Family counseling for moist parameterizations

Christopher S. Bretherton Atmospheric Sciences and Applied Mathematics University of Washington

Weather and climate are complicated

A GCM grid column

Another GCM grid column

Complexities of moist physics in large-scale models

Process complexity and interactions Multiscale in space and time Subgrid variability The happy family of CAM5 physical parameterizations

...so many kinds of cloud to talk about

Park et al. 2014 J Clim

The challenge of simulating cloud processes

- Tight interactions between parameterizations: turbulence/ convection, microphysics/precipitation, aerosols, surface properties, radiation - and resolved dynamics.
- Strong subgrid variability/covariability in space and time
- Discretization issues and parameterization interactions are as challenging as uncertainties within parameterizations.

Comparison with large-eddy simulation

- In LES, most cloud dynamics are resolved
- Gridbox-mean temperature, moisture, condensate are adequate to describe the physical processes.
- Subgrid covariability (e. g. of LWC and w) not critical
- This conceptually simplifies the parameterization problem because a complex model of the subgrid structure of cloud is not needed.

SCM vertical resolution sensitivity

GASS Sc-Cu composite transition case (Sandu et al. 2011)

LES: 128x128x428, $\Delta x = 35$ m, $\Delta z = 5$ m, $\Delta t \sim 1$ s

Empty clouds

GFS-SCM on BOMEX nonprecipitating trade Cu case Siebesma et al. 2003

 Rains 2 mm/d with no cloud water at most Cu levels and timesteps.

BOMEX New Cu & PBL Schemes Cloud Water [g/kg]

Key considerations: A personal list

- Let the resolved scales do their work.
- Target the highest resolution, then step back.
- Parameterizations are cartoons of reality; take them with a grain of salt.
- Consistent level of process complexity across parameterizations
- Complexity should be added only to address a clear shortcoming in model simulations.
- Consistent representation of subgrid inhomogeneity and moist thermodynamics across parameterizations
- Algorithms appropriate for the vertical and time resolution
- Flexible, but clearly specified, interfaces between parameterizations.
- Well documented code, on-line descriptions, clear tuning parameters.
- Computational efficiency is not an afterthought!
- Testability: Parameterizations should improve global simulations of the process they were designed to fix, as well as a multivariate basket of skill scores.

Modular vs. unified parameterization approaches

Modular turbulence and cloud fraction parameterizations make artificial divisions, leading to inconsistencies, process discontinuities, possible double-counting:

Layer turbulence vs. shallow Cu vs. deep Cu

Stratiform vs. convective cloud

Unified parameterizations (EDMF, CLUBB, etc.) aim to improve model fidelity by avoiding these divisions. Is this a better approach?

Pros and cons of unified parameterizations

Promises:

- Internally consistent turbulence, cloud, precipitation
- Less artificial closure assumptions (e. g. on Cu mass flux)
- CLUBB and other HOC are more defensible in 'grey zone' of partly resolved Cu or turbulence.

Challenges:

- Still an oversimplified subgrid representation with many buried assumptions (lengthscales, tuning parameters, vertical overlap assumptions)
- Accurate, efficient numerical implementation?
- Philosophically, deep convection should be included, but it breaks assumptions underlying most unified schemes.

Stochastic parameterization

Classical goal of parameterizations:

A parameterization suite should provide **the ensemble mean** (i. e. an average of a realistic PDF) physics tendencies that are consistent with the given resolvedscale fields.

 A formulational goal of stochastic parameterization, consistent with use of an ensemble forecasting system: In an ideal world, a parameterization suite should provide a random draw from a realistic PDF of the physics tendencies that is consistent with the given resolved-scale fields.

Stochastic parameterization in reality

- In reality, even ideal stochastic parameterization is unlikely to produce nearly enough ensemble spread, due to grid scale smoothing, artificial scale separation, etc.
- Practical approaches (e. g. the ECMWF stochastic multiplier approach) have been useful but are ad hoc.
- The response of moist physics parameterization tendencies to small changes in large-scale forcing is often very jerky and nonlinear, inducing a poorly controlled quasi-stochastic aspect to the model response.

Addressing interaction problems

- Awareness don't assume a combination of good parameterizations will give equally good results.
- Code transparency and documentation speed up detective work and sensitivity tests.
- Testing the system over a range of dz and dt (not just dx), using both single column tests and 3D runs. Discretization and process splitting errors can be hidden elephants.
- Use well observed globally-available diagnostics relevant to the outstanding problem the parameterization changes are meant to address, while at the same time checking standard performance metrics. Even a single one-day forecast can isolate important errors. Data assimilation (e. g. initial observational increments) should be used as part of the development process.

Research Issues

- Is sequential splitting an optimal approach? Or should we calculate and apply all moist and surface exchange processes on the same state?
- How do we choose the right vertical resolution for a given horizontal resolution?
- How strongly should we insist that parameterization systems perform smoothly across a range of vertical resolutions and time steps?
- Should we make parameterizations of subgrid heterogeneity simpler (as in CRMs) as global model resolution decreases?
- What is the appropriate role of stochastic parameterization in a large-scale forecasting system?

S12: Well-mixed Sc -SCAM5

Steady, diurnally average forcing A near-saturated grid layer sits atop the well-mixed Sc layer. Radiation-turbulenceentrainment feedback causes it to flip between cloudy and clear.

