers
- All facets of the IT infrastructure must be considered when planning/funding your projects!

Questions?


rebecca.cosgrove@noaa.gov



Backup Slides


Projected Operational IBM Node Usage by end of FY16Q3

Projected Operational Cray Node Usage by end of FY16Q3

Development System - 12/9/2015

Geospace

NOS models

RAP

NWPS