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Meso- and Storm-scale Probabilistic Forecasts from
the RUC, Rapid Refresh, and HRRR

Outline:

* Need for hourly updated probabillistic forecasts from
the RUC (and upcoming Rapid Refresh and HRRR)

« Experiences with Time-lagged ensembles
RUC Convective Probabilistic Forecast (RCPF)
HRRR Convective Probabilistic Forecast (HPCF)

 Plans on hourly-updated ensembles in ESRL and
NCEP plans

NAM / Rapid Refresh Ensemble (NARRE)
High Resolution Rapid Refresh Ensemble (HRRRE)

» Post-processing for probabilistic hazard guidance
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Cycle hydrometeor, soil temp/moisture/snow
plus atmosphere state variables

1-hr\\ 1-hr\| 1-hr
fcst /| fest /| fest

Backgroundj f Analysis
Fields Fields

L

1 1 13 Time
(UTC)

Hourly obs

Data Type ~Number
Rawinsonde (12h) 150
NOAA profilers 35
VAD winds 120-140
PBL — prof/RASS ~25

Aircraft (Vtemp)  3500-10000
TAMDAR (V,T,RH) 200-3000
Surface/METAR 2000-2500
Buoy/ship 200-400
GOES cloud winds  4000-8000
GOES cloud-top pres 10 km res

GPS precip water ~300
Mesonet (temp, dpt) ~8000
Mesonet (wind) ~4000

METAR-cloud-vis-wx ~1800

AMSU-A/B/GOES radiances

Radar reflectivity/ lightning
1km




RUC Hourly Assimilation Cycle - fall 2009

18-h fcst _
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Meso- and Storm-scale Probabilistic Forecasts from
the RUC, Rapid Refresh, and HRRR

Original motivation for the crudest of ensembling:

« Convection forecasts from RUC
« Consideration for air-traffic management, QPF not
accurate especially at fine resolution

Dilemma:
* Niche=hourly NWP, no extra computer resources
18-h
fcst | 18-h
fcst | 18-h
fcst | 18-h
Opportunity: fcst [18-h

- Strongly overlapping hourly-updated forecast&™*



RUC, Rapid Refresh and HRRR
Time-lagged ensembles

RCPF 2008 0% 23 13=+00 valid OF 23 18z

RCPF = RUC Conv Prob Fcst

http://ruc.noaa.gov/rcpf.

* Running since 2004 through current (Oct 2008).

* Runs hourly based on13km RUC run at ESRL.
 Provides hourly updated 3,4,5,6,7,8,9h probabilistic
forecasts of the likelihood of 40-dbZ radar echoes within
a 40-km-side grid volume.

. . . P I
» Gridded RCPF data provides guidance to NOAA i‘@’t m} 2
Aviation Weather Center for the Collaborative HI8 i ety

Convective Forecast Product (CCFP) . L — = o o —

HCPF = HRRR Conv Prob Fcst

* Running since June 2009

* Hourly updated based on 3km
HRRR
*http.//ruc.fsl.noaa.gov/hcpf/hcpf.cai



http://ruc.noaa.gov/rcpf
http://aviationweather.gov/products/ccfp/
http://aviationweather.gov/products/ccfp/
http://ruc.fsl.noaa.gov/hcpf/hcpf.cgi

Model-based probabilistic storm guidance

Data Assimifation
cycle

Observations

1
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ensembles

Model
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]

Probability

_
K = 100,

(H RRR-baSed)
HCPF
Storm-scale
probability
information



Spatial filter

Calculate probability: m r O O

Find fraction of points -
within box that exceed
the threshold

Example

Threshold > 30 dBZ

H =
Probability = 7 /21
= 33% - x
H = Il = Il | =
Reflectivity — = . -

(dBZ) <20 20-30 30-40 40-50 50+



RCPF bias corrections

RUC 1-h convective precipitation threshold

13 S
= 12 ;Multiply threshold by ... ...l .. E
= 11 0.6 over Western U.S. i Threshﬂldl ...... E
£ E ] e
E 1 = el Lower threshold
g 09 bl N toincrease
2 08 #- Higher threshold ™ coverage
@ 07 B to reduce ORI R bov. j U o
S 06 [ COVerAgEe b
- - : : : : : : : : : :

05 t | i | | | i | | i i

Forecast 13z 15z 17z 19z Mz 23z Mz 03z 05z 07z 09z 11z GMT
ValidTime 9a 11a 1p 3p 5p 7p 9p 11p 1a 3a 5a 7a EDT

* Precipitation threshold adjusted diurnally
and regionally to optimize the forecast bias

* Use smaller filter length-scale in Western U.S.



CCFP 15z +6h RCPF 13z +8h

Valid 21z 20 Aug. 2007



CSI 6-h lead-time, 1 June — 31 Aug 2007 average

— C S| RCPF

(skill) RCPF vs. CCFP

— CSI CCFP |-
0.05 =====hjas RCPF |4 20.0
L L g . |=====bias CCFP | -
0.08 i e T ] 160
0.03 ' 112.0
0.02 __,." Very Iargé bias ________ '-_r _______ 1s0
:... ; o : .;II--ﬁ.--IE i
I---- I-------F--- ---I : I —_— ------‘----*- -t-
D.D1 -_ ------- ? --------i---------i---------;r ------ -f'---l.------!.- 4.u
C ; : s s s 4-km NCWD :
g fm=m=—F=—g=—m—r == i =00

GMT 13z 15z 17z 19z 21z 23z 01z 03z 05z 07z 09z 11z

EDT 9a 11a 1p 3p 5p Tp 9p 11p 1a 3a 5a 7a
Forecast

RCPF: Improved bias, better PM CSI | valid Time




HCPF example
valid 01z 21 July 2009

HCPF (4-hour lead)




16 July 2009 case study

17z + 4 hour CCFP: 15z + 6 hour HCPF;
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PoD at 40%: 0.2176
Bias at 40%:: 1.2631
CSl at 40%: 0.1064
True S5: 0.2034
Area »= 40%: 0.0769

oo s HCPF accurately placed a bulls

= C3l: 0.05
Hes: .08

Laests  eye over east-central NY
CCFP missed this cluster of
storms




16 July 2009 case study

17z + 4 hour CCFP:

RTVS
Verification

PODy: 0.64

Bios: 12.B7

Csl: €.05

H55: 008

% Arear 11.41
Congistency: 0.84 F

15z + 6 hour HCPF:
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HCPF pinpoints the major areas of convection, avoiding

excessive false alarms

CCFP captures much of the convection, at the cost of a very

high bias



Optimizing the HCPF algorithm

Aggregate CSI at 40% bin
25 I b

0.0444

N
o

0.0432

0.042

Smoothing radius
o
|

Larger

filter

0.0408

—
o
|

0.0396

AN

6 8 10

2
Number of members
ﬁ; ensemble members ===
Optimal # of members is O(3-5):
too few = low PoD, too many = low bias



Optimizing the HCPF algorithm

Instantaneous reflectivity suffers from phase errors
Using hourly maximum increases coverage —> better predictor
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HRRR reflectlwty HrIy max HRRR refl Hrly max updraft



CSlI

HCPF improvement from optimizing parameters

-switch predictors
- reduce time-lag

CSl as a function of valid time (6/18/09 - 6/29/09)

Bias as a function of valid time (6/18/09 - 6/29/09)

- use diurnal threshold selection
- optimize spatial filter size

14 e b
0.060 - - 40N -
_ 7 N | 8-hforecasts
10 b
0.040 - - 8 - i -
%) ! !
© \ ;
o [ !
6 3 H ~
0.020 - - 4 - -
n ::-_’_\_,/\/-—‘; -
| TN ~ ,,.r
0’000 I e 0 1 rrr1rrrjJrrrJprrTr1rr
0 4 8 12 16 20 24 0 4 8 12 16 20 24
Valid time (UTC) Valid time (UTC)
----------------------------------- CCFP
------------------ HCPF original

HCPF optimized




Shows comparable skill _ 7
to the CCFP 9%

Caveat: HCPF currently
on smaller domain than
CCFP (but is issued
every hour unlike
CCFP)

Verification results

Forecast Probability vs Crilical Buccess Index for 6215 ensembles

L1 1 1 |

HCPFs for all of August oa A
2009 comprising 6215 oin —
ensemble forecasts
(all lead and valid times) ==~

¢ T T T T T T T T 1

¢ 005 01 015 02 025 03 035 04 045 05 055 06 065 0T 075 0B 085 08 O 1

HCPF Probability Threshold



Variance of 250 hPa wind '
forecast ensemble from 4 § &
forecasts (4h, 3h, 2h, 1h) ¥4

Time-lagged-ensemble §
variance can be usedto &

3 ] [ ]
(¢ 00 0f 10 15 20 25 30 35 40 45 50 55 60 65 -

rﬁé 0.60 - correlation between
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Coordinated Meso- and Storm-scale ensembles
The NARRE and the HRRRE

NAM CURRENT RUC
WRF-NMM (Egrid) (2009) « Non-WRF RUC model
GSl analysis « RUC 3DVAR analysis
4/Day = 6 hr update « 24/Day = hourly update
Forecasts to 84 hours * Forecasts to 18 hours
12 km horizontal * 13 km horizontal
60 layers with 2 mb top * 50 layers with 50 mb top
12 hr pre-forecast « Continuous forward cycle

with no pre-forecast
assimilation period

assimilation period with
3hr updates (catch-up)




Coordinated Meso- and Storm-scale ensembles
The NARRE and the HRRRE

NAM 2010-2011
NEMS based NMM Rapid Refresh
Bgrid replaces Egrid * WRF-based ARW
Parent remains at 12 km * NCEP’s GSI analysis (RR-version)

Multiple Nests Run to 48hr - Expanded 13 km Domain to

_ ~4 km CONUS nest mclud_e Alaska
_ -6 km Alaska nest « Experimental 3 km HRRR @ ESRL

— ~3 km HI & PR nests, and/or a

are possible
- -

A,
; /\(\)i/

W

e

A\

A3

5 "/‘\




Coordinated Meso- and Storm-scale ensembles
The NARRE and the HRRRE

2012-2013

NAM/Rapid Refresh ENSEMBLE (NARRE)
NEMS-based NMMB and ARW cores & GSI analysis

Common NAM parent domain at 10-12 km (even
larger than initial Rapid Refresh domain)

Initially ~6 member ensemble made up of equal
numbers of NMMB- & ARW-based configurations

Hourly updated with forecasts to 24 hours

NMMB & ARW control assimilation cycles with 3
hour pre-forecast period (catch-up) with hourly
updating

NAM 84 hr forecasts are extensions of the 00z, 06z,
12z, & 18z runs.



Coordinated Meso- and Storm-scale ensembles
The NARRE and the HRRRE

2012-2013

High-Resolution Rapid Refresh Ensemble
(HRRRE)

« Each member of NARRE contains
— 3 km CONUS and Alaskan nests
— Control runs initialized with radar data

« Positions NWS/NCEP/ESRL to

— Provide NextGen enroute and terminal guidance
— Provide probability guidance

— Improve assimilation capabilities with radar and
satellite

— Tackle Warn-on-Forecast as resolutions evolve
towards ~1 km



A

Very Short-Range Ensemble Forecasts - VSREF
- Updated hourly w/ available members valid at same time

RR - hourly
time-lagged (TL) ensemble members VSREFE —
§ - 2012 - ensemble RR Hourly
e | Updated
e ESRL 3km HRRR (incl. TL ensemble) Pfobabilistic
. -2012 - proposed HRRR at NCEP Forecasts
& - future HRRRE from NARRE = TL+
= NAM / NAM ensemble ensemble

GFS / GFS ensemble
SREF (updated every 6h)

Time-lagged ensemble provides skill baseline for evaluating
HRRRE and NARRE development

vV



VSREF-
Model
Ensemble
Members

- hourly (£1h)

Unified Post-processing
Algorithms (modularized!!)

for following: (multiple where
appropriate), built on current

WRFpost from NCEP

members -
HRRR, RR,
NAM, SREF,
GFS, etc.

VISION: Toward estimating
and reducing
forecast uncertainty for
aviation applications
using high-frequency data
assimilation

Stat correction

Turb (e.g., GTG)
Icing (e.g., FIP)m==p
Ceiling

Visibility

Convection
ATM route options

Wake vortex
Terminal forecast
Object diagnosis
(line convection,
clusters, embedded)

Explicit met variabli/s

Others...

from each VSREF
member - V,T,qv,g*
(hydrometeors),p/z,
land-surface, chem,
etc.

Potentially multiple variables
under each Avx-Impact-Var
(AlV) area

post- processing

Xisliior:‘ems_, using recent obs
each AIV
variable VSREF mems
— output - stat
H corrected
For icing
For icing

Optimal weighting

Most-likely-estimate
single value

Probability/PDF output



Meso- and Storm-scale Probabilistic Forecasts from
the RUC, Rapid Refresh, and HRRR

Hourly updated ensemble forecasts:
Lessons learned and plans:

* Original context for RCPF: convection forecasts
* RCPF - provided automated convection product that matched
CCFP, better for convective initiation
 Spatial and temporal (time-lagged) averaging — both needed
« Geographic and diurnal variations in accuracy — must be
accounted for in averaging and bias correction
* Time-lagged ensemble does provide temporal continuity to prob
forecasts from hour to hour — desirable by forecasters
 Formal hourly-updated ensembles are coming:
 NAM/Rapid Refresh ensemble — 6 members
* HRRR ensemble — 6 members AT
* Time-lagged ensembling provides 3-4x multiplier, may or may
not add value as “multiplier” to NARRE or HRRRE (only 6
members)







Hourly Updated Ensemble Forecasts — experience, plans

« RCPF/HCPF TL ensemble experience

* Plans for RR ensemble and HRRR ensemble

 Recommendation:
» Use merged time-lagged + formal ensemble members toward
“HFProb” (High-Frequency Probabilistic Forecasts)
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Mesoscale Uncertainty

« Uncertainty varies for different different weather
hazards
-- very high uncertainty for convection

« Uncertainty is scale and lead-time dependent
« Uncertainty reduced by high-frequency assimilation



Desirable attributes for mesoscale probabilistic forecasts

Multiple models

Ensemble lateral boundary condition information
Optimally perturbed Initial conditions

Bias correction / Spatial filtering

Use of high frequency assimilation with radar data
Blending with nowcast systems for very short-range

Ensembling of extracted information relevant to problem



Diabatic Digital Filter Initialization (DDFI)
iIn RUC model

-30min  -15min INit +15 min
1 i ¢

Backwards integratidn,
: no physics :
I

Forward integration,
full physics

Obtain initial fields with
Improved balance

—

Arecent frontier: RUC model forecast

Assimilation of radar reflectivity



, Rapid
Refresh and

RUC

HRRR

i
Y 1 2

i
b
1
4
’
1
r
|
I

e

o © |5
SS|2| 8|2
N?_%H dmo dph
s3|®|lx o4 ﬁ.mc
sSlsle ES8 @8
| Sl & o= |8
OZlT|l= | & 02 S | =

Ol @ |< SwW X x©|c
Dol 20 X |
Y S|le |o o = I O|l4




RUC forecast accuracy higher with assimilation of
recent observations
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Diabatic Digital Filter Initialization (DDFI)
add assimilation of radar data

-30min  -15min INit +15 min
1 i ¢

|

Backwards integratidn,
: no physics :

I

Forward integration,

full physics

Apply latent e e :
hepapti);]ga *" 1 Obptain initial fields with

from radar : iImproved balance, divergent
reflectivity, | wind fields associated with
lightning | ongoing convection

data '

A recent frontier:
Assimilation of radar reflectivity

RUC model forecast



HRRR reflectivity verification
Skill vs. forecast length

128 N S T I k
5 All HRRR forecasts
0.15 [ M .
5 : W/ Radar assim ]
O 04 L e .
0.05 L. A——— —
ol No Radar assim: ! Forecast
Oh 3 h 6 h 9h 12 h Length
30 dBZ reflectivity Verification period
on HRRR 3-km grid 23 June — 25 Aug 2008

« Storm-scale modeling is not enough, must have radar
reflectivity assimilation
* Hourly updating is critical



Post-p
Techn

Attributes No. of Use of Use of Multiple Blended | Adaptive/ | Actual
NWP hourly radar- algorithms | nowcast | recent prob
| models | updated initialized and NWP | obs- output
. NWP explicit based

IOCESSING storm stat post

iques model
GTG 1 Y N Y N In N

between
NCV Multiple Y N Y Y N
FIP 1 Y N N N N
RCPF Multiple Y N N N N Y
time-lag
CoSPA (incl. 1 Y Y N Y Y N
HRRR)
Future HPCF | Multiple Y Y N N N N
TL +

LAMP 1 N N Y Y Y
NCEP/Toth w/ | Multiple N N ? N Y Y
RTMA
SREF Multiple N N N N Y
HMT/FAB ens | Multiple N N N Y Y -in
precip fcst progress
Desirable Multiple Y Y Where Y Y Y

| attributes TL+ needed




VSREF-
Model
Ensemble
Members

- hourly (£1h)

members -
HRRR, RR,
NAM, SREF,
GFS, etc.

Unified Post-processing
Algorithms (modularized!!)
for following: (multiple where
appropriate), built on current
WRFpost from NCEP

Explicit met variabli/s
from each VSREF
member - V,T,qv,g*
(hydrometeors),p/z,
land-surface, chem,
etc.

VISION: Toward estimating

and reducing

forecast uncertainty for aviation

applications

using high-frequency data

Turb (e.qg., GTG)4

variable

Visibility

Convection
ATM route options
Wake vortex

Terminal forecast

_ VSREF mems
Icing (e.g., FIP) output for ===
Ceiling each AIV

Object diagnosis
(line convection,
clusters, embedded)

Others...

Potentially multiple variables
under each Avx-Impact-Var
(AlV) area

assimilation

Stat correction
post- processing
using recent obs

VSREF mems
output - stat
corrected

For turb

Optimal weighting

Most-likely-estimate
single value

Probability/PDF output



VISION: Toward estimating

VSREF- : ; and reducing
Model Unlfl_ed POSt_proquSIng forecast uncertainty for aviation
Ensemble Algorithms (modularized!!) : h_aﬂcations o
Mo bore for following: (bm_lfltiple where e A
ropr
- hourly (<1h) appropriate), built on current

— WRFpost from NCEP Stat correction

wa (e.g., GTG) 4 VSREF mems pO.St_ processing
Icing (e.g., FIP) output for === USING recent obs
Ceiling each AlV
Visibility variable VSREF mems
Convection = output - stat
ATM route options Corrected ’\
members - Wake vortex Esvamil g ps=al. |
HRRR, RR, Terminal forecast | | For turb ||
NAM, SREF, Object diagnosis For turb
GFS, etc. (line convection,
| clusters, embedded) Optimal weighting
Explicit met variabli/s Others... : :
from each VSREE Most-likely-estimate
member - V,T,qv,q* Potentially multiple variables single value

(hydrometeors),p/z, under each Avx-Impact-Var
land-surface, chem, (AlV) area | 1p_datacube Probability/PDF output
etc.




VISION: Toward estimating

VSREF- : ; and reducing
Model Unlfl_ed Post-proqessmg forecast uncertainty for aviation
Ensembl Algorithms (modularized!!) _ h_aﬂcations dat
Mesrﬁberse for following: (bmlfltiple where B e etk v
appropriate), built on current
- hourly (<1h) ppropriate)

— WRFpost from NCEP Stat correction

ost- processin
MO 2T - VSREF mems Esin I?ecent obg
Icing (e.g., FIP) output for ==t 9
Ceiling each AlV
Visibility variable VSREF mems
Convection : = AL = SE
: o4t corrected
ATM route options ’\
members - Wake vortex W " ==Hll
HRRR, RR, Terminal forecast | | For turb =
NAM, SREF, Object diagnosis For turb
GFS, etc. (line convection,
i/ clusters, embedded) Optimal weighting
- - Others...
Explicit met variablés - -
from each VSREE o Most-llkely-estlmate
member - V,T,qv,q* Potentially multiple variables < | single value
%

(hydrometeors),p/z, under each Avx-Impact-Var
land-surface, chem, (AlV) area | 1p_datacube Probability/PDF output
etc.




Key issues for improving the HCPF

Selecting best predictors
Predictor threshold for diurnal bias correction
Use of hourly “integrated” fields (phase errrors)

Optimal spatial filtering



vodesr  HRRR Time-lagged ensemble -
Init

Time Example: 15z + 2, 4, 6 hour HCPF
18z
17z
16z
15z
14z

13z
12z
11z

| Model I

runs 13z+4 13z+6 13z+8
I used ™SS [12245| |12247 | 12240
11z+6 11z+8 11z+10
model has
2h latency ‘ C P
| ‘__* -

11z 12z 13z 14z 15z 16z 17z 18z 19z 20z 21z 22z 23z
Forecast Valid Time (UTC)



bias

Optlmlzmg the HCPF algorithm

— e — - — - — -~ 30km41dBz
e 30km35dBz lower
T 30km30dBz threshold
_____________ 30km25dBz
6 —| 30km38dBz
55 — 60km38dBz
. 45km38dBz T larger
a5 —] 15km38dBz filter
N 00km38dBz
25 | 0.35 —
5 0.3 —
25 | 0.25 —
| U) 0.2 —
O
1.5 — 1
, 0.1 —
os | 005 — fr .
0 — T T T T T T T T T T 11
0 005 04 015 02 025 03 035 04 045 05 055 0.6 0.65 0 005 01 015 02 025 03 035 04 045 05 055 0.6 0.65
onE HCPF

Perturbing detection threshold (red lines) has much larger
Impact on CSI and bias than spatial filter size



Optimizing the HCPF algorithm

Early versions of the HCPF had inconsistent skill, with
large bias swings throughout the diurnal convective cycle

Analytic updraft threshold function, target bias = 2.5

0.950 ———+

Perform bias correction via a
diurnally varying updraft (w)
threshold

Find threshold values at each
hour that achieve a fixed bias
Perform a Fourier synthesis to

0.850 \-.
0.800 -
0.750

0.700

1-h max updraft threshold (m/s)

0-900—_ ™\_ Diurnal g
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16 July 2009 HCPF / HRRR overlay
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HCPF summary

Use of time-lagged ensemble from rapidly updating, convection
resolving model yields a skillful convective probability product.

Strengths:

1) Excellent performance (especially with traditional metrics)
2) Similar “look and feel” to existing products (CCFP, etc.)
3) Excellent product consistency

4) Can combine with deterministic CoSPA forecast to convey
storm structure / convective mode and areas probabilities

5) Technigue can be used to provide probabllistic forecasts of
other high impact events (high wind, hall, tornadoes, flash
flooding, heavy ice/snow)



HCPF generation time
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http://ruc.noaa.gov/hcpf/hcpf/cgi

Toward estimating and reducing
forecast uncertainty for aviation applications
using high-frequency data assimilation

Outline:

« Uncertainty in short-range aviation forecasts
« varies for different aviation weather hazards
* e.g., very high uncertainty for convection for
ATM
« safety vs. efficiency concerns
* IS scale dependent and lead-time dependent
* High-frequency data assimilation narrows
uncertainty
 Desirable attributes for aviation probabilistic
forecasts



Conclusions

Recommend use of

e Hourly (or subhourly) data assimilation w/ radar

e Blended nowcast and NWP forecast

e Modularized algorithms into unified post

e Statistical post-processing for aviation gridded forecasts for multiple
forecasts (time-lagged ensembles, etc.)

e Extended time-lagged ensembles from 18h RUC/RR/HRRR

http://ruc.noaa.gov/hrrr




