
Interoperable Physics Driver (IPD) and
Common Community Physics Package

(CCPP)
Jimy Dudhia (NCAR/MMM) on behalf of DTC’s
GMTB IPD Design Team (Laurie Carson, Grant

Firl, Don Stark with input from Jim Rosinski and
Ligia Bernadet)

NGGPS Physics Workshop 11/09/2016

Definitions
�  IPD - Interoperable Physics Driver – An interface that

separates the physics from the dynamical core in such a way
that the physics is swappable for a given dycore and the
dycore is swappable for a given physics suite
� Also to be usable in standalone mode (single-step column or

unit testing), or as single-column model (time-evolving forcing)

�  CCPP – Common Community Physics Package – Suites of
physics designed to be called from the IPD

History
�  NUOPC PI Team provided guidelines
�  Initial implementation was done for NGGPS to port GFS physics to

various dycores (Patrick Tripp)
�  GMTB, EMC, NUOPC PI teams worked on requirements
�  Here, GMTB is proposing a design to meet the updated

requirements
�  Development of this driver will start at GMTB in close connection

with partners

Overview
�  IPD is geared to column physics only (not Land) to allow for limited definable set of state input variables and

outputs
�  Q: How to deal with 3d physics that either needs area averages as input or distributes tendencies over areas on output?
�  Requirements do not address 3d physics yet
�  A: We will write a column IPD first (since all existing proposed physics is columnwise).

�  IPD functions as an intermediary providing a generic interface for both dynamics and physics
�  Generic in the sense that it has a specified set of input arguments that must be filled by the dycore/solver and

necessary output arguments that must be provided by the CCPP in addition to diagnostic outputs
�  Necessary outputs such as tendencies or updates are required by the model to advance time steps
�  Diagnostic outputs may be dependent more on the CCPP rather than considered necessary for the running of the model, and

are in this sense optional and probably more variable

�  IPD Layer is independent of both the dynamical core and (as much as possible) the underlying CCPP
�  Therefore needs converter layers

�  Dynamics to IPD
�  IPD to CCPP

�  Has its own intermediate state variable names independent of dycore and CCPP
�  IPD’s main operation is to call physics or sub-sets of it as specified by its own call

Overview
�  IPD is geared to column physics only (not Land) to allow for

limited definable set of state input variables and outputs
� Q: How to deal with 3d physics that either needs area averages as input or

distributes tendencies over areas on output?
�  Requirements do not address 3d physics yet
�  A: We will write a column IPD first (since all existing proposed physics is

columnwise).

Overview
�  IPD functions as an intermediary providing a generic interface for

both dynamics and physics
� Generic in the sense that it has a specified set of input arguments that

must be filled by the dycore/solver and necessary output arguments
that must be provided by the CCPP in addition to diagnostic outputs
�  Necessary outputs such as tendencies or updates are required by the model to

advance time steps
�  Diagnostic outputs may be dependent more on the CCPP rather than considered

necessary for the running of the model, and are in this sense optional and
probably more variable

Overview
�  IPD Layer is independent of both the dynamical core and (as much

as possible) the underlying CCPP
� Therefore needs converter layers

�  Dynamics to IPD
�  IPD to CCPP

� Has its own intermediate state variable names independent of dycore
and CCPP

�  IPD’s main operation is to call physics or sub-sets of it as specified
by its own call

NEMS System Architecture Overview

Diagram created by NGGPS Overarching System (OAS) Team

NEMS System Architecture Overview

Diagram created by NGGPS Overarching System (OAS) Team

Diagram from IPD and CCPP: Goals and Requirements Document

Solver1

Dycore1 Interface

IPD

CCPP
Suite a

Solver2

Dycore2 Interface

CCPP
Suite c

CCPP
Suite b

Hierarchical View

Wrapper View

Solver

Dycore Interface

IPD

Physics Interface

Physics
input output

•  Note that each layer has an input and output function
•  IPD has its own pre-defined input and output variables

represented by thicker line – these serve to insulate the physics
from the dycore

A “wrapper” is a
code layer that has
functions both
before and after its
main call(s)

Calling
�  IPD can be called at the sub-task (thread/chunk) level

� Dycore Interface could include multiple calls to IPD depending on
physics required in each call

Solver

Dycore
Interface Dynamics

Dycore
Interface

IPD Some physics IPD More physics

Sub-task level
Local sized arrays
Chunks

start end

time step

IPD Design Diagram

Input
Input and Output
Output

Dycore Interface
Input dycore variables
Subsetting 3d to (i,k), etc.
Conversions to IPD(=units, flipping, staggering, combining etc.)
Fill IPD input state
Calling IPD
Conversions back to dycore(…combining tendencies, etc.)
Fill 3d dycore tendency/update variables
Output dycore variables

CCPP Interface (individual physics driver)
Input IPD variables
Conversions to physics
Fill physics input args
Calling physics
Conversions to IPD
Fill IPD tendency/update arrays
Outputs IPD physics tendencies/updates

IPD
Input IPD variables
Calling CCPP interface(s)
Outputs IPD tendencies/updates

Physics Scheme
Input required variables
Outputs physics tendencies/updates

[dycore index]
refers to native indices
of dycore

[i,k] refers to sub-set
for task/chunk

Diagram credit:
Grant Firl (DTC)

Dycore Interface Conversions (Dycore/
IPD)
�  IPD contains only task-sized (chunked) local arrays (i,k) or (i)
�  Dycore state arrays are 3d (i,j,k) or (i,k,j), or 2d (i,j)
�  “conversions” needed in dycore interface include

�  Subsetting 3d arrays to 2d slices
�  Flipping vertical index (if necessary, maybe IPD can inherit vertical index

direction from dycore)
�  Translating variable names to IPD names
�  Calculating derived variables (e.g. RH)
�  Converting units (e.g. g/kg to kg/kg)
�  De-staggering velocities to physics column center
�  Interpolating to interface levels (e.g. T, z, and p)

�  Reverse of some of these is needed after IPD, e.g. operating on
tendencies/updates

�  Note that many of these operations can be combined for efficiency, e.g.
translating, flipping and sub-setting

Physics Interface Conversions (IPD/
Physics)
�  IPD contains only task-sized local arrays (i,k) or (k) where k index should be in

pre-defined direction, e.g. bottom-top
�  Their shape would depend on how the dycore does threads

�  Physics interface may need to convert (i,k) to (k) if physics is only columnwise
�  “conversions” needed in physics interface should be minimal but may include

�  Subsetting 2d slices to 1d columns
�  Flipping vertical index (if physics k is opposite to IPD and/or dycore)
�  Translating variable names to physics names (can be done through call)
�  Calculating any more needed derived variables for that physics (e.g. θv)
�  Converting units (e.g. MKS to cgs)

�  Reverse of some of these is needed after physics, e.g. operating on tendencies
�  Note again that many of these operations can be combined for efficiency, e.g.

translating, flipping and sub-setting

Calling Control
�  IPD can be called in “init” mode before run to call

initialization routines of physics
�  e.g., reading in tables, creating look-up tables, initializing

specific arrays and constants

�  In “run” mode, IPD can be called with logicals that define
which physics is to be executed at that time-step and for that
IPD call
� May also define whether IPD provides updates to state variables

or just physics tendencies

IPD Generic Schematic
Subroutine IPD (input args, output args, control args, …)

Input args: IPD state variables, e.g. T, U, V, etc.
Output args: IPD tendencies and/or updated IPD state variables
Control args: controls which physics to call
IPD call
�  Call individual physics interfaces (IPD state input, IPD tendencies/updates output,

diagnostics output, internal and external exchange variables output)
�  OR Call suite interface if physics shares same variables already

End Subroutine IPD

args would be collected logically into several Derived Data Types
(DDTs), such as ipd%statein, and the variables within these DDTs
could be ipd%statein%temperature, or ipd%stateout%rad_temp_tend, or
ipd%land_exchange%heat_flux, or ipd%diagnostic%2m_temperature, but
naming has not been decided yet.

IPD Schematic with Example
Subroutine IPD (input args, output args, control args, …)

Input args: IPD state variables, e.g. T, U, V, etc.
Output args: IPD tendencies and/or updated IPD state variables
This is an example sequence as might be used by WRF
1st IPD call
�  If radiation step - Call radiation driver* (IPD state input, IPD tendencies output)
�  Call surface-layer driver (IPD state input, Land-specific output)

�  Return to solver for Land call (Atmosphere-Land coupling)
2nd IPD call
�  Call pbl driver (IPD state input, Land-specific input(fluxes), IPD tendencies output)
�  If cumulus step - Call cumulus driver (IPD state input, IPD tendencies output)

�  Return to solver for dynamics
3rd IPD call
�  Call microphysics driver (IPD state input, IPD update output)

End Subroutine IPD
* The term ‘driver’ is used for the CCPP-specific physics option’s interface and its only
role is to call the single CCPP physics routine of this class

IPD Schematic with 2nd Example
Subroutine IPD (input args, output args, control args, …)

Input args: IPD state variables, e.g. T, U, V, etc.
Output args: IPD tendencies and/or updated IPD state variables
This is an example sequence as might be used by GFS with its embedded Land
component
1st IPD call
�  If radiation step - Call radiation driver (IPD state input, IPD tendencies output)

�  Radiation and ozone

2nd IPD call
�  Call GFS suite driver (IPD state input, IPD updates/tendencies output)

�  Suite includes surface-layer, land, pbl, gravity wave drag, cumulus

End Subroutine IPD

IPD Variable Categories
�  State Variables – Atmospheric model state variables or directly

derived from these variables
�  Tendency Variables – outputs from IPD required to advance state

variables (can also be updated state variables)
�  Internal Exchange Variables – variables passed between column

physics components
�  External Exchange Variables – variables passed to/from other

model components (e.g. Land, Ocean, Chemistry)
�  Diagnostic Variables – variables output from column physics but

not necessary for advancing model state
�  Constants – IPD should also pass through physical constants

common to the dynamics and physics

Common Community Physics Package
(CCPP)

22

Goals
�  To contain physics packages usually as part of suites in a plug-

compatible way for the IPD
�  Plug-compatibility requires following coding rules and standards
�  Physics schemes are each called by their own driver that interfaces

to the IPD. This driver
�  Inputs state variables, exchange variables from other parts of physics

(e.g. heat fluxes), constants
�  Outputs state variables (e.g. tendencies or updated variables),

exchange variables to other physics (e.g. cloud information),
diagnostics

�  Calls the main physics

Diagram from IPD and CCPP: Goals and Requirements Document

Summary of IPD and CCPP Aims
�  IPD itself should have no operations apart from calling physics

suites or sub-sets of physics
�  It serves to pass through variables in both directions – input state

down from the dycore’s solver and tendencies/diagnostics back up
from the physics

�  IPD call for a specific CCPP suite should look the same from any
dycore’s interface

�  IPD’s physics interface calls should look as much as possible the
same for any CCPP suite
�  Differences that can’t be avoided will be due to exchange variables

and diagnostics – but these differences could be just within DDTs
�  Commonality will be the IPD state and tendency inputs and outputs

that the dycore provides and needs

Next Steps
�  Solicit input on general plan from all interested groups

before implementation
�  Implementation of IPD

�  IPD code itself is very short and would be done first after DDTs
are defined

� This defines how its call(s) should look from the dycore
interface

� This will also have calls to the physics interface routines that can
be used to develop a matching physics interface routine

Extra slides

26

�  Example variable lists for DDTs
�  Summary of IPD Requirements list

IPD I/O Variables
State 3d input
Pressure (hydrostatic)
Pressure (thermodynamic)
Height
Temperature
Theta
Density
Dry Density
Exner Function
Winds (u and v)
Vertical Velocity
Pressure Velocity
Water vapor mixing ratio
Hydrometeor mixing ratio
Relative Humidity
Specific Humidity
Advective tendencies*

State 2d input
Heat Flux (from Land)
Moisture Flux (from Land)
Surface Pressure
Surface (Ground) Temperature
Albedo(s) (from Land)
Emissivity (from Land)
Roughness Length (from Land)

State 3d output
Radiation (lw/sw) tendencies/updates

•  Temperature
Cumulus (deep/shallow) tendencies/updates

•  Temperature
•  Vapor
•  Hydrometeors
•  Momentum

PBL/vertical diffusion tendencies/updates
•  Temperature
•  Vapor
•  Hydrometeors
•  Momentum

Microphysics tendencies/updates
•  Temperature
•  Vapor
•  Hydrometeors

State 2d output
Exchange coefficients (for Land)

•  Heat
•  Moisture

Precipitation (for Land)
Downward radiative fluxes (for Land)
Surface stress (for Ocean)

IPD Internal Exchange Variables

Depend on CCPP suite
examples
Microphysics particle radii for radiation
PBL tke for cumulus
Surface-layer stress for PBL
Cloud fractions for radiation

•  Microphysics/RH diagnostic
•  Cumulus (deep or shallow)

IPD External Exchange Variables

Depend on CCPP suite
Examples
Land-Physics

•  Heat and moisture fluxes
•  Surface properties (e.g. albedo, roughness length)

Ocean/Sea-Ice/Wave-Physics
•  Sea-surface temperature
•  Sea-ice fraction
•  Wave stress

Chemistry-Physics interactions
•  Aerosols as CCN and IN for microphysics
•  Aerosol optical depth for radiation
•  Ozone, trace gases, for radiation

IPD Diagnostic Outputs
Accumulated fields
Radiative fluxes (2d, possibly 3d)

•  Longwave/shortwave, Top/bottom, upward/downward, clear/total
Precipitation (2d)

•  Total, rain, snow, graupel from microphysics/cumulus
Surface fluxes of heat and moisture (land/ocean) (2d)
Physics tendencies (outputs accumulated over time) (3d)
Physics individual processes (e.g. latent heating from condensation) (3d)

Diagnostics
2m T and q, 10m wind
Reflectivity (3d)
Radiances (e.g. cloud-top brightness temperatures) (2d)
Solar energy (diffuse, direct surface components)
Wind energy (hub-height wind)

Max/min/mean/std
Surface temperature, wind, moisture, rainrate (e.g. daily for climate runs)
Storm tracking (max updraft, reflectivity, helicity, hail size) (e.g. hourly)

Requirements
�  D1: Agnostic of dynamic core
�  D2: Easily configurable entry point for passing information

to/from physics parameterizations
�  D3: expandable
�  D4: can switch individual parameterizations
�  D5: can activate parameterizations as a suite or individually
�  D6: order and frequency of calls to individual

parameterizations is configurable

Requirements
�  D7: can share constants between dycore and physics
�  D8: documentation
�  D9: modern coding practices and standards, performance,

portability
�  D10: able to drive parameterizations in “offline” mode
�  D11: able to work on “chunks” of dycore/solver variables
�  D12: able to provide diagnostic variables for output

Requirements
�  D13: able to provide physics variables to/from external

models (coupled land, ocean, etc.)
�  D14: IPD will not modify answers produced by

parameterizations
�  D15: ability for runtime changing of physics parameters
�  D16: unambiguous naming
�  D17: scientist-friendly coding

