

Probabilistic Hazard Products Using a Time-Lagged HRRR Ensemble and RUA as a Necessary Validation Data Set

20 January 2016

Curtis Alexander, Trevor Alcott, Isidora Jankov, Steve Weygandt and Stan Benjamin

NOAA/ESRL/GLOBAL SYSTEMS DIVISION

The Future of Statistical Post-Processing in NOAA and the Weather Enterprise

Research to Reduce Disasters and Enhance Resilience

Moore, OK Tornado 20 May 2013

1,150 homes destroyed

Yarnell, AZ Wildfire 30 June 2013

19 firefighter fatalities

Colorado Floods 9-15 September 2013

Atlanta, GA Snowstorm 28 January 2014

10,000 properties damaged or destroyed

\$75 million in insurance claims

RAP/HRRR: Hourly-Updating Weather Forecast Models

 \bigcirc

Project Overview

Multiple runs from the HRRR can provide additional forecast insight and can be grouped into categories:

> Run-to-run consistency (at least 3 consecutive runs)

- More common in strongly-forced events and can enhance forecast confidence
- Solution, on limited occasions, could be erroneous, particularly in more weakly-forced events

> Trend in guidance towards a particular solution (3 or more consecutive runs)

- Examples including increasing convective initiation/coverage
- Forecasters should be judicious when extrapolating trends

> Trend (at least 3 consecutive runs) then an abrupt change to a different solution/trend

- First run after convective initiation
- First run assimilating new RAOB data (00/12 UTC)
- Latest GFS cycle used (10/22 UTC)

> No consistency and no trend with 3 or more consecutive runs with very different solutions

HRRR Forecast Consistency Example

HRRR-TLE

- 4

Project Overview

Challenge:

- > About 5 trillion bits of data from a single 15-hr HRRR forecast
- How to extract most useful information for forecasters?

Goal:

- > Automated monitoring of hourly-updating model forecasts
- Measure run-to-run consistency/trends in forecasted hazards
- Provide accurate measure of confidence (uncertainty) for hazards

How:

- Post-process model output (computationally inexpensive)
- Create multi-run ensemble of HRRR (and other) forecasts
- Identify forecasted hazards (heavy rainfall, snow bands, severe storms)
- > Form probabilistic gridded guidance of the hazards and bias correct for statistical reliability

 \bigcirc

HRRR Time-Lagged Ensemble (HRRR-TLE)

Deterministic HRRR:

- > High-resolution forecast provides small-scale details
- Hourly-updating with fresh forecast always available
- Time-Lagged Ensemble (HRRR-TLE):
- Leverage runs in ensemble of opportunity
- Form hazard likelihood probabilities
- Less small-scale detail
- Proxy for confidence/certainty
- > Underdispersive
- HRRR Ensemble (HRRRE):
- More expensive ensemble
- More spread/dispersive/skill

HRRR-TLE Severe Weather Example

 \bigcirc

ullet

HRRR-TLE Severe Weather Example

11 Hour Forecast Valid 00z 23 May 2011

 \bigcirc

HRRR-TLE Aviation Weather Example

- General convection problem (aviation application) 90 km search radius
- \geq 1 m/s upward vertical motion in model column
- ≤ 2K best lifted index

HRRR-TLE

HRRR Convective Probability Forecast (HCPF) → HRRR-TLE product

 \bigcirc

HRRR Model Improvements (HRRRv2)

HRRR component improvements to address warm/dry bias in RAPV2/HRRRv3

Component	Items
GSI Data Assimilation	Canopy water cycling Temp pseudo-innovations thru model boundary layer More consistent use of surface temp/dewpoint data
GFO Convective Parameterization	Shallow cumulus radiation attenuation Improved retention of stratification atop mixed layer
Thompson Microphysics	Aerosol awareness for resolved cloud production Attenuation of shortwave radiation
MYNN Boundary Layer	Mixing length parameter changed Thermal roughness in surface layer changed Coupling boundary layer clouds to RRTMG radiation
RUC Land Surface Model	Reduced wilting point for more transpiration Keep soil moisture in croplands above wilting point

HRRR Model Improvements (HRRRv2)

2013 Warm Season (June-August)

HRRR 0-6 hr precipitation forecast Difference against Stage IV

 \bigcirc

HRRR Model Improvements (HRRRv2)

2014 Warm Season (June-Augu:

HRRR 0-6 hr precipitation foreca Difference against Stage IV

 \bigcirc

HRRR Model Improvements (HRRRv2)

HRRR 6h fcsts from 01JUN - 31AUG 2015 HRRR - StageIV Diff (Precipitation Total) **2015** Warm Season (June-Augu: HRRR 0-6 hr precipitation foreca ٤s **Difference against Stage IV** 12 Reduction in high precipitation bias -1000 -875 -750 -625 -500 -250 -125 125 250 375 500 625 750 875 1000 -375 **Moist** Dry HRRR-TLE \bigcirc

 \bigcirc

• 20 Jan 2016 • **13**

 \bigcirc

 \bigcirc

HRRR Model Improvements (HRRRv2)

Statistical Improvement in QPF skill Reduction in bias from 2014 to 2015 Particularly at higher thresholds

• 20 Jan 2016 • **14**

HRRR-TLE Development: Bias Correction

PQPF Product Development

Bias Correction

Frequency Bias Correction Using "Quantile Mapping"

Adjust model forecast climatology to observation climatology for a particular threshold (1 in / 6 hrs)

 \bigcirc

HRRR-TLE: Real-Time Bias Correction

Efficient, real-time bias correction is possible with a small training dataset

Want to limit sample size to single season or even weather regime

 \bigcirc

HRRR-TLE Development: Spatial Filtering

Spatial Filter Size

- Minimize forecast phase error penalty (larger filter)
- Minimize forecast forcing variability in complex terrain and different weather regimes (smaller filter)

40-60 km appears sufficient Note: Forecast valid at a point

 \bigcirc

Spring 2015 HRRR 2-8-h QPF vs Stage-IV QPE

HRRR-TLE: Web Products

Real-Time Web Graphics

http://rapidrefresh.noaa.gov/hrrrtle/

Current Probability Products

6-hr QPF

1-hr snowfall rate

6-hr snowfall accumulation using variable-density model precipitating hydrometeor information

el: HRRRX Probability (Experimental) Omain: Full O Date: 08 Jan 2016 - 192																
			Valid Time													
			Fri	Fri	Fri	Fri	Fri	Sat	Sat	Sat	Sat	Sat	Sat	Sat	Sat	
			19	20	21	22	23	00	01	02	03	04	05	06	07	- 1
	All	Loop						F	orecas	t						
	times		00	01	02	03	04	05	06	07	08	09	10	11	12	
all fields			00	01	02	03	04	05	06	07	08	09	10		12	all fields
0.10" / 6 hr precip	1	1							06						12	11/1//2015 00 UTC HRRRX Probability of 6-hr Precipitation > 1 in (%) 12-hr forecast ending 11/1//2015 12:0
0.25" / 6 hr precip	1	~							06						12	
0.50" / 6 hr precip	1	1							06						12	
1.00" / 6 hr precip	1	1							06						<u>12</u>	
2.00" / 6 hr precip	1								06						12	
3.00" / 6 hr precip	1	1							06						12	
1.0" / 6 hr snowfall	1	1							<u>06</u>						<u>12</u>	
3.0" / 6 hr snowfall	1								06						12	
6.0" / 6 hr snowfall	1	1							06						12	
.5"/hr snowfall rate	1	1	00	01	02	03	04	05	06	07	08	09	10		12	
.0"/hr snowfall rate	1	1	00	01	02	03	04	05	06	07	08	09	10		12	
	1		00	01	02	02	04	05	06	07	00	00	10	44	10	

• 20 Jan 2016 • **19**

HRRR-TLE: Project Timeline

Product Development Timeline

Engage National Center Testbeds

HRRR-TLE

0

Organization/Experiment	Hazards	Platform	Timeline
WPC WWE	PQPF, Snowfall, Snow Rate	NAWIPS and web site	January 2016
NSSL/SPC EFP/EWP	Tornadoes, Hail, Wind	NAWIPS and AWIPSII	May 2016
WPC FFaIR	Refined PQPF and FF guidance	NAWIPS	June 2016
AWC Summer Experiment	Initial aviation hazards: ceiling, visibility, convection	NAWIPS	August 2016
WPC WWE	Refined winter hazards and PQPF	NAWIPS	January 2017
NSSL/SPC EFP/EWP	Refined severe weather guidance	NAWIPS and AWPSII	May 2017
WPC FFaIR	Refined FF guidance	NAWIPS	July 2017
AWC Summer Experiment/OPG	Refined aviation hazards	NAWIPS and AWPSII	August 2017
Initiate NCO 'on-boarding"	All	IDP	September 2017

HRRR-TLE: Product Development

Product Development Methodology

<u>Hazard</u>	<u>Proxy</u>	<u>Truth</u>
Heavy rainfall	QPF	Stage-IV / MRMS
Snowfall rate	Microphysics-based	ASOS visibility
Precipitation type	Microphysics-based	ASOS type
Accum Snow	Explicit snow depth	Point observations
Severe wind	80-m hourly max wind or 10-m gust	METAR/mesonet observations
Large hail	Column graupel, updraft speed, ?	MESH
Tornado*	Updraft helicity	Post-processed MRMS rotation tracks
Visibility/Ceiling	Post-processed field in development	ASOS or future CIMSS technique

 \bigcirc

HRRR-TLE: Leading to HRRRE (HREF)

HRRR-TLE: Summary

- Three-year USWRP-Funded HRRR Time-Lagged Ensemble Development
- Producing Probabilistic Hazard Prediction Guidance
- Ensuring Statistically Reliable Probabilities
- Engaging NCEP National Centers and Participating in Testbed Evaluations
- Transition to Operations Plan
- Experimental Real-Time GRIB2 LDM/FTP Feed Available
- > Web Page Graphics Also Available
- > An Evolutionary Step on the Path to Full 3-km Data Assimilation and Forecast Ensemble

RUA: Necessary Validation Data Set

Work to develop and implement a 3-D Rapidly Updating Analysis (RUA) to unify NOAA nowcasting capabilities to meet needs for situational awareness information and forecast verification.

- RUA unifies all nowcasting (0-h) components shown in the NWS figure, using observations from:
 - 3-D radar (via MRMS and CASA), including reflectivity and radial wind
 - surface observations (including mesonet via MADIS)
 - satellite observations including cloud and land-surface
 - all-sky cameras, including cloud fraction
 - all other observations assimilated by operational NWP systems, including
 - those used by the HRRR
- state-of-the-art 3-D data assimilation (DA) using GSI including a 3-D cloud/ hydrometeor analysis.
- background from very short-range HRRR model forecasts for IOC, to be replaced by a
- HRRR-related ensemble forecast representation for the Medium Operating Capability (MOC).