Using mPING Data to Generate
Random Forests for Precipitation
Type Forecasts



Can We Significantly Improve Forecast
Ptypes Using Al Techniques?

e Generate a Random Forest classifier that uses
forecast soundings at mPING observations for
each model

 Use mPING obs at closest model grid point + 30
min from the forecast valid time to evaluate
Random forests generated from the RAP, NAM
and GFS every 6 h out to 18 h lead time

— use pressure-level data (native vertical coordinate
data unavailable)



Training and Testing Data

Divide training and testing by hours with no
hours common to either set

Training data consist of 80% of the hours of
available data, testing of the remaining 20%

6X more data from the RAP because it runs
hourly to generate 6, 12 and 18 h forecasts
while NAM and GFS run only every 6 h.

Random forests “tuned” to yield Bias ~ 1 for
all ptype categories



Random Forest Attributes
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Data Set Size

RAP Ptype and Profile Populations NAM Ptype and Profile Populations
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How Well do Random Forests Perform?

RAP Scores by Profile and Ptype NAM Scores by Profile and Ptype
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Aggregate Random Forest Performance

Performance by Model
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Random Forest Improvement

Skill Score

RF Improvement over Current Algorithms
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Not Much Difference Between Models!

e How can we tell if we actually have different
random forests?

e Feed attributes from a model different from that

used to train the forest
— If there’s no difference between the forests,
performance should be independent of the source

model used to generate attributes because similar
forests should result from similar attributes.

e Judge the difference by how the scores behave
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ASkill Score

Details of Degradation

Random Forest from RAP Using Attributes from NAM

Change in Skill Scores
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Conclusions

Random forests applied to forecast soundings are
effective at generating skillful forecasts of surface ptype

Random forests are able to extract essentially equivalent
information from different forecast models

— The random forest for each model, and each profile type is
unique to the particular forecast model

— Random forests developed using a particular model suffer
significant degradation when given attributes derived from a
different model

— Implies that no single algorithm can perform well across all
forecast models

Random forests extract information unavailable to
“physically based” methods because the physical
information in the models does not appear as we expect

Ptype results from the classic “warm nose” (Type 4)
profile are most sensitive to the forecast model, but this
profile is also the one for which random forests are most
skillful

What’s next? Ptype probabilities!
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