# Applying an economical scale-aware PDF-based turbulence closure model in NOAA NCEP GCMs

Alex Belochitski<sup>1,4</sup>, Steven Krueger<sup>2</sup>, Peter Bogenschutz<sup>3</sup>, Shrinivas Moorthi<sup>4</sup>, Robert Pincus<sup>5,6</sup>

UCAR, <sup>2</sup>University of Utah, <sup>3</sup>NCAR, <sup>4</sup>NOAA NCEP EMC, <sup>5</sup>University of Colorado, <sup>6</sup>NOAA ESRL

Photo: Lis Cohen

#### **Assumed PDF Method**

- One approach for better representing SGS clouds and turbulence is the Assumed PDF Method, that parameterizes SGS clouds and turbulence in a unified way.
- We assume that there exists a joint PDF of vertical velocity, w, total water (vapor + cloud condensate) mixing ratio, q<sub>t</sub>, and liquid water potential temperature, θ<sub>l</sub>:

#### $P=P(w, q_t, \theta_l)$

• This will allow us to couple subgrid interactions of vertical motions and boyancy.

Randall et al. (1992)

#### Applying the Assumed PDF Method

The assumed PDF method contains three main steps that must be carried out for each grid box and time step.

- Prognose means and various higher order moments
- Use these moments to select a particular PDF member from the assumed functional form
- Use the selected PDF to compute many other higher order terms that have to be closed, e.g. buoyancy flux, cloud fraction, sub-grid condensation.

#### **Details of the Assumed PDF Method**

 $\theta_l^{\prime 2}, q_t^{\prime 2}, \overline{w^{\prime 2}}, w^{\prime} \theta_l^{\prime}, \overline{w^{\prime} q_t^{\prime}}, \overline{q_t^{\prime} \theta_l^{\prime}}, \overline{w^{\prime 3}}$ 

- Typically requires the addition of several prognostic equations into model (Golaz et al. 2002, Cheng and Xu 2006, 2008) to provide the turbulence moments required to specify the PDF.
- Our approach is called **Simplified Higher-Order Closure** (SHOC):
  - Second moments are diagnosed using simple formulations based on Redelsperger and Sommeria (1986) and Bechtold et al. (1995)
  - Third moment of w is diagnosed using algebraic expression of Canuto et al. (2001)
  - All diagnostic expressions for the moments are functions of prognostic SGS TKE.
  - The turbulence length scale is related to the SGS TKE and diagnosted eddy length scales.

#### **Required Modifications to GFS**

- SHOC will replace the boundary layer turbulence scheme as well as the shallow convection parameterization (Han and Pan, 2011).
- Large-scale microphysics scheme (Zhao and Carr, 1997) will no longer calculate cloud fraction or the large-scale condensation/evaporation rates.
- A new variable, SGS TKE, will be predicted.
- SHOC was originally implemented in a CRM using the Arakawa C-grid. GFS is a spectral model so all variables are available at every grid point. The prognostic TKE equation code will be modified for efficiency.
- Consistent thermodynamic variables will be used in the SHOC code and GFS.

### **Progress to Date**

Implementation of the prognostic TKE equation is largely complete and is now being tested. In addition to the general plan for step one, the following technical modifications were made:

- The SHOC code was modified to be suitable for use in a global circulation model environment: It was made re-entrant and capable of working with arbitrary physics windows; the code from SHOC and the relevant code from its original host model code were combined into a single package with an explicitly defined interface to facilitate ease of incorporation into a variety of GCMs.
- Time integration of the TKE equation was reformulated in a semi-implicit manner.
- The term related to shear production of TKE was simplified to only include vertical gradients of large-scale horizontal velocity.

# Applying an economical scale-aware PDF-based turbulence closure model in NOAA NCEP GCMs

Alex Belochitski<sup>1,4</sup>, Steven Krueger<sup>2</sup>, Peter Bogenschutz<sup>3</sup>, Shrinivas Moorthi<sup>4</sup>, Robert Pincus<sup>5,6</sup>

UCAR, <sup>2</sup>University of Utah, <sup>3</sup>NCAR, <sup>4</sup>NOAA NCEP EMC, <sup>5</sup>University of Colorado, <sup>6</sup>NOAA ESRL

Photo: Lis Cohen

#### Boundary layer clouds in global circulation models (GCMs) SON mean low cloud fraction (%) (a) control - obs

- GCMs have horizontal grid sizes of tens of km or more.
- Most cloud-scale circulations are not resolved by GCMs and have to be heavily parameterized.
- Representation of coastal Sc and the off-coast transition from Sc to trade-wind Cu has been a long standing challenge.
- Operational GFS has substantial biases in the low cloud fraction vs CloudSat/CALIPSO, and in low cloud radiative forcing vs CERES2
- Representations of SGS (subgridscale) circulations in GCMs can be improved!







Fletcher et al (2014)

### Which PDF to choose?

- Larson et al (2002), Bogenschutz et al (2010) showed that in precipitating and non-precipitating trade-wind cumulus, continental cumulus, stratocumulus and stratocumulus-to-cumulus transition regimes, PDFs of w, T, and q are either single- or bi-modal.
- These PDFs are approximated by trivariate double Gaussians for w, T, and q. The first Gaussian can be thought of as representing cloud-free environment, and the second, the clouds.
- After some further simplifying assumptions, the moments required to specify the parameters of the PDFs are:

 $\overline{w}, \overline{w'^2}, \overline{w'^3}, \overline{\theta_l}, \overline{\theta_l'^2}, \overline{q_t}, \overline{q_t'^2}, \overline{w'q_t'}, \overline{w'\theta_l'}, \overline{q_t'\theta_l'}$ 



We use trivariate double Gaussians, for w, T, and q.

### Plan for Implementation in GFS

- Add a prognostic TKE equation to GFS:
  - Use the scalar advection code already present in GFS.
  - Calculate eddy diffusivity and viscosity using SGS TKE.
  - Parametrize shear production, SGS advection and pressure perturbation terms as down-gradient diffusion using these eddy diffusivities.
  - Parametrize TKE dissipation using the new turbulent length scale developed for SHOC.
  - Output and analyze TKE and eddy diffusivity and viscosity fields.
  - At this stage, SHOC does not feed back anything to the GFS.
- Add the assumed PDF component of SHOC to GFS:
  - Use the new eddy diffusivity and viscosity to diagnose moments of the subgrid PDF.
  - Calculate parameters of the assumed PDF.
  - Calculate SGS cloud fraction, SGS condensation, turbulent fluxes and third moment of vertical velocity using the assumed PDF.
  - Output and analyze these fields.
  - At this stage, SHOC still runs non-interactively.

# Plan for Implementation in GFS (2)

#### • Couple SHOC to GFS

- Pass eddy diffusivity and viscosity, SGS cloud fraction, and cloud water/ice computed by SHOC to GFS.
- Test, tune and evaluate the resulting model using the standard procedure used at EMC (including cycled data assimilation/forecast tests).
- Implement in the NCEP Coupled model
  - Test, tune and evaluate for climate applications, including seasonal prediction and coupled climate runs.
- All initial testing and tuning will be performed on Gaea.