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Goal:

Grow individual clouds when/
where the resolution is high.

Parameterize convection when/
where resolution is low.

Continuous scaling.

One set of equations, one code.

Physically based.



Use a CRM to test ideas.
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becomes the gird-scale circulation. The cumulus parameterization should play no role in this 

limit. More generally, it is important to remember that parameterizations are supposed to 

formulate only the subgrid effects of cumulus convection, NOT its total effects involving gird-

scale motion. Otherwise the parameterization may overdo its job, over-stabilizing the grid-

scale fluctuations that are supposed to be explicitly simulated.  

To visualize the problem to be addressed, we have performed two numerical simulations 

using a CRM, one with and the other without background shear. The model used for these 

simulations is the 3-D vorticity equation model of Jung and Arakawa (2008) applied to an 

idealized horizontally-periodic domain. The horizontal domain size and the horizontal grid 

size are 512 km and 2km, respectively. Other experimental settings follow the benchmark 

simulations performed by Jung and Arakawa (2010).  

Figure 4 shows snapshots of the vertical velocity w at 3 km height simulated (a) with and 

(b) without background shear. As we can see from these snapshots, these two runs represent 

quite different cloud regimes. To see the grid-size dependence of the statistics, we divide the 

original CRM domain (512 km) into sub-domains of same size to repcresent the GCM grid 

cells. 

 

 

Fig. 4  Snapshots of the vertical velocity w at 3 km height simulated (a) with and (b) 
without background shear, and examples of sub-domains used to see the grid-size 
dependence of the statistics. 
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Starting pointDerivation of the Unified Parameterization

Notes by David Randall, based on a presentation by Akio Arakawa

For the case of a top-hat PDF, we can derive

′w ′ψ ≡ wψ −wψ =σ 1−σ( )ΔwΔψ ,

(1)

where 

 ( ) ≡ σ ( )c + 1−σ( ) ( )  and 
 
Δ( ) ≡ ( )c − 

((



Flux partitioning as function of sigma
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For the case of a top-hat PDF, we can derive

′w ′ψ ≡ wψ −wψ =σ 1−σ( )ΔwΔψ ,

(1)

where 

 
Δ( ) ≡ ( )c − ( ) ,

(2)

the subscript c  denotes a cloud value, and a tilde denotes an environmental value. We expect  

Δw  and Δψ  to be independent of σ . In that case, (1) implies that ′w ′ψ  is a parabolic function 

of σ . 

Define ′w ′ψ( )
E

 as the flux required to maintain quasi-equilibrium. The closure assumption 

used to determine σ  is 

σ =
′w ′ψ( )

E

ΔwΔψ + ′w ′ψ( )
E

.

(3)

The quantities on the right-hand side of (3) are expected to be independent of σ . Eq. (3) is 
guaranteed to give 

0 ≤σ ≤1 .
(4)

By combining (3) and (1), we obtain

′w ′ψ = 1−σ( )2 ′w ′ψ( )
E

.

(5)

This shows that the actual flux is typically less than the value required to maintain quasi-
equilibrium. In fact, the actual flux goes to zero as σ →1. 

A model predicts grid cell means, rather than environmental values, so direct use of (3) is 
not possible. Define 

Revised May 5, 2010 1:24 AM

1

“Modified” means that  the data is averaged over updrafts and environment before 
computing the flux. In other words, a “top-hat” structure is imposed by averaging.

 

3 .  The σ-dependence of vertical transport and its parameterization 

 

a. Diagnosed σ-dependence of the vertical transport of moist static energy  

Section 5 will show that the standard deviations associated with the ensemble-average 

transport shown in Fig. 6 are quite large, illustrating that there are a variety of situations even 

when the resolution is fixed. To obtain an insight into the factor controlling the magnitude of 

vertical transports, we classify sub-domains of same size into different bins according to the 

values of σ. Figure 7 shows the σ-dependence of the ensemble-mean vertical transport of 

moist static energy obtained in this way for the shear case. The case of d = 8km  shown by 

the arrow in Fig. 6 is chosen as an example, where the eddy transport is maximum. As in Fig. 

6, the total and eddy transports are shown in red and green, respectively. (The light blue line 

will be explained in Subsection c.) Even with this relatively high resolution, the total transport 

is almost entirely due to the eddy transport for small values of σ, say σ ≤ 0.2 . This means 

that parameterization of the eddy transport is still needed. For larger values of , however, at 

least a part of the total transport is due to grid-scale vertical velocity.  

 

 

Fig. 7   The σ-dependence of the ensemble-mean total (red) and eddy (green) vertical 
transports of moist static energy divided by c p . The light blue line represents the 
eddy transport diagnosed from the modified dataset. 

 

Figure 7 shows that the eddy transport does not vanish even for σ = 1 . When σ = 1 , all 

grid points in the subdomain satisfy the condition wc > 0.5 m/s  and, therefore, the sub-

domain is “saturated” with updrafts forming a single large updraft. The eddy transport can 

σ
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Closure assumption

Derivation of the Unified Parameterization

Notes by David Randall, based on a presentation by Akio Arakawa
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How sigma depends on lamda
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where w  and ψ  are the grid-point values of w and ψ, respectively. Since the conventional 

parameterizations assume that the grid-point values represent the cloud environment, these 

differences can also be interpreted as Δw  and Δψ  defined by (1). In contrast, the unified 

parameterization distinguishes Δw  and Δψ  from δw  and δψ .  

For the purpose of determining σ, we use h for ψ. Then, from (1), (2), (3) and (17), we 

can derive  

ΔwΔh = δwδ h / 1−σ( )2 .    (18) 

Using (18) in (14) and manipulating, we finally obtain 

           σ 1− σ( )3 = λ ,      (19) 

where 
        λ ≡ ′w ′h( )E /δwδh .    (20) 

For a conventional parameterization with full adjustment, the use of  in (19) gives  

.       (21) 

 

 

Fig.11   Plots of σ given by (21) and (19) as functions of λ. 

 

σ <<1

σ = λ



Including substructure
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It is pointed out that the stochastic formulation must be under appropriate 

physical/dynamical/computational constraints that determine the major source of uncertainty. 

The source of uncertainty in the unified parameterization is in the determination of cloud 

properties relative to the grid-point values by a cloud model, which influences the uncertainty 

of σ and hence that of eddy transports. We suspect that different phases of cloud development 

are primarily responsible for the uncertainty, which could be formulated stochastically. 

 

 
Fig. 14 

 

The remaining issues include parameterization of the eddy transport due to 

inhomogeneous structures of updrafts, which is responsible for the difference between the 

green and light blue lines shown in Figs. 7 and 8. The eddy transports in light blue is obtained 

from the modified dataset, in which w and thermodynamic variables of all CRM points of the 

sub-domain that satisfy w ≥ 0.5m/s  by their averages, and do the same for the environment 

points that satisfy w < 0.5m/s . This assumes a single structure for the updrafts. To see the 

effect of multiple structures of the updrafts, two other modified datasets are produced. The 

double structure dataset is based on three ranges of w: w < 0.5m/s (environment), 

0.5m/s ≤ w < 2m/s and 2m/s ≤ w . The triple structure dataset is, on the other hand, based on 

four ranges of w: w < 0.5m/s (environment), 0.5m/s ≤ w < 2m/s , 2m/s ≤ w < 4m/s  and

4m/s ≤ w . In these datasets, w and thermodynamic variables of all CRM points are replaced 

Substructures are significant for large sigma, but the eddy flux becomes 
unimportant for large sigma.
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Status & Next Steps

The CS parameterization is running in the GFS. Tests are 
under way.

Chikira has generalized UP for use with multiple cloud types 
and downdrafts.

We will now begin implementing UP in GFS.


