
CROW in HAFS
Sam Trahan

NOAA, GSL, CU, CIRES, DTC, etc.

(Last Updated April 21, 2020)



 2

Executive Summary
Whole Project in One Slide

● HAFS is almost unchanged
– Conf files now YAML with the same structure
– Rocoto XML is entirely generated from YAML
– Update to Python 3.6
– Operational ecFlow suite is unchanged.
– ConfigParser is replaced with CROW in operations

● Benefits over old system:
– Direct connection between configuration files and workflow generation
– Can embed calculations into configuration files
– No longer using a retired Python version

● Disadvantage: change the system



 3

Outline
Presentation Details These Topics

● HAFS is almost unchanged
– Conf files now YAML with the same structure
– Rocoto XML is entirely generated from YAML
– Update to Python 3.6
– Operational ecFlow suite is unchanged.
– ConfigParser is replaced with CROW in operations

● Benefits over old system:
– Direct connection between configuration files and workflow generation
– Can embed calculations into configuration files
– No longer using a retired Python version

● Disadvantage: change the system



 4

Part 1
ConfigParser vs. YAML

● HAFS is almost unchanged
– Conf files now YAML with the same structure
– Rocoto XML is entirely generated from YAML
– Update to Python 3.6
– Operational ecFlow suite is unchanged.
– ConfigParser is replaced with CROW in operations

● Benefits over old system:
– Direct connection between configuration files and workflow generation
– Can embed calculations into configuration files
– No longer using a retired Python version

● Disadvantage: change the system



 5

HAFS Configuration
ConfigParser Configuration Language

file1.conf

[section]
var1=3
var2=4

file2.conf

[section]
var1=7
var3=6

In-memory result

[section]
var1=7
var2=4
var3=6

Data from later files 
overrides earlier ones



 6

HAFS Configuration
ConfigParser Configuration Language

file1.conf

[section1]
var1=3
var2=4

[section2]
var1=8
var4=7

file2.conf

[section1]
var1=7
var3=6

[section2]
var2=11
var3=25
var4=16

In-memory result

[section1]
var1=7
var2=4
var3=6

[section2]
var1=8
var2=11
var3=25
var4=16

Multiple sections



 7

HAFS Configuration
ConfigParser Configuration Language

file1.conf

[section1]
var1=3
var2=4

[section2]
var1=8
var4=7

file2.conf

[section1]
var1=7
var3=6

[section2]
var2=11
var3=25
var4=16

In-memory result

[section1]
var1=7
var2=4
var3=6

[section2]
var1=8
var2=11
var3=25
var4=16

Variables are scoped by section.
 

Section 1 and 2 have their own var1



 8

HAFS Configuration
ConfigParser Configuration Language

file1.conf

[section1]
var1=3
var2=4

[section2]
var1={section1/var1}
var4=7

file2.conf

[section1]
var1=7
var3=6

[section2]
var2=11
var3={var2}
var4=16

In-memory result

[section1]
var1=7
var2=4
var3=6

[section2]
var1=7
var2=11
var3=11
var4=16

References between sections using {} braces

References within a section using {} braces



 9

HAFS Configuration
ConfigParser Configuration Language

file1.conf

[config]
dog=roscoe
cat=apollo

file2.conf

[action]
story={cat} chases {dog}
reason={dog} annoyed {cat}

In-memory result

[config]
dog=roscoe
cat=apollo

[action]
story=apollo chases roscoe
reason=roscoe annoyed apollo

Special sections: config, dir, exe

References to missing variables in a 
section look at the special sections



 10

HAFS Configuration
CROW Configuration Language

file1.yaml

config:
  dog: roscoe
  cat: apollo

math:
  two: !calc 1+1

file2.yaml

action:
  two: !iexpand “{math.two!s}”
  story: !expand “{all.cat} chases {all.dog}”
  reason: !uexpand “{all.dog} annoyed {all.cat}”

Special sections: config, dir, exe

Use all.varname to access special 
sections



 11

HAFS Configuration
CROW Configuration Language

file1.yaml

config:
  dog: roscoe
  cat: apollo

math:
  two: “two”

file2.yaml

math:
  two: !calc “1+1”

action:
  two: !iexpand “{math.two!s}”
  story: !expand “{all.cat} chases {all.dog}”
  reason: !uexpand “{all.dog} annoyed {all.cat}”

In memory. Simplified version.

doc = dict_eval({
  “config”: dict_eval({
    “dog”: “roscoe”,
    “cat”: “apollo”
    }),
  “math”: dict_eval({ “two”: calc(“1+1”) }),
  “action”: dict_eval({
    “two”: iexpand(“{math.two!s}”),
    “story”: expand(“{all.cat} chases {all.dog}”),
    “reason”: uexpand(“{all.dog} annoyed {all.cat}”)
    }),
  })



 12

HAFS Configuration
CROW calculations: before calculating

  “action”: dict_eval({
    “two”: iexpand(“{math.two!s}”),
    “story”: expand(“{all.cat} chases {all.dog}”),
    “reason”: uexpand(“{all.dog} annoyed {all.cat}”)
    }),

Calculations = {
    “two”: iexpand(“{math.two!s}”),
    “story”: expand(“{all.cat} chases {all.dog}”),
    “reason”: uexpand(“{all.dog} annoyed {all.cat}”)
    }

Cache = {} # empty dict

> print(doc.action.two)
2

> print(doc.action.story)
apollo chases roscoe

> print(doc.action.reason)
roscoe annoyed apollo

What happens in memory?



 13

HAFS Configuration
CROW calculations: after calculating

  “action”: dict_eval({
    “two”: iexpand(“{math.two!s}”),
    “story”: expand(“{all.cat} chases {all.dog}”),
    “reason”: uexpand(“{all.dog} annoyed {all.cat}”)
    }),

Calculations = {
    “two”: 2,
    “story”: expand(“{all.cat} chases {all.dog}”),
    “reason”: uexpand(“{all.dog} annoyed {all.cat}”)
    }

Cache = {
    “story”: “apollo chases roscoe”
    }

> print(doc.action.two)
2

> print(doc.action.story)
apollo chases roscoe

> print(doc.action.reason)
roscoe annoyed apollo

What happens in memory?



 14

HAFS Configuration
CROW calculations: after calculating

  “action”: dict_eval({
    “two”: iexpand(“{math.two!s}”),
    “story”: expand(“{all.cat} chases {all.dog}”),
    “reason”: uexpand(“{all.dog} annoyed {all.cat}”)
    }),

Calculations = {
    “two”: 2,
    “story”: expand(“{all.cat} chases {all.dog}”),
    “reason”: uexpand(“{all.dog} annoyed {all.cat}”)
    }

Cache = {
    “story”: “apollo chases roscoe”
    }

When writing back to disk as 
CROW YAML, the calculations 
are written.

!iexpand replaced the 
calculation with the result, so 
the !iexpand is not written out

!uexpand, !expand are written 
back as they were in the input 
file



 15

HAFS Configuration
CROW: f-strings and expand

CROW is based on Python f-strings
 

x=1
y=1
print(f“x+y={x}+{y}={x+y}”)
# prints x+y=1+1=2
 

# Use !s to pass through str()
# Use !r to pass through repr()
 

adjective=”tasty”
fruits=”oranges”
 

print(f’{fruits} are {adjective}’)
# prints oranges are tasty
 

print(f’{fruits} are {adjective!s}’)
# prints oranges are tasty
 

print(f’{fruits} are {adjective!r}’)
# prints oranges are ‘tasty’



 16

HAFS Configuration
CROW: f-strings and expand

parm:
  x: 1
  y: 1
  adjective: tasty
  fruits: oranges

demo:
  math: !calc doc.parm.x+doc.parm.y
  use_repr: !expand ‘{parm.fruits} are {parm.adjective!r}
  use_str: !expand ‘{parm.fruits} are {parm.adjective!s}
  neither:  !expand ‘{parm.fruits} are {parm.adjective}

… python code ...

conf=… read the yaml files …
print(conf.demo.use_repr) # => oranges are ‘tasty’
print(conf.demo.use_str) # => oranges are tasty
print(conf.demo.neither) # => oranges are tasty

CROW is based on Python f-strings
 

x=1
y=1
print(f“x+y={x}+{y}={x+y}”)
# prints x+y=1+1=2
 

# Use !s to pass through str()
# Use !r to pass through repr()
 

adjective=”tasty”
fruits=”oranges”
 

print(f’{fruits} are {adjective}’)
# prints oranges are tasty
 

print(f’{fruits} are {adjective!s}’)
# prints oranges are tasty
 

print(f’{fruits} are {adjective!r}’)
# prints oranges are ‘tasty’



 17

HAFS Configuration
CROW: eval and calc

CROW is based on Python eval
 

x=1
y=1
print(eval(“x+y”)
# prints 2

parm:
  x: 1
  y: 1

demo:
  math: !calc doc.parm.x+doc.parm.y

… python code ...

conf=… read the yaml files …
print(conf.demo.math) # => 2



 18

HAFS Configuration
CROW: eval and calc

CROW is based on Python eval
 

x=1
y=1
print(eval(“x+y”)
# prints 2

parm:
  x: 1
  y: 1

demo:
  math: !calc doc.parm.x+doc.parm.y

… python code ...

conf=… read the yaml files …
print(conf.demo.math) # => 2

“doc” is top of document



 19

Part 2
Research Workflow: Rocoto XML Generation

● HAFS is almost unchanged
– Conf files now YAML with the same structure
– Rocoto XML is entirely generated from YAML
– Update to Python 3.6
– Operational ecFlow suite is unchanged.
– ConfigParser is replaced with CROW in operations

● Benefits over old system:
– Direct connection between configuration files and workflow generation
– Can embed calculations into configuration files
– No longer using a retired Python version

● Disadvantage: change the system



 20

HAFS Configuration
Research Workflow (Simplified)

run_hafs.py Rocoto XML

hafs_launch job

storm1.holdvars.txt
(Generated by 
merged conf)

Shell jobs

storm1.conf
(write out in-memory 
merged conf)

Python jobs

In run_hafs.py:
- Read conf
- Sanity checks
- Workflow generation

XML template
file1.conf
file2.conf
file3.conf
...



 21

HAFS Configuration
Research Workflow (Simplified)

run_hafs.py Rocoto XML

hafs_launch job

storm1.holdvars.txt
(Generated by 
merged conf)

Shell jobs

storm1.conf
(write out in-memory 
merged conf)

Python jobs

HAFS Python classesIn run_hafs.py:
- Read conf
- Sanity checks
- Workflow generation

XML template
file1.conf
file2.conf
file3.conf
...



 22

HAFS Configuration
Research Workflow XML Generation

<?xml version="1.0"?>

<!DOCTYPE workflow [
…
  <!ENTITY SCRUB_WORK "@[SCRUB_WORK]">
  <!ENTITY SCRUB_COM "@[SCRUB_COM]">
…
  <task name="launch" maxtries="99">
...

Conf-based HAFS makes the Rocoto XML from 
simple text replacement:

  @[VARNAME]

Refers back to a dict created in run_hafs.py



 23

HAFS Configuration
Regions Impacted by Change in Config System

run_hafs.py Rocoto XML

hafs_launch job

storm1.holdvars.txt
(Generated by 
merged conf)

Shell jobs

storm1.yaml
(write out in-memory 
merged yaml)

Python jobs

CROW Inside HAFS Python ClassesIn run_hafs.py:
- Read yaml
- Sanity checks
- Workflow generation

workflow.yaml
file1.yaml
file2.yaml
file3.yaml
...



 24

HAFS Configuration
Research Workflow CROW to XML

CROW YAML includes 
workflow definitions

Trade information 
between sections

Automatic dependency 
generation

Generate resource 
specifications

hafs_tasks.yaml

launch_task:
  Inherit: !Inherit [ [ doc.task_defaults, '.*', { recurse: inherit } ] ]
  accounting: !calc doc.accounting.serial
  resources: !calc doc.resources.small_serial
  TOTAL_TASKS: 1
  ...

workflow:
  …
    launch: !Task
      Inherit: !Inherit [ [ doc.launch_task, '.*', {recurse: inherit} ] ]
      Validate: inherit
      Trigger: !Depend ( launch.at(-6*3600) | ~ suite.has_cycle(-6*3600) )
      Time: !timedelta '+3:20:00'



 25

HAFS Configuration
Research Workflow CROW to XML

CROW YAML includes 
workflow definitions

Trade information 
between sections

Automatic dependency 
generation

Generate resource 
specifications

hafs_tasks.yaml

launch_task:
  Inherit: !Inherit [ [ doc.task_defaults, '.*', 
                              { recurse: inherit } ] ]
  accounting: !calc doc.accounting.serial
  resources: !calc doc.resources.small_serial
  TOTAL_TASKS: 1
  ...

accounting:
  scheduler_settings:
    name: Slurm
    physical_cores_per_node: 40
    logical_cpus_per_core: 2
  serial:
    queue: batch # queue for serial jobs
    account: !ref doc.accounting.account
resources:
…
  small_serial: !JobRequest
    - &small_serial
      <<: *resources_small_serial
      walltime: !timedelta '00:15:00'
…
  chgres_ic: !JobRequest
    - OMP_NUM_THREADS: 1
      mpi_ranks: 120
      max_ppn: 40
      exclusive: true
      walltime: !timedelta '00:30:00'

sites/hera.yaml



 26

Part 3
Operational Workflow

● HAFS is almost unchanged
– Conf files now YAML with the same structure
– Rocoto XML is entirely generated from YAML
– Update to Python 3.6
– Operational ecFlow suite is unchanged.
– ConfigParser is replaced with CROW in operations

● Benefits over old system:
– Direct connection between configuration files and workflow generation
– Can embed calculations into configuration files
– No longer using a retired Python version

● Disadvantage: change the system



 27

HAFS Configuration
Operational Workflow (Simplified)

Static ecFlow workflow

file1.conf
file2.conf
file3.conf
...

Updated Yearly

Storm vitals and priority updated 
manually by SDM every 6hrs:
storm1
storm2
storm3
storm4
…
storm8

Storm slots with
no storms

storm1  launcher   conf/holdvars   jobs

storm2  launcher   conf/holdvars   jobs

storm3  launcher   conf/holdvars   jobs

storm4

storm8

...



 28

storm3 launcher job

HAFS Configuration
Operational Workflow (Storm 3)

Static ecFlow workflow

file1.conf
file2.conf
file3.conf
...

Updated Yearly

Storm vitals and priority updated 
manually by SDM every 6hrs:
storm1
storm2
storm3
storm4
…
storm8

Storm slots with
no storms

storm3.holdvars.txt 
storm3.conf

Python jobs shell jobs

Zoom in on one storm’s workflow.

Regions of the workflow connected to the 
configuration system are in blue.



 29

HAFS Configuration
Operational Configuration at Runtime

Some variables change with every storm and cycle in a way that cannot be 
predicted until runtime.

out_prefix={vit[stormnamelc]}{vit[stnum]:02d}{vit[basin1lc]}.{vit[YMDH]}

storm3 launcher job

Static ecFlow workflow

file1.conf
file2.conf
file3.conf
...

storm3.holdvars.txt 
storm3.conf

Storm vitals and priority 
updated manually by 
SDM every 6hrs:



 30

HAFS Configuration
Operational Configuration at Runtime

Some variables change with every storm and cycle in a way that cannot be 
predicted until runtime.

out_prefix={vit[stormnamelc]}{vit[stnum]:02d}{vit[basin1lc]}.{vit[YMDH]}

storm3 launcher job

Static ecFlow workflow

file1.conf
file2.conf
file3.conf
...

storm3.holdvars.txt 
storm3.conf

Storm vitals and priority 
updated manually by 
SDM every 6hrs:



 31

HAFS Configuration
Operational Configuration at Runtime

Some variables change with every storm and cycle in a way that cannot be 
predicted until runtime.

out_prefix={vit[stormnamelc]}{vit[stnum]:02d}{vit[basin1lc]}.{vit[YMDH]}

This is in hafs.conf and storm3.conf
Parsed at runtime by storm3 launcher job and several later jobs.

storm3 launcher job

Static ecFlow workflow

file1.conf
file2.conf
file3.conf
...

storm3.holdvars.txt 
storm3.conf

Storm vitals and priority 
updated manually by 
SDM every 6hrs:



 32

HAFS Configuration
Operational Configuration at Runtime

Some variables change with every storm and cycle in a way that cannot be 
predicted until runtime.

out_prefix={vit[stormnamelc]}{vit[stnum]:02d}{vit[basin1lc]}.{vit[YMDH]}

This is in hafs.conf and storm3.conf
Parsed at runtime by storm3 launcher job and several later jobs.

The configuration system is, out of necessity, in operations.

storm3 launcher job

Static ecFlow workflow

file1.conf
file2.conf
file3.conf
...

storm3.holdvars.txt 
storm3.conf

Storm vitals and priority 
updated manually by 
SDM every 6hrs:



 33

storm3 launcher job

HAFS Configuration
Operational Workflow no CROW (Storm 3)

Static ecFlow workflow

file1.conf
file2.conf
file3.conf
...

Updated Yearly

Storm vitals and priority updated 
manually by SDM every 6hrs:
storm1
storm2
storm3
storm4
…
storm8

Storm slots with
no storms

storm3.holdvars.txt 
storm3.conf

Python jobs shell jobs

Zoom in on one storm’s workflow.

Regions of the workflow connected to the 
configuration system are in blue.



 34

storm3 launcher job

HAFS Configuration
Operational Workflow with CROW (Storm 3)

Static ecFlow workflow

file1.yaml
file2.yaml
file3.yaml
...

Updated Yearly

Storm vitals and priority updated 
manually by SDM every 6hrs:
storm1
storm2
storm3
storm4
…
storm8

Storm slots with
no storms

storm3.holdvars.txt 
storm3.yaml

Python jobs shell jobs

Zoom in on one storm’s workflow.

Regions of the workflow connected to the 
CROW configuration system are in blue.



 35

HAFS Configuration
Operational Configuration no CROW

Some variables change with every storm and cycle in a way that cannot be 
predicted until runtime.

out_prefix={vit[stormnamelc]}{vit[stnum]:02d}{vit[basin1lc]}.{vit[YMDH]}

This is in hafs.conf and storm3.conf
Parsed at runtime by storm3 launcher job and several later jobs.

storm3 launcher job

Static ecFlow workflow

file1.conf
file2.conf
file3.conf
...

storm3.holdvars.txt 
storm3.conf

Storm vitals and priority 
updated manually by 
SDM every 6hrs:



 36

HAFS Configuration
Operational Configuration with CROW

Some variables change with every storm and cycle in a way that cannot be 
predicted until runtime.

out_prefix: !uexpand "{vit.stormnamelc}{vit.stnum:02d}{vit.basin1lc}.{vit.YMDH}"

This is in hafs.yaml and storm3.yaml
Parsed at runtime by storm3 launcher job and several later jobs.

storm3 launcher job

Static ecFlow workflow

file1.yaml
file2.yaml
file3.yaml
...

storm3.holdvars.txt 
storm3.yaml

Storm vitals and priority 
updated manually by 
SDM every 6hrs:



 37

HAFS Configuration
Operational Configuration no CROW

Some variables change with every storm and cycle in a way that cannot be 
predicted until runtime.

out_prefix={vit[stormnamelc]}{vit[stnum]:02d}{vit[basin1lc]}.{vit[YMDH]}

This is in hafs.conf and storm3.conf
Parsed at runtime by storm3 launcher job and several later jobs.

The configuration system is, out of necessity, in operations.

storm3 launcher job

Static ecFlow workflow

file1.conf
file2.conf
file3.conf
...

storm3.holdvars.txt 
storm3.conf

Storm vitals and priority 
updated manually by 
SDM every 6hrs:



 38

HAFS Configuration
Operational Configuration with CROW

Some variables change with every storm and cycle in a way that cannot be 
predicted until runtime.

out_prefix: !uexpand "{vit.stormnamelc}{vit.stnum:02d}{vit.basin1lc}.{vit.YMDH}"

This is in hafs.yaml and storm3.yaml
Parsed at runtime by storm3 launcher job and several later jobs.

The CROW configuration system is, out of necessity, in operations.

storm3 launcher job

Static ecFlow workflow

file1.yaml
file2.yaml
file3.yaml
...

storm3.holdvars.txt 
storm3.yaml

Storm vitals and priority 
updated manually by 
SDM every 6hrs:



 39

Executive Summary
Whole Project in One Slide

● HAFS is almost unchanged
– Conf files now YAML with the same structure
– Rocoto XML is entirely generated from YAML
– Update to Python 3.6
– Operational ecFlow suite is unchanged.
– ConfigParser is replaced with CROW in operations

● Benefits over old system:
– Direct connection between configuration files and workflow generation
– Can embed calculations into configuration files
– No longer using a retired Python version

● Disadvantage: change the system


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

