Mesoscale Ensemble Prediction System:

What is it?

What does it take to be effective?

What are the impacts of shortcomings?

Maj Tony Eckel, Ph.D. Asst. Professor Naval Postgraduate School, Meteorology Department (831) 656-3430, faeckel@nps.edu

September 23, 2009

What is it?

Sources of Uncertainty in NWP

What does it take to be effective? - - - Robust IC Perturbations - - -

n dynamically consistent and equally likely analyses that span the Goal: analysis error subspace

Questions:

Methods:

- Special considerations for mesoscale, short-range ensemble?
- Importance of Scale?
- Cold vs. Warm Start?

--- Robust Model Perturbations ---

- Goal: Diversity in members' attractors to attempt to span true attractor, or at least aim for a statistically consistent forecast PDF
- Methods:
 - Multi-model different models and/or different physics schemes
 - **Stochastic Physics** structured perturbations to state variables' tendency during model integration
 - Stochastic Backscatter return dissipated energy via scale-dependent perturbations to wind field
 - **Random Parameters** randomly perturb parameters (e.g., entrainment rate) during integration
 - Perturbed Parameters " " , but hold constant during integration
 - Perturbed Field Parameters SST, albedo, roughness length, etc.
 - Stochastic Parameterizations explicitly model stochastic nature of subgrid-scale processes
 - Perturbed Lateral Boundary Conditions
 Smaller domain, Longer forecast → Bigger issue

Questions:

- Combinations?
 - Which methods may be used together?
- Other Methods?
 - Stochastic Field Parameters
 - Couple to Ocean Model Ensemble and/or LSM Ensemble
- SLP (IC) IC Perturbations SLP (SC) - Stochastic Convection 0.9 T 850 (IC) 0.8 T 850 (SC) Ensemble Spread MSLP (hPa); T_850 (K) U 250(IC) 0.7 3.5 0.6 3 250 (m/s 0.5 2.5 2 0.4 0.3 1.5 0.2 1 0.1 0.5 Teixeira and Reynolds, MWR, 2008 0 72 24 120 168 216 Time (hour)

- ...?

--- Powerful Processors ---

Primary Drivers...

- Ensemble Size: Need to consistently depict PDF from which members are drawn
 - 8-10 for decent ensemble mean
 - 20-30 for skilled forecast probability
 - 50+ to capture low probability events (PDF tails)

Model Configuration: Need to meet user requirements

- Forecast Length
- Domain Coverage
- Forecast Update Frequency
- Timeliness
- \$ \$ \$ <u>Resolution</u> \$ \$ \$
 - Can only estimate uncertainty of resolved scales

improved statistical consistency

- Benefits of finer resolution:
 - 1) Increased spread
 - 2) Reduced fcst error
 - 3) Increased VALUE
- Resolving convection (grid<4km) is key

- - - Robust Post-processing - - -

Calibration: Need to maximize skill & value

- Obtain Reliability account for systematic errors (significant model biases in meso. models)
- Boost Resolution via Downscaling can greatly improve value of information
- Reforecast Dataset needed to calibrate low frequency events
- Adaptable to variety of state and derived variables
- Practical easy to maintain

600

000

Preserve Meteorological Consistency?

- Parameters emphasis on sensible weather and user requirements
- Ground Truth emphasis on observations vs. model analysis
- Skill Metrics (VRH, BSS, CRPS, etc.) focus on ensemble performance
- Value Metrics (ROCSS, VS, etc.) focus on benefit to user
- Accessible to Users
 - Interactive, web-based interface
 - Frequent updates
 - Link into products and education

Updated (P-2) and Phase 1 tools (P-1)				
Statistic	P-2 (0.47)	1-Day Persistence	P-1 (0.35)	
POD	0.68	0.62	0.66	
FAR	0.21	0.23	0.23	
HR	0.74	0.71	0.73	
CSI	0.52	0.46	0.50	
HSS	0.47	0.40	0.44	
Lambert and Pooder NASA 2007				

Contingency Table Statistics

_ambert and Roeder, NASA, 2007

http://science.ksc.nasa.gov/amu/briefings/ fy08/Lambert_Probability_ILMC.pps

Both feed ≻ back into R&D

What are the impacts of shortcomings?

Backup Slides

True Forecast PDF

<u>True forecast PDF recipe</u> for lead time τ in the current forecast cycle:

- 1) Look back through an infinite history of forecasts produced by the analysis/forecast system in a stable climate
- 2) Pick out all instances with the same analysis (and resulting forecast) as the current forecast cycle

Not absolute -- depends on uncertainty in ICs and model (better analysis/model = sharper true PDF)

3) Pool the verifying true states at τ to construct a distribution

Analysis	Model	True Forecast PDF (at a specific τ)	
Perfect	Perfect	Only one possible true state, so true PDF is a delta function.	
Erred	Perfect	Each historical analysis match will correspond to a different true initial state, and a different true state at time τ .	
Perfect	Erred	While each matched analysis corresponds to only one true IC,the subsequent forecast can match many different true statesdue to grid averaging at $\tau = 0$ and/or lack of diffeomorphism.	
Erred	Erred	Combined effect creates a wider true PDF. Erred model also contributes to analysis error.	

Perfect \rightarrow exactly accurate (with infinitely precision)

Erred \rightarrow inaccurate, or accurate but discrete

ICs by Ensemble Transform (ET) (from Craig Bishop, NRL)

ET maintains error variance in more directions than breeding...

O. Talagrand and G. Candille, Workshop *Diagnostics of data assimilation system performance* ECMWF, Reading, England, 16 June 2009

Eckel and Mass, WAF, 2005