Precipitation Identification Near the Ground

age Loaded: 4/22/2013 19:25 UTC

ar							
200			۱ F	lci	inc	5 1	mPIN
200				5	311		
201	11		Da		40		n Fore
201			Πd		uu		ΙΓΟΓ
							Typ
4							Тур
11							
18		20	21		23		
25		Kir	nb	er	ly l		Elmore
					-		
our		He	at	he	r d	1.	Grams
l							
Out							

Jsing mPING Data to Generate andom Forests for Precipitation Type Forecasts

Kimberly L. Elmore, OU CIMMS & NOAA/NSSL, Heather M. Grams, OU CIMMS & NOAA/NSSL,

						Show Hiand Active Window Duration	
			Dav	id	IJ	John Gagne II, OU	
							4
			Wet Snow				1

Can We Significantly Improve Forecast Ptypes Using AI Techniques?

- Generate a Random Forest classifier that uses forecast soundings at mPING observations for each model
- Use mPING obs at closest model grid point ± 30 min from the forecast valid time to evaluate
- Random forests generated from the RAP, NAM and GFS every 6 h out to 18 h lead time

- use pressure-level data (native vertical coordinate

Dizie o data unavailable)

Precipitation Identification Near the Ground

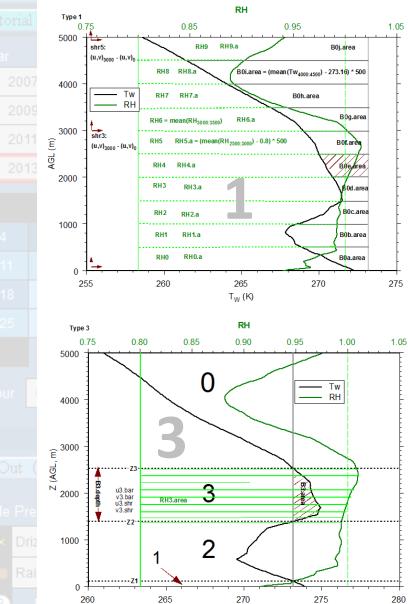
eports itorial

Training and Testing Data

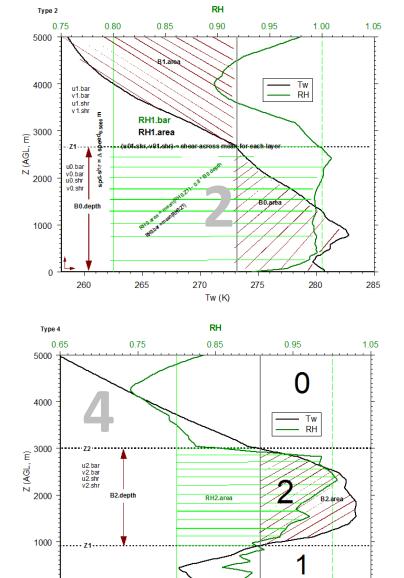
- Jan Feb Mar
- Divide training and testing by hours with no hours common to either set
- Training data consist of 80% of the hours of available data, testing of the remaining 20%
- 6X more data from the RAP because it runs hourly to generate 6, 12 and 18 h forecasts while NAM and GFS run only every 6 h.
- Random forests "tuned" to yield Bias ~ 1 for all ptype categories

21

The PING Project Random Forest Attributes



T_w (K)



270

T_w (K)

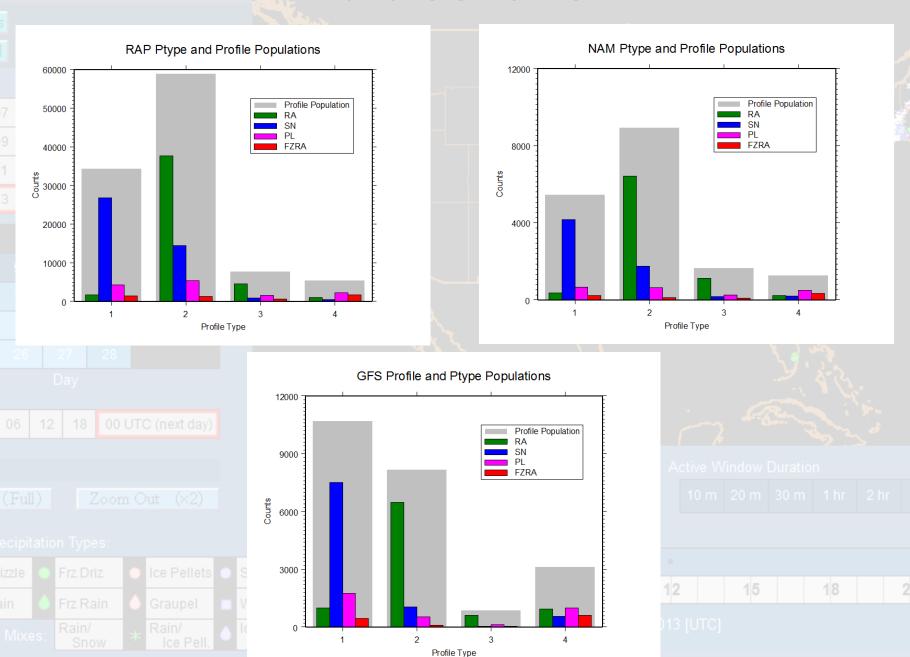
265

275

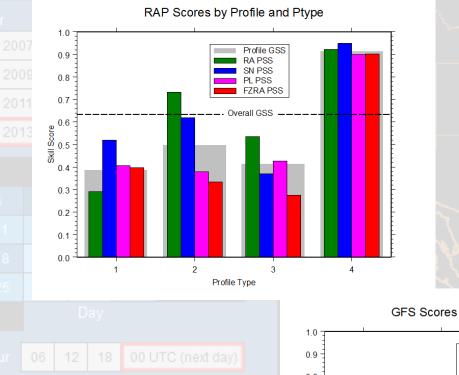
280

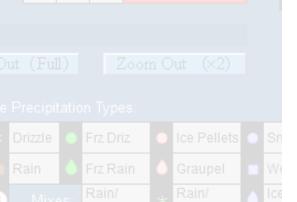
recipitation Identification Near the Ground

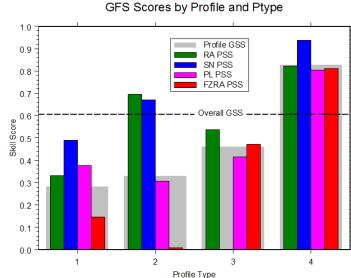
Data Set Size

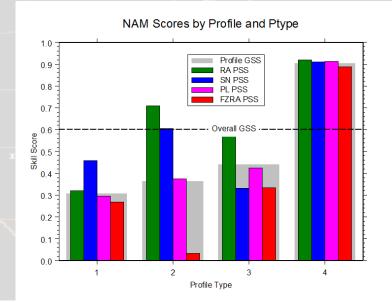


How Well do Random Forests Perform?



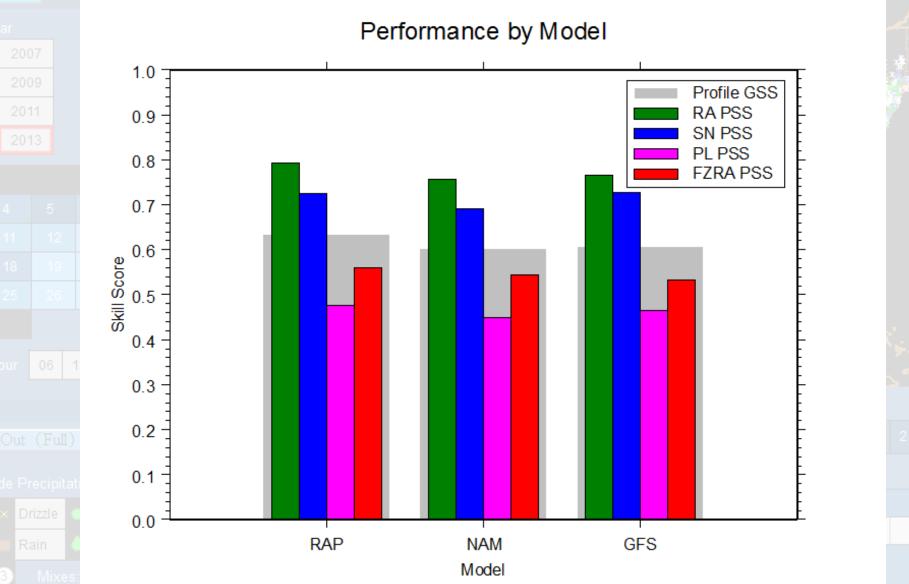






						6 h					
12		15		18		21					

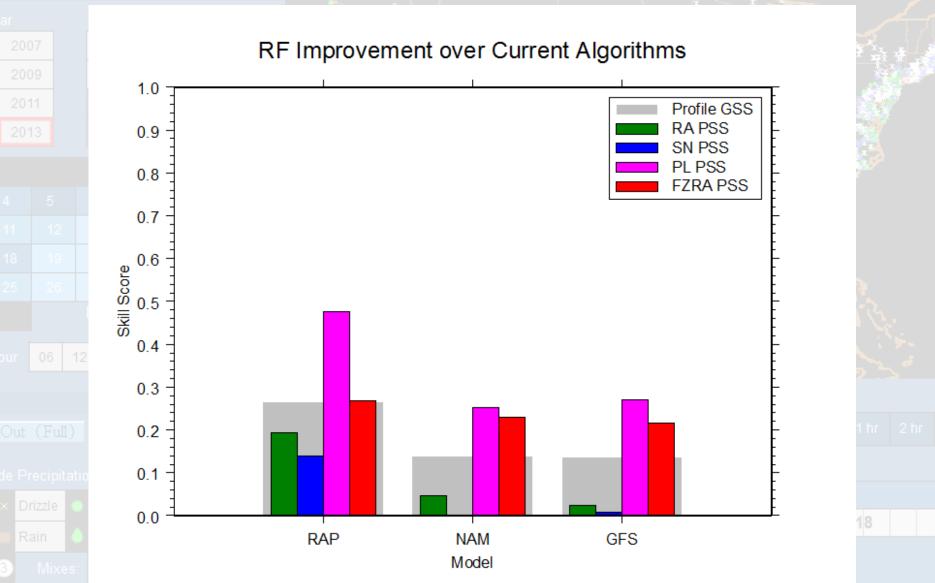
Aggregate Random Forest Performance



ne Find Fluged

eports Itorial

Random Forest Improvement



Not Much Difference Between Models!

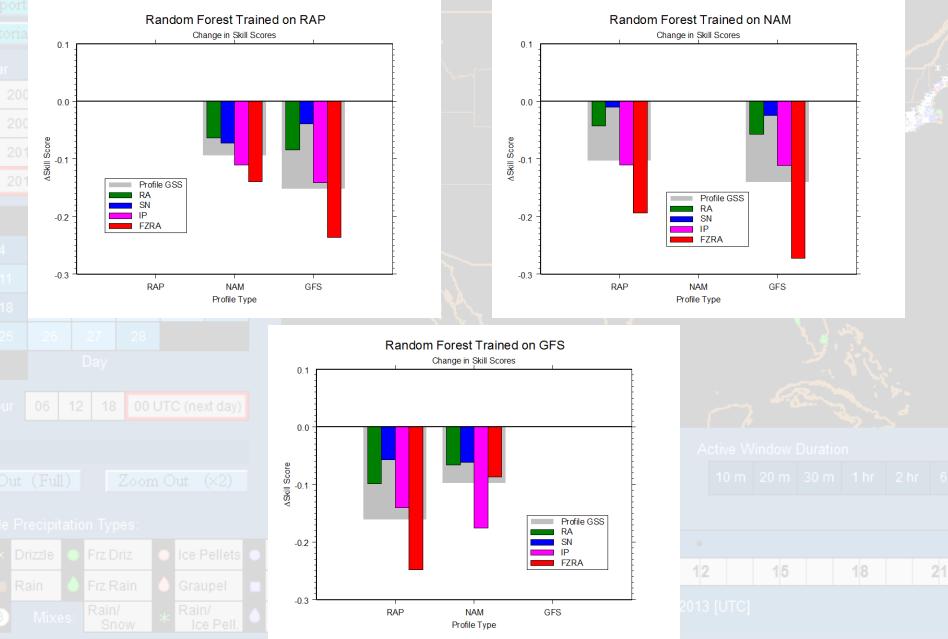
- How can we tell if we actually have different random forests?
 - Feed attributes from a model different from that used to train the forest
 - If there's no difference between the forests, performance should be independent of the source model used to generate attributes because similar forests should result from similar attributes.

Judge the difference by how the scores behave

×					
				Wet Snow	
3					

2/16/2013 [UTC]

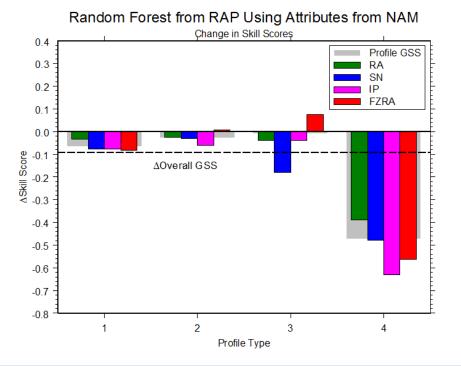
And Results show...



Precipitation Identification Near the Ground

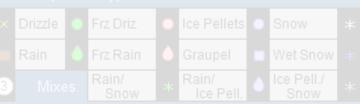
ports torial

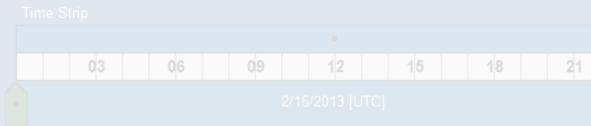
Details of Degradation



Random Forest from RAP Using Attributes from GFS Change in Skill Scores 0.4 Profile GSS 0.3 RA SN 0.2 IP FZRA 0.1 0.0 0- 0.2 2.0- ⊽ 2.0- ⊽ ∆Overall GSS -0.4 -0.5 -0.6 -0.7 -0.8 2 3 4 1 Profile Type

e Precipitation Types:





The PING Project Precipitation Identification Near the Group

Conclusions

- Random forests applied to forecast soundings are effective at generating skillful forecasts of surface ptype
 - Random forests are able to extract essentially equivalent information from different forecast models
 - The random forest for each model, and each profile type is unique to the particular forecast model
 - Random forests developed using a particular model suffer significant degradation when given attributes derived from a different model
 - Implies that no single algorithm can perform well across all forecast models
- Random forests extract information unavailable to "physically based" methods because the physical information in the models does not appear as we expect
- Ptype results from the classic "warm nose" (Type 4) profile are most sensitive to the forecast model, but this profile is also the one for which random forests are most skillful

• What's next? Ptype probabilities!

2/16/2013 [UTC]