

The NCAR/ATEC Operational Mesoscale Ensemble Data Assimilation and Prediction System – "Ensemble-RTFDDA"

Yubao Liu, Tom Warner, Scott Swerdlin and John Pace*

NCAR/Research Application Laboratory *Dugway Proving Ground, US Army

National Workshop on Mesoscale Probabilistic Prediction September 23 – 24, 2009, Boulder, CO

NATIONAL CENTER FOR ATMOSPHERIC RESEARCH

Acknowledgements

The NCAR RTFDDA modeling team

Wanli Wu, Gregory Roux, Tom Hopson, Josh Hacker, Al Bourgeois, Rong-Shyang Sheu, Laurie Carson, Mei Xu, Wei Yu, Francois Vandenberghe Tom Warner, Scott Swerdlin, Terri Betancourt, Fei Chen, Jason Knievel, Ming Ge, Yuewei Liu, Andrea Hahmann, Chris Davis, Jenny Sun and many others.

The ATEC test ranges

Scott Halvorson, John Pace, Sue Krippner, Frank Gallagher, James Bowers, Al Astling, Donald Storwold, James Renolds, and many others

Several other sponsors, collaborators and users

DTRA, Xcel Energy, AirDat LLc, STAR, DOT, Israel Air Force ... NATIONAL CENTER FOR ATMOSPHERIC RESEARCH

Challenges of Meso-β,γ **EPS**

□ A multiple (temporal and spatial) scale problems

- Uncertainties for small scale different scales differ from those on synoptic scales
- Uncertainties in boundary conditions
- Physics plays a critical role
 - Uncertainties in 100+ parameters of physical schemes
 - Uncertainties in LS and trace gases/aerosol specification
- □ Terrain representation

Data assimilation

- Uncertainties in observations, B (P^f) and thus analyses
- Seamless DA and EPS

Intuitive probabilistic prediction products

$RTFDDA \rightarrow Ensemble-RTFDDA$

E-RTFDDA Implementation: "3-Modules"

The Ensemble Generator Module

Liu et al. DTC National Workshop on Mesoscale Probabilistic Prediction, Boulder, CO. September 23-24, 2009

The Member Selection Module

Pre-conditions

- Typical weather regimes at the application location
- Weather variables of high interest

Objectives

- Remove outliers that are persistently verified bad
- Clear members that provide redundant info

Approaches

- People in the loop: manual picks
- Automated: continuously self-training and adjusting
- Automated perturbation member selection
 - Optimal sampling for representation of forecast PDF
 - Difficult to implement
 - Affect ensemble calibration implementation

The Ensemble Execution Module

An E-RTFDDA Operation at the Army Dugway Proving Ground Since Aug. 2007

30 members, 6h cycles, 42h forecasts

E#	LBC	WRF Members (15)	E#	LBC	MM5 Members (15)
1	NAM	Control: WRF baseline physics	16	NAM	Control: MM5 baseline physics
2	GFS	Control: WRF baseline physics	17	GFS	Control: MM5 baseline physics
3	NAM	SLAB land surface	18	NAM	Simple cloud-effect radiation
4	NAM	MYJ PBL	19	NAM	ETA TKE PBL
5	NAM	MYJ PBL + GD Cumulus	20	NAM	Kain-Fritsch cumulus
6	NAM	WMS6 microphysics	21	NAM	Goddard microphysics
7	NAM	GD cumulus	22	GFS	Betts-Miller cumulus
8	GFS	Thomason microphysics	23	GFS	Reisner 3-ice microphysics
9	GFS	MYJ PBL + WMS5 microphysics	24	GFS	CCM2 radiation
10	GFS	MYJ PBL	25	GFS	GFS LBC Phase-uncertainty 1
11	GFS	MYJ PBL + GD Cumulus	26	GFS	Symmetric perturb to Member 25
12	GFS	BMJ cumulus	27	GFS	GFS LBC Phase-uncertainty 2
13	GFS	BMJ cumulus in 3.3 km grid	28	GFS	Symmetric perturb. to Member 27
14	GFS	GD cumulus in 3.3 km grid	29	GFS	Correlated sounding perturbation
15	GFS	KF cumulus in 3.3 km grid	30	GFS	Symmetric perturb. to Member 29

Real-time Operational Products for DPG

2-m Temperatures for the 06Z Cycles on 4 – 7 Feb. 2008 at DPG SAMS8

10-m Winds Mean Vectors and Speed Spread 36h Forecasts Valid at 18Z (Feb. – Mar. 2008)

10-m Wind Speed Spread-skill Correlation at SAMS12

2008 Feb-Mar Mean: 10-m Winds

Liu et al. DTC National Workshop on Mesoscale Probabilistic Prediction, Boulder, CO. September 23-24, 2009

36hr Temperature Calibration with Quantile Regression (DPG SAM 12)

A 4D Relaxation Ensemble Kalman Filter

Obs-nudging: EnKF: $x^{a} = x^{f} + \underline{Ke}(y^{o} - Hx^{f})$ $Dx/Dt = \dots + G W (y^{\circ} - Hx^{f})$ $\mathbf{K} e = P_e^f H^T (H P_e^f H^T + R)^{-1}$ $W = W_{a} W_{time} W_{horizontal} W_{vertical}$ $P^a = (I - KH)P^f_a$ **Obs-nudging** \rightarrow **EnKF**: one *At* nudging $X^{a} = X^{f} + \Delta t G W (y^{o} - H x^{f})$ where $X^{f} = X_{f-1} + \Delta t$ (...) EnKF EnKF: $\Delta tGW = K_{o}$ **4D-REKF:** $\Delta tGW = G W_a W_{time} K_e \leftarrow Nudging-EnKF$ $Dx/Dt = ... + GW_aW_{time}K_e (y^o - Hx_{model})$

Essence of 4D-REKF(S)

- □ Combines obs-nudging E-RTFDDA and EnKF
 - E-RTFDDA → Error covariance → Kalman Gain
 - Kalman Gain \rightarrow Obs-nudging weight \rightarrow (E-)RTFDDA
 - Kalman Filter \rightarrow I.C. perturbations \rightarrow E-RTFDDA
- □ For this relaxation filter, the structures of error covariance are critical, but not their magnitudes.
- 4D-REKF(S) produces "spun-up" current analyses and I.C.s for forecasting.
- □ Indirect observations can be assimilated.
- □ Development is in process: DART \rightarrow E-RTFDDA

Summary and Conclusions

- E-RTFDDA: relocatbale, multi-model, multi-approach and multi-scale, continuously cycling mesoscale ensemble analysis and forecasting.
- **Supporting meso-** β , γ scale applications
- Verification indicates benefit of multi-model approaches, importance of model physics and terraininduced predictability.
 - QR calibration improves the probabilistic forecasts and helps identify redundant and outlier members.
- E-RTFDDA new development: A seamless, hybrid obsnudging and (DART) EnKF mesoscale ensemble data assimilation and prediction algorithm (4D-REKF).