Hydrometeorological Prediction Center Utilization of Mesoscale Probabilistic Prediction

K. Brill September 2009

Overview of HPC *Manual* **Products**

Operational Desk	Projection Range	Product Content	Characterization	Available Formats
Winter Weather	24—72 hrs @ 24 h	24-h Snow & Ice Accumulations	Probabilistic (categorical)	Graphical
Day 1 QPF & Day 2—3 QPF	6—72 hrs @ 6 h	6-h Precipitation accumulations	Deterministic	Graphical & Gridded
Short Term Weather	6—60 hrs @ 6 h	Fronts, MSLP, scattered/broken precipitation	Deterministic	Graphical
Medium Range	72—168 hrs @ 12 h	Fronts, MSLP, max/min temps, PoP	Deterministic & Probabilistic (PoP)	Graphical &/or Gridded
Alaska	96—192 hrs @ 24 h	Fronts, MSLP, max/min temps, PoP	Deterministic & Probabilistic (PoP)	Graphical &/or Gridded

Forecasters often create products using a poor man's ensemble approach treating ensemble means as a "member" in the blend.

Current HPC *Derived* Products

- Primary products:
 - Prototype QPF confidence interval guidance
 - Probabilistic Heat Index Products
 - Gridded NDFD elements for days 3—7; days 4—8 for AK Desk
 - Web content (images, KML, GIS)
- Generation methods:
 - Transform the human forecast
 - Combine the human forecast with multiple model and ensemble forecasts
- Future derived products are planned

These products are created automatically, but are based on a human forecast.

Value of Probabilistic Guidance

- Human forecasters can make effective use of uncertainty information in creating deterministic forecasts.
- Human forecasters cannot create probabilistic forecasts in a timely and efficient way using only deterministic guidance. They must have a first guess probabilistic forecast to guide them. (my experience and my opinion)

Useful Types of Mesoscale Probabilistic Guidance

- Probability of exceeding a threshold
- Percentile quantities
- "Spaghetti" plots
- Confidence intervals (e.g., ensemble max min)
- Event characterization probabilities:
 - Precipitation type
 - Convective mode
 - Multi-variate conditional probabilities

 \checkmark Denotes guidance most readily available to HPC forecasters.

Future Trend: Decision Support for High-Impact Events

- Need reliable probabilities of occurrence for mesoscale phenomena
 - orographic effects
 - boundaries
 - precipitation bands
- May need more output fields to enable computation of probabilities of various impacts
- Need more detail (spatial and temporal) at longer lead times

Future Role of Mesoscale Probabilistic Guidance for HPC

- Improve deterministic human forecasts
- Improve existing probabilistic human forecasts
- Improve existing automated probabilistic forecasts
- Expand suite of automated probabilistic forecasts:
 - Prototype Probabilistic QPF (FY10)
 - Probability of Freezing Rain (FY10)

HPC "WISH" List for SREF

- Increase the resolution of SREF members (high-impact events)
- Calibrate the SREF output, including QPF
- Improve the forecast accuracy of the individual members (calibration alone is not enough)
- Consider technical improvements:
 - Provide "on cycle" run times (00, 06, 12, and 18 UTC)
 - Improve data access (more of a WFO issue)
 - Provide verification for specific phenomona (e.g., cyclones, precipitation bands)
 - Expand available archive of past forecasts

Summary

- HPC human forecasters depend on mesoscale probabilistic guidance (primarily SREF):
 - To create deterministic products
 - To create probabilistic products
- HPC automated processes depend on mesoscale probabilistic forecasts:
 - To create guidance for forecasters
 - To create derived products
- HPC foresees a growing need for decision support for high-impact events, requiring improved mesoscale probabilistic guidance