
1

Community	Unified	Post	Processor	(UPP)	
Code	Management	Plan	

April 15, 2019
Point of Contact: Kate Fossell [fossell@ucar.edu]

1 Introduction	
The Unified Post Processor (UPP) software package was developed by the Environmental Modeling
Center (EMC) of the National Centers for Environmental Prediction (NCEP) and is used operationally
for models maintained by NCEP. This package provides the Numerical Weather Prediction (NWP)
community with a common tool to post-process output from multiple models, ranging from global
to regional scales. UPP can be used to post-process output from a variety of NWP models, including
the Weather Research and Forecasting (WRF) Advanced Research WRF (ARW) and Non-hydrostatic
Mesoscale Model (NMM), Non-hydrostatic Multi-scale Model on the B grid (NMMB), Global Forest
System (GFS), Climate Forecast System (CFS), and Finite-Volume Cubed Sphere (FV3).

The Developmental Testbed Center (DTC) will serve to establish a link between the operational and
research communities by maintaining a community UPP repository and providing regular public
releases and user support for this software package. In order to benefit the entire NWP community,
the community UPP repository must be maintained in a way that allows future updates and
enhancements to be contributed by, and shared between, both the operational and research
communities.

Supporting and managing a version of the UPP package applicable to community and operational
users requires a plan for coordinating the sharing of code between developers with diverse needs.
The DTC will be responsible for maintaining a community UPP package that is kept in sync with the
operational UPP package (O2R). Community users may contribute modifications and enhancements
to the UPP package; these modifications will be tested and made available to the operational
community (R2O). This document outlines the policies and procedures used to maintain a robust
and flexible community UPP software package. The document contains descriptions pertaining to:

• Community UPP code repository
• Code Contributions
• Synchronizing the DTC Community UPP ó NCEP UPP code repositories
• Release Schedule and User Support

2

2 Community	UPP	Code	Repository	

2.1 Physical	Storage	
The hardware, version control software, and repositories used to store and access the community
UPP repository are maintained and administered by the National Oceanic Atmospheric
Association (NOAA) / National Weather Service (NWS) via Virtual Laboratory (VLab). VLab is a set
of services and an Information Technology (IT) framework developed to facilitate the
collaboration of software within NOAA/NWS and its partners in effort to streamline and
accelerate Research to Operations (R2O) and Operations to Research (O2R) transitions. It consists
of integrated tools for project management, issue tracking, software repositories, continuous
integration, and code review. More information can be found at
https://vlab.ncep.noaa.gov/home.

VLab makes use of Git as its version control system. In 2018, the community UPP code and
repositories were moved from SVN-based version control to Git, and pushed to VLab to be
consistent with NOAA’s Environmental Modeling Center (EMC) operational UPP code.

2.2 Software	Directory	Structure	
One physical Git repository exists on VLab (described in 2.1) to house both operational EMC code
and the community UPP package. This repository is called EMC_post and can be found at:
https://vlab.ncep.noaa.gov/code-review/EMC_post. The master branch of EMC_post constitutes
the operational source code. A branch called DTC_post exists within the EMC_post repository to
house the community UPP package. The DTC_post branch is further described in section 2.2.1.

2.2.1 Community	UPP	Repository	
The UPP community repository is by design a direct branch of the EMC_post repository. This
community branch is called DTC_post and is a mirror image of the master branch of the
EMC_post repository, but also contains an extra directory called comupp that houses DTC
specific build support, library source code and submodule links to the library src/crtm, and any
other community specific needs. Effort is made to keep the unipost source code within the
master and community branches (EMC_post/sorc/ncep_post.fd and
DTC_post/comupp/src/unipost) identical except where the need for difference is determined to
be necessary or unavoidable. A DTC preprocessor flag (COMMCODE) is used to facilitate the
sharing of files with minor code variations.

3

The structure of the EMC_post repository and DTC_post community branch is illustrated below:

The DTC_post comupp/ directory is the central location of the code needed to create
executables of unipost and associated utility programs (i.e., ndate, copygb). The scripts: clean,
configure, and compile are the command directives used to create the executables. These
scripts use information in the arch/ directory to build a version of UPP which is compatible with
the system/architecture it has been installed on. The comupp/src directory contains all the
source code. The source code includes the lib/ directory which stores library source code and, in
some cases (i.e., CRTM), contains a submodule to an external library repository. The main
unipost code is in src/unipost/ and is a copy of the sorc/ncep_post.fd directory in the NOAA
EMC operational master branch of the EMC_post repository. Effort will be made to maintain a
mirror image of the sorc/ncep_post.fd, unless changes are necessary. The utility programs,
ndate and copygb, are also located within the unipost repository under the comupp/src/
directory. These utilities were also developed by NOAA/EMC.

The contents of these directories are further expanded and defined in the following table.

Directory Name Description
comupp/clean Script to remove compilation files
comupp/configure Script to configure for compile
comupp/compile Script to compile
comupp/arch/ Architecture dependent support code
comupp/docs User Guide Lyx files
comupp/makefile Initial makefile called by compile
comupp/parm/ Output control parameter file
comupp/scripts/ Scripts to run unipost
comupp/src/lib/bacio/ binary I/O routines
comupp/src/lib/crtm2/ Community Radiative Transfer Model

[Submodule to Github Repository]
comupp/src/lib/ip/ Interpolation Library

Figure 1. High-level overview EMC_post repository and DTC_post directory content

4

comupp/src/lib/sfcio/ NCEP GFS Surface files I/O API
comupp/src/lib/sigio/ NCEP GFS Sigma files I/O API
comupp/src/lib/sp/ Spectral Grid Transform Library
comupp/src/lib/gfsio GFS I/O routines
comupp/src/lib/nemsio NEMS I/O routines
comupp/src/lib/w3emc GRIB1 code/decode Library
comupp/src/lib/w3nco GRIB1 code /decode Library
comupp/src/lib/g2 GRIB2 support library
comupp/src/lib/g2tmpl GRIB2 table support library
comupp/src/lib/xml XML support – GRIB2 parameter file
comupp/src/lib/wrf_io WRF netcdf I/O Library
comupp/src/lib/wrfmpi_stubs Serial compilation support
comupp/src/unipost Unified Post source code
comupp/src/copygb Horizontal Interpolation Utility for grib1
comupp/src/ndate Date formatting Utility

Table 1: DTC_post branch comupp directories

A user may create a branch based on the DTC_post branch to create a workspace for their
development. User branches should be named such that they do not conflict with other
branches. An important note is that when a user makes a copy of the DTC_post, the submodule
to any external library repositories are NOT branched, unless they are explicitly changed.

Tags are used to store snapshots of the community UPP package when a version is officially
released to the user community. These releases include the formal annual release and any bug
fixes that are posted as a code revision. In the event of numerous user contributions, at any
given time tags may be used to help insure the order of the code changes to the repository. A
user may tag a branch; however, no development is to occur in the tags/ directory.

2.2.2 Community	UPP	Libraries	Structure	
The libraries packaged with the community UPP are derivatives of the NOAA/EMC‘s nceplib
repositories on VLab. These libraries will strive to be identical to the versions used by the
operational UPP except where the need for difference is determined to be necessary. A DTC
preprocessor flag is used to facilitate the sharing of files with minor code variations. The
libraries will be upgraded annually with each release to remain current with EMC and more
frequently, if needed. There are unit tests available from the EMC repository with each of these
libraries. At this time the unit tests are not available in the DTC repository. Due to the size of
the complete CRTM library, a subset of only the necessary code is housed in a Github repository
and is maintained by the DTC in the same manner as the other libraries. A submodule for the
CRTM Github repository is linked to the DTC_post/src/lib/crtm directory such that a clone of the
DTC_post branch automatically populates the crtm directory with the proper code. This CRTM
library repository can be found at: https://github.com/NCAR/UPP_CRTM. Development of any
of the libraries packaged with the UPP should be discussed with the DTC prior to proposing code
changes within the repository.

The structure of the DTC library source code within DTC_post branch follows:

5

	

3 Code	Contribution	Outline	

3.1 Access	to	Repository	
A developers’ committee (DC) exists, which will govern the contributions made to the community
UPP branch. Initial membership of the DC will include representatives from NOAA/EMC and the
DTC. Individuals wishing to gain access to the community UPP branch should contact the DTC.
The DTC will bring the request to the DC for approval. Access to the repository requires NOAA
credentials, access to VLab, Redmine, and Gerrit components. The DC will approve read access to
the repository. Read/write access will be granted to a subset of the DC based on need. Upon
approval, the DC will coordinate with the user about next steps to gain access to the repository.
In the event that NOAA VLab access cannot be granted, the DTC will provide a code package for
the individual to do their development, and the DTC will manage checking in new code changes to
the repository as needed. The DC will meet on an as needed basis.

3.2 Working	in	the	Repositories	
DC members with read/write access are encouraged to make a branch(es) of the DTC_post branch
to work on changes they intend to make available to the community repository(ies) at a future
date. This will facilitate the user in keeping current with the modifications that occur to the
community code while they are developing their changes. The changes made under a user
branch(es) are not used by the general community. These individual branches allow groups or an
individual to create a quasi-permanent UPP version which contains changes their project requires,
but are not ready to be incorporated into the community code.

3.3 Request	to	Accept	Change	into	Community	UPP	Repositories	
To check code modifications into the community repository, a DC member must request a code
review. A code review meeting will be scheduled and should be attended by a majority of the DC

Figure 2. Library directories. Blue text indicates source code housed in DTC_post branch on VLab. Red
text indicates source code linked by submodule to external Github repository.

6

members. The DC members in attendance have the authority to accept or reject the proposed
changes. For those with VLab access, the procedure to follow in order to prepare code for review
is outlined below. Other users/developers should contact their POC at the DTC to obtain specific
procedures; while some technical aspects may change, the general procedures will still be
followed in this case.

1. Create a local copy of the repository by cloning the DTC_post branch of the EMC_post
repository. Users must clone the specific branch in order to obtain the CRTM submodule as
well. (Cloning the master EMC_post branch and trying to checkout the DTC_post branch will
result in an empty crtm directory and necessitate extra steps to populate its contents).

git clone -b DTC_post --recurse-submodules https://vlab.ncep.noaa.gov/code-
review/EMC_post

2. Create a local branch off of DTC_post for development.

git checkout -b your_branch

3. Add modifications, enhancements or additions into your local branch. All code changes

proposed for inclusion to the community branch of the repository must meet the coding
standards described in Appendix A.

4. Run available regression tests (Appendix B) on modified code, as well as any specific
computing and scientific tests the developer may have to ensure the modifications are
behaving as intended and have not adversely impacted existing UPP capabilities.

5. Commit your changes to your local branch

git checkout your_branch
git commit -a

6. Push your branch to the remote EMC_post repository on VLab.

git checkout your_branch
git push origin

7. Ensure your branch is synchronized with the DTC_post branch. If not and you need to merge

with DTC_post first. Retesting after the merge is required.

8. Upon successful completion of testing (4) and pushing your branch to the remote EMC_post

repository on VLab (6), a proposal of the modifications should be submitted to the DC. The
developer’s proposal must include a detailed description of the modifications to the system,
a summary of the completed testing with results, instructions on usage of new feature(s),
files modified, changes to program input/output, and code differences (unified diff format).
The DTC will schedule a review meeting and notify the DC membership. The complete
developer’s proposal must be received by the DC no later than 24 hours prior to the

7

scheduled review meeting.

9. DC members should review all proposals for system commits prior to the scheduled review
meeting. During the DC meeting, all code modifications are described and defended to the
DC review members. The DC members may accept or reject any set of proposed changes.
(Note: The successful completion of the regression tests is a necessary, but not sufficient,
condition for acceptance of proposed changes.)

10. Approved system modifications may then be merged to the DTC_post branch of the
EMC_post repository on VLab. In the event that multiple proposals are submitted prior to
the same review meeting, the system changes will be prioritized by the attendees of the
review meeting and the order of system upgrades will be determined. The DTC will manage
merging of multiple proposals.

11. After all system modifications are in DTC_post branch, the DTC will retrieve the branch,
compile UPP and supporting utilities, and run regression tests to ensure functional status. If
the tests do not complete successfully the DTC will notify the party(ies) involved and work to
correct the system error(s). This may include removal of a previously accepted modification.
When the DTC determines the community UPP DTC_post branch is in a working state a
notification will be made to the DC membership to that effect, including any removal of
changes that may have occurred. Developers who have their modifications removed may
correct the noted error and resubmit their proposal to the DC.

12. The developers whose system modifications have been accepted and verified should delete
the branch they made in the branches/ directory of the repository. If development is
anticipated to continue on this branch it may remain with no required intervention.

13. The accepted changes not initiated by NCEP will be made available to NCEP to determine if

the community modifications can be incorporated into the operational UPP.

4 Synchronizing	the	DTC	Community	UPP	ó	NCEP	UPP	code	
repositories		
To maintain a strong connection between the research and operational communities, the DTC
community UPP branch must be kept synchronized with the NCEP operational UPP branch. This
will require the DTC to merge all NCEP operational changes into the community UPP branch, as well
as present the community changes accepted by the DC into the community branch to NCEP for
possible inclusion in the operational master branch. A primary and secondary point of contact
(POC) will be designated from the DTC staff who will work with the NCEP primary code manager to
accomplish this goal. The remainder of this section outlines the communication required for
repository synchronization.

4.1 DTC	Þ	NCEP	
The DTC will submit non-NCEP initiated changes accepted by the DC into the community UPP
branch to NCEP for acceptance into the operational UPP repository. The documentation
submitted to initiate the DC approval process will act as the documentation provided to NCEP.
The DTC will open a ticket in Redmine for each request submitted to NCEP. The DTC POC will

8

work directly with EMC code managers to incorporate the proposed changes and will authorize
the final acceptance through Gerrit code review for the changes to be merged in the master
branch of EMC_post.

4.2 NCEP	Þ	DTC	
NCEP will send notification of updates via email messages generated by the operational VLab
project management system or communicated by the NCEP principal code manager to the DTC
POC. There are three forms of updates the DTC will receive from NCEP regarding the Community
UPP branch. These include:

1) New operational UPP software capabilities (via VLab/Git)
2) Acceptance of community contributions to the operational repository (via Redmine)
3) Refusal of community contributions to the operational repository (via Redmine)

4.2.1 Operational	UPP	Software	Modification	
The DTC POC receives email notification that the operational UPP software has been modified.
The Git or Redmine logs should describe the files that changed and provide a description of the
change. The DTC will proceed as follows:

• The DTC will update the community branch, DTC_post, to pull in NCEP changes.
• The DTC will make a branch based off the community DTC_post branch.
• The NCEP changes will be incorporated into the comupp directory.
• The DTC will run regression tests.
• Upon successful completion of the regression tests, the modification will be brought

before the DC for acceptance into the comupp directory of DTC_post branch.
• The details in Section 3.3 (Request to Accept Change into Community UPP Repositories)

further explain the remaining procedure. The DTC will act as the originator during this
procedure.

4.2.2 Acceptance	of	a	Community	Contribution	
The DTC point of contact receives email notification that a community contribution has been
accepted in to the operational UPP repository (master branch of the EMC_post repository). The
DTC determines if the accepted operational implementation matches the initial submission or if
modifications have been made. Variations to white space (blanks, tabs, and newlines) are not
considered a modification for this purpose. If the change is identical there is no work to be done
in the repository. The DC will be notified that the change was accepted by NCEP. The DTC will
then update the tracking database as discussed in Section 4.1, DTC Þ NCEP, to reflect the
acceptance of the contribution. White space changes will be reconciled by the DTC if necessary
to keep the code as close as possible with the NCEP operational branch. The DTC may use the
procedure outlined in Section 3.3 to modify the community branch with these changes.

In the event the modifications made by NCEP include variations to the initial DTC submittal the
DTC will notify the DC of the changes made by NCEP. If any questions arise from the DC, the
DTC will communicate those back to NCEP and iterate, as necessary, until a final version is
agreed upon. Any code changes from the initial DTC submission to NCEP will terminate the
acceptance of the current approval and reinitiate the process with the most recent
modifications. Upon acceptance of the modifications, the DTC will follow the outline found in
Section 4.2.1. All communication shall be documented in the VLab Redmine ticket initially
opened.

9

4.2.3 Decline	of	a	Community	Contribution	
NCEP has full authority over what is accepted into the operational UPP repository. They may,
for any reason, decide to not accept a community contribution. An explanation of refusal shall
be included in the notification email sent to the DTC. Any explanation of why the contribution
was declined, including possible changes which would make the modification acceptable, will be
supplied to the DC. The VLab Redmine issue tracking system will be updated to identify the
contribution as existing in the community UPP repository only (submitted and declined).
The compile flag COMMCODE may be used to allow code to exist in the DTC repository while
EMC is not ready or willing to accept the change.

5 Community	UPP	Release	and	Support	
The DTC will be responsible for regular code releases to the community. The DTC will participate in
pre-release testing and evaluation that will go beyond the limited regression tests used for on-
going maintenance. The release procedure will consist of:

• The community UPP DTC_post branch of the EMC_post repository will be placed in a
“frozen” state.

• During the “freeze” period the DC will only review bug fix contributions.
• Regular release meetings will be held during the freeze period. At the first release meeting,

the additions/modifications available in the up-coming community UPP software package
will be determined and documented. This document will be made available before or in
conjunction with the release.

Community UPP users can utilize the helpdesk email account upp-help@ucar.edu to submit
questions regarding any aspect of UPP. The DTC will serve as the frontline for this task. Although
the DTC will be responsible for responding to user inquiries, developers will need to assist with
inquiries that go beyond the expertise of the DTC staff. Thus, once any new feature is released, the
owners of those additions will automatically become part of the support team (helpdesk) who may
need to answer questions from users. Code contributors will also be responsible for supplying
pertinent documentation upon submission of any new code. The DTC will be responsible for
reviewing and updating official UPP documentation with each new release.

A-1

Appendix	A. CODE	PRACTICES		

PREAMBLE

The reason for putting this document together, apart from establishing some minimum standard for
code quality from developers outside EMC or JCSDA, is to provide a basis for consistency amongst the
many UPP developers.

One thing to remember other people will be reading and trying to understand your code – be nice to
them.

STYLE

• Use free format syntax.

• Indentation: begin in first column for statements such as PROGRAM, MODULE and CONTAINS, and
recursively indent all subsequent blocks by at least two spaces.

• Do not use tab characters – they are not part of the Fortran character set.

• Name ENDs fully, including the program unit name.

• When creating new code (this includes refactoring1 old code), use the style guidelines above
within the context of your personal style. If you use a syntax sensitive editor, as an experiment,
turn off the syntax coloring to see if your code is still easily readable.

• When modifying old code, adhere to the style of the existing code.

COMMENTS/DOCUMENTATION

• For cryptic variable names, state description in a comment immediately preceding declaration
or on end of the declaration line.

• For procedures and modules, insert a contiguous documentation block immediately following its
declaration containing a brief overview followed by an optional detailed description.

• Ensure procedure argument documentation in the doc block is consistent with additions and/or
deletions from the calling list.

• Procedure argument documentation in the doc block should briefly describe what are the
arguments and their units. In some cases, this level of documentation may be unnecessary (e.g.
the arguments to a generic interpolation procedure.) If in doubt, err on the side of documenting
the argument list.

1 Refactoring involves improving the design of existing code. It doesn’t change the observable behavior of the
software; it improves its internal structure. Refactoring does not fix bugs or add new functionality. See
http://en.wikipedia.org/wiki/Refactoring or Fowler,M., “Refactoring”, 2000, Addison-Wesley.

A-2

• Document any modifications made by using a short, but descriptive, log message when checking
the modified code into the software repository. Don’t just say what has changed – since
differencing versions provides that information – but why.

• Do not document changes within the code with comments that include the user’s name or
initials.

VARIABLE DECLARATIONS

• Declare all variables (IMPLICIT NONE)

• Use meaningful, understandable names for variables and parameters.

• Do not use Fortran intrinsic function names for variable names.

• Declare INTENT on all dummy arguments.

• Declare DIMENSION attribute for all non-scalars.

• Line up attributes within variable declaration blocks.

• Any scalars used to define extent must be declared prior to use.

• Declare a variable name only once in a scope, including USE MODULE statements.

MODULES

• Use modules to group related procedures and/or shared data.

• Use the ONLY attribute on USE statements as required.

• Declare IMPLICIT NONE.

• Include a PRIVATE statement and explicitly declare public attributes.

SUBROUTINES AND FUNCTIONS

• Group all dummy argument declarations first, followed by local variable declarations.

• Declare INTENT on all dummy arguments.

• To avoid null or undefined pointers, pointers passed through an argument list must be allocated.

CONTROL CONSTRUCTS

• Name control constructs (e.g., DO, IF, SELECT CASE) which span a significant number of lines
or form nested code blocks.

• No numbered do-loops.

• Name loops that contain CYCLE or EXIT statements.

• Do not use GOTO.

• Use Fortran95-style relational symbols, e.g., >= rather than .GE., /= rather than .NE..

A-3

• For multiple selection tests, use case statements with case defaults rather than if-constructs
wherever possible.

MISCELLANEOUS

• Always initialize pointer variables in their declaration statement using the NULL() intrinsic, e.g.

INTEGER, POINTER :: x => NULL()

• Use modules (not common blocks) for sharing large segments of data.

• Remove unused variables.

• Do not use, if at all possible, compiler specific functions or calls. Doing so limits portability of the
code. If compiler specific functions or calls must be used, localize the impact by wrapping the
compiler extensions within a generic procedure and call that generic procedure. Document the
potential portability problem in the calling code.

• Always use generic, not specific, intrinsic functions, e.g. COS rather than DCOS.

• Remove code that was used for debugging purposes once the debugging is complete.

• A standard naming convention has been adopted for variables and routines which refer to
tangent linear and adjoint values, use suffixes “_tl” and “_ad” respectively.

APPENDIX A WAS TAKEN FROM THE BOULDER COMMUNITY GSI CODE MANAGEMENT PLAN (2009)

B-1

Appendix	B. REGRESSION	TESTING	

A suite of regression tests will be made available for users to run while doing development and prior
to requests for committing system modifications back into the community UPP repository. These
regression tests will be broken down into code functionality, allowing users to better match their
modifications to an appropriate test. To aid developers in understanding the available tests and
their application a brief explanation of the software architecture has been included here.

The UPP begins by reading in a file named ITAG. This file specifies the input filename, model, and
input data format. There is other information in this file that will not be discussed here. Based on
the model and input format, the input data is read. There is minimal calculation done at this point.
The code returns to a central flow to read in the control file (wrf_cntrl.parm or postxconfig-NT.txt)
which specifies which outputs are requested. The computation of the output variables begins at this
point. This processing is broken into parameter type. Output of the data occurs as the data is
processed. Figure 3. UPP Code Process Flo shows the UPP code process flow.

Table 2. UPP Input Types shows the actual subroutines called to process each model and input type.
UPP is currently set up to ingest model output from WRF in NetCDF format and FV3GFS in NEMSIO
binary format. They are binary files with WRF and NEMSIO headers respectively to identify what
model variables each record represents. UPP also has two options to read WRF binary files, the
sequential read in INITPOST*BIN and record independent MPI IO read in INITPOST*MPIIO. When a
user makes a modification based on an input type the modifications should be propagated to all
routines which are affected. When testing, all routines should be verified to ascertain that their
functionality has not been compromised.

Process Input

Read ITAG Read Input File Read Control File

Output Requested Values

 Figure 3. UPP Code Process Flow

B-2

Model Input
Format

UPP “itag” input
value

Read Routine

ARW /
RAPR/HRRR

netCDF netcdf INITPOST

ARW/RAPR WRF binary binarympiio INITPOST_BIN_MPIIO Deprecated
with V4.0

NMM netCDF netcdf INITPOST_NMM
NMM WRF binary binarympiio INITPOST_NMM_BIN_MPIIO Deprecated

with V4.0
GFS Grib grib INITPOST_GFS Deprecated

with V4.0
GFS NEMSIO

binary
binarynemsio INITPOST_GFS_NEMS

NMM NEMSIO
binary

binarynemsio INITPOST_NEMS Deprecated
with V4.0

FV3GFS NEMSIO
binary

binarynemsiompiio INITPOST_GFS_NEMS_MPIIO

Table 2. UPP Input Types

Upon successfully reading the input into the UPP data structures, processing to compute desired
outputs occurs. Table 3. UPP Calculation Routines outlines a high-level representation of where
variables are calculated and output.

Process Routine Description
MDLFLD Called first; initializes values used throughout / computes model surface

values
MDL2P Interpolates model data to pressure surfaces
MDLSIGMA Additional interpolation of model data
MDL2SIGMA2 Additional interpolation of model data
MDL2AGL Interpolates model data to AGL height surfaces
SURFCE Handles surface based fields
CLDRAD Handles sounding, cloud related, and model posted radiation fields
MISCLN Handles TPAUSE level Z,P,T,U,V and vertical shear; max wind level Z,P, U and

V; FD level T, Q, U and V; Freezing level Z and RH; constant mass (boundary)
fields, LFM look-alike fields; NGM look-alike fields

FIXED Handles time independent “fixed” fields
MDL2THANDPV Interpolates model data to THETA and P surfaces
CALRAD_WCLOUD Derives model “brightness” T using CRTM

Table 3. UPP Calculation Routines

B-3

Regression tests will be created to test capabilities based on model, input format, and type of
parameter calculated. Note that testing related to WRF-NMM NetCDF input format is managed by
the HWRF group. Table 4. Supported Platforms/Compilers/Data shows the types of models, data
formats, platforms, and compilers that require testing.

 NetCDF binarynemsiompiio
 ARW FV3GFS ARW FV3GFS

Linux - ifort serial X N/A N/A N/A
dmpar X N/A N/A X

Linux – GNU serial X N/A N/A N/A
dmpar X N/A N/A X

Linux - PGI serial X N/A N/A N/A
dmpar X N/A N/A X
Table 4. Supported Platforms/Compilers/Data

