### 2<sup>d</sup> Weather Group

Fly - Fight - Win

Pag WEATHER GROUP

THE FORCE WEATHER AGENCY

# AFWA Ensemble Prediction System

Mr. Evan Kuchera HQ AFWA 2 WXG/WEA

Approved for Public Release - Distribution Unlimited







- There are five characteristics of a good forecast:
  - Timely (Available before decision is made)
  - Communicative (information is easy to understand)
  - Focused (directly impacts the decision)
  - Useful (not something already known)
  - Reliable (information is correct)
- Ensembles are great for addressing the last two bullets, but the first three must be kept in mind







- Purpose: To discuss the AFWA transition from a prototype (JEFS) to an operational (AFWEPS) ensemble prediction system
- AFWA is exploring how ensembles can best be exploited to improve DoD forecast processes and warfighter decision making
  - Diverse global and mesoscale models
  - Probabilistic algorithms/techniques for "high impact" variables
  - Concise, warfighter-focused products
  - Emphasis on training and outreach



### Mesoscale Ensemble



40 km Northern Hemisphere

#### Pre-processing

- GFS ensemble from six hours earlier is used for initial/lateral boundary conditions (NOGAPS soon)
- Model configuration
  - 10 independent model configurations with varying physics and lower boundary conditions (land surface, SSTs) run at 06/18Z to 132 hours



# The table lists different physics packages used by each member Member

| Member  | Physics Packages |     |         |                   |                       |                        | Stamp Placement |
|---------|------------------|-----|---------|-------------------|-----------------------|------------------------|-----------------|
|         | Surface          | PBL | Cumulus | Micro-<br>physics | Longwave<br>Radiation | Shortwave<br>Radiation |                 |
| 1(3)    | Thermal          | MRF | Grell   | WSM3              | CAM                   | Dudhia                 | Top Center      |
| 2 (4)   | Thermal          | YSU | Grell   | Ferrier           | CAM                   | CAM                    | Bottom Right    |
| 3 (5)   | Thermal          | MYJ | KF      | WSM6              | RRTM                  | CAM                    | Bottom Left     |
| 4 (9)   | Noah             | MRF | KF      | Lin               | RRTM                  | CAM                    | Middle Right    |
| 5 (10)  | Noah             | YSU | KF      | WSM5              | RRTM                  | Dudhia                 | Large Control   |
| 6 (11)  | Noah             | MYJ | Grell   | WSM5              | RRTM                  | Dudhia                 | Top Right       |
| 7 (15)  | RUC              | YSU | BM      | Lin               | CAM                   | Dudhia                 | Bottom Center   |
| 8 (16)  | RUC              | MYJ | KF      | Ferrier           | RRTM                  | Dudhia                 | Middle Left     |
| 9 (17)  | RUC              | YSU | BM      | Ferrier           | RRTM                  | CAM                    | Top Right       |
| 10 (18) | RUC              | YSU | Grell   | WSM6              | CAM                   | CAM                    | Middle Center   |

Fly - Fight - Win



## Mesoscale Ensemble



12 km CONUS/SWA/EAST ASIA

Pre-processing

**AIR FORCE** 

- IC/LBC from 40 km NHEMI (also SREF for CONUS domain)
- Model configuration same as NHEMI
- Hourly output to 48 hours on 12 km domains













4 km SWA/CONUS

- Run as nests of the 12 km domains to 24 hours
- CONUS is a floater that we move around with the seasons





Fly - Fight - Win



**Post-Processing** 

High Impact Weather



- Main focus of post-processing efforts is on probabilistic assessment of "high-impact" weather
- Specialized applications for dust and cloud forecasting
- Physics-based probabilistic (i.e. diagnosis uncertainty) algorithms for lightning, visibility, precipitation type, and surface wind gust
- Deterministic (i.e. no diagnosis uncertainty) algorithms used for snow accumulation, icing, turbulence
- Other diagnostics (joint probability of instability/shear for severe weather, surface winds/snowfall for blizzard conditions)



Fly - Fight - Win

## Forecast Example: 51 hour icing forecast

U.S. AIR FORCE





Fly - Fight - Win

## **Precipitation Meteogram**



U.S. AIR FORCE



Fly - Fight - Win



Fly - Fight - Win







- Near Term:
  - Establish operational flow of "full" NOGAPS and NCEP SREF ensembles to allow initialization of mesoscale members (~12 km)
  - Explore ETKF on NHEMI (or global) mesoscale domain
  - Explore new techniques for model physics diversity
  - Continue refining ensemble forecast techniques on high-impact forecast variables (clouds, dust, surface winds, precipitation, visibility, icing, turbulence)
  - Continue close relationships with forecasters to further cement ensemble presence "in the field"
  - Explore stronger relationships with "decision makers" who can benefit from stochastic information







#### Medium Term:

- Work to establish agreements on operational data flows of raw ensemble model output from as many centers as possible
- Go "operational" with basic mesoscale ensemble
  - Hopefully multi-center with Navy and NOAA
- Develop sophisticated software to allow interrogation of full raw ensemble and user selected decision thresholds
  - Likely "reach-back" capability due to large volumes of ensemble data
- Implement standardized training programs







- Long Term:
  - Leverage techniques for initial condition generation found most effective (4DVAR/ENKF/Hybrids/etc)
  - Design new model physics to fully represent uncertainties in subgrid scale processes
  - Entrain advancements in land surface and aerosol modeling
  - Increase membership and resolution as computing resources allow