
Global Model Test Bed
Single Column Model (SCM)

User and Technical Guide
v1.0.1

April 2018

Grant Firl, Laurie Carson
National Center for Atmospheric Research and Developmental Testbed Center

Ligia Bernardet, Dom Heinzeller
NOAA/ESRL Global Systems Division, Developmental Testbed Center and CIRES/CU

Acknowledgement

If significant help was provided via the GMTB helpdesk for work resulting in a
publication, please acknowledge the Developmental Testbed Center GMTB Team.

For referencing this document please use:

Firl, G., L. Carson, L. Bernardet, and D. Heinzeller, 2018. Global Model Test Bed
Single Column Model v1.0 User and Technical Guide. 22pp. Available at
https://dtcenter.org/gmtb/users/ccpp/docs/SCM-CCPP-Guide-v1.pdf

Contents

Preface v

1 Introduction 1
1.1 Release Notes . 1

1.1.1 Limitations . 2

2 Quick Start Guide 3
2.1 Obtaining Code . 3
2.2 System Requirements, Libraries, and Tools 3

2.2.1 Compilers . 4
2.3 Compiling SCM with CCPP . 4
2.4 Run the SCM with the supplied case . 5

3 Repository 7
3.1 What is included in the repository? . 7

4 Algorithm 9
4.1 Algorithm Overview . 9
4.2 Reading input . 9
4.3 Setting up vertical grid and interpolating input data 10
4.4 Physics suite initialization . 10
4.5 Time integration . 11
4.6 Writing output . 11

5 Cases 12
5.1 How to run cases . 12

5.1.1 Case configuration namelist parameters 12
5.1.2 Physics configuration namelist parameters 14
5.1.3 Case input data file . 14

5.2 How to set up new cases . 16

6 CCPP Interface 19
6.1 Setting up a suite . 19

6.1.1 Preparing data from the SCM . 19
6.1.2 Editing and running ccpp_prebuild.py 20
6.1.3 Preparing a suite definition file 20

6.2 Initializing/running a suite . 21
6.3 Changing a suite . 21

6.3.1 Replacing a scheme with another 21
6.3.2 Modifying “groups” of parameterizations 22

iii

Contents

6.3.3 Subcycling parameterizations . 22

iv

Preface

Meaning of typographic changes and symbols

Table 1 describes the type changes and symbols used in this book.

Typeface or Symbol Meaning Example
AaBbCc123 The names of commands, Edit your .bashrc

files, and directories; Use ls -a to list all files.
on-screen computer output host$ You have mail!.

AaBbCc123 What you type, contrasted host$ su
with on-screen computer
output

AaBbCc123 Command line placeholder: To delete a file, type
replace with a real name rm filename
or value

Table 1: Typographic Conventions

v

1 Introduction

A single column model (SCM) can be a valuable tool for diagnosing the performance of
a physics suite, from validating that schemes have been integrated into a suite correctly
to deep dives into how physical processes are being represented by the approximating
code. The Global Model Test Bed (GMTB) SCM has the advantage of working with
the Common Community Physics Package (CCPP), a library of physical parameteri-
zations for atmospheric numerical models and the associated framework for connecting
potentially any atmospheric model to physics suites constructed from its member pa-
rameterizations. In fact, this SCM serves as perhaps the simplest example for using the
CCPP and its framework in an atmospheric model. The initial physics schemes included
in the CCPP are the operational NOAA Global Forecast System (GFS) suite components
that were implemented operationally in July 2017. The number of schemes that have met
CCPP-compliance criteria is expected to grow significantly after the initial release. This
expansion is expected to include many parameterizations to be considered for eventual
operational implementation and their use within this model can provide evidence of per-
formance improvement.

This document serves as the both the User and Technical Guides for this model. It
contains a Quick Start Guide with instructions for obtaining the code, compiling, and
running a sample test case, an explanation for what is included in the repository, a brief
description of the operation of the model, a description of how cases are set up and run,
and finally, an explanation for how the model interfaces with physics through the CCPP
infrastructure.

Please refer to the release web page for further documentation and user notes:
https://dtcenter.org/gmtb/users/ccpp/index.php

1.1 Release Notes

The Bundle CCPP-SCM v1.0 contains the CCPP v1.0 and the GMTB SCM v2.0.

Physics parameterizations within v1.0 of CCPP are CCPP-compliant members of the
operational 2017 GFS physics suite and include the following:

• GFS RRTMG shortwave and longwave radiation
• GFS ozone
• GFS Zhao-Carr microphysics

1

https://dtcenter.org/gmtb/users/ccpp/index.php

1 Introduction

• GFS scale-aware mass-flux deep convection
• GFS scale-aware mass-flux shallow convection
• GFS hybrid eddy diffusivity-mass-flux PBL and free atmosphere turbulence
• GFS orographic gravity wave drag
• GFS convective gravity wave drag
• GFS surface layer
• GFS Noah Land Surface Model
• GFS near-sea-surface temperature
• GFS sea ice
• Additional diagnostics and interstitial computations needed for the GFS suite

The CCPP framework contains the following

• Metadata standards for defining variables provided by the host application (in this
case SCM) and needed by each parameterization

• ccpp_prebuild.py script to read and parse SCM and parameterizations metadata
tables, compare the two and alert if incompatible, manufacture Fortran code for
SCM and physics caps, and generate makefile snippets

• Suite Definition File that allows choosing parameterizations at runtime

GMTB SCM v2.0 is a major update to v1.3. The fundamental difference is how it calls
physics since v2.0 uses the CCPP framework. It includes the following:

• cmake build system to compile needed NCEP libraries, SCM, CCPP framework,
and parameterizations

• Physics variable metadata as part of a host model cap to the CCPP
• Test case of the Tropical Warm Pool – International Cloud Experiment (TWP-ICE)

1.1.1 Limitations

This release bundle has several known limitations:

• GMTB SCM v2.0 can only run one case. The other cases that had been working
with v1.3 required specified surface fluxes, bypassing the surface schemes within the
physics suite. This functionality will be restored in the next minor update, v2.1,
which will include a new suite definition file that replaces the GFS surface schemes
with a replacement scheme that “backs out” surface-related variables needed in
PBL schemes from prescribed surface fluxes.

• The CCPP physics in this release only includes one scheme of each type, which
makes it impossible to swap schemes within a suite. Additional schemes will be
added soon to enable this functionality.

• The CCPP physics suite in this release contains several short “interstitial” schemes
that mostly consist of short code sections that appeared in the antecedent GFS
physics driver between calls to individual schemes. The existence of these schemes
limits the portability in the current release and these will be consolidated in a
subsequent release to achieve greater portability of schemes.

2

2 Quick Start Guide

This chapter provides instructions for obtaining and compiling the GMTB SCM. The
SCM code calls CCPP-compliant physics schemes through the CCPP framework code.
As such, it requires the CCPP framework code and physics code, both of which are
included as subdirectories within the SCM code. This package can be considered a
simple example for an atmospheric model to interact with physics through the CCPP.

2.1 Obtaining Code

The source code bundle for the CCPP and SCM is provided through github.com. This
release repository contains the tested and supported version for general use.

1. Download a compressed file or clone the source using
git clone https ://[username]@github.com/NCAR/gmtb -scm -release

and enter your github password when prompted.
2. Change directory into the project.

cd gmtb -scm

The CCPP framework can be found in the ccpp-framework subdirectory at this level.
The CCPP physics parameterizations can be found in the ccpp-physics subdirectory.

If you would like to contribute as a developer to this project, please see CCPP Developers
Corner of the project website:

https://dtcenter.org/gmtb/users/ccpp/developers/index.php

There you will find links to all of the documentation pertinent to developers.

2.2 System Requirements, Libraries, and Tools

The source code for the SCM and CCPP component is in the form of programs written in
FORTRAN, FORTRAN 90, and C. In addition, the I/O relies on the netCDF libraries.
Beyond the standard scripts, the build system relies on use of the Python scripting
language, along with cmake, GNU make and date.

3

https://dtcenter.org/gmtb/users/ccpp/developers/index.php

2 Quick Start Guide

The basic requirements for building and running the CCPP and SCM bundle are listed
below:

• FORTRAN 90+ compiler (ifort v15+, gfortran v5.4+)
• C compiler (icc v15+, gcc v5.4+)
• cmake v2.8.11+
• netCDF v4.x (not v3.x) with HDF5, ZLIB and SZIP
• Python v2.x (not v3.x)

Because these tools and libraries are typically the purview of system administrators to
install and maintain, they are considered part of the basic system requirements.

There are several utility libraries provided in the SCM bundle, as external packages.
These are built during the compilation phase, and include

• bacio - Binary I/O Library
• sp - Spectral Transformation Library
• w3nco - GRIB decoder and encoder library

2.2.1 Compilers

The CCPP and SCM have been tested on a variety of computing platforms. Currently
the CCPP system is actively supported on Linux and MacOS computing platforms using
the Intel or GNU Fortran compilers. Unforeseen build issues may occur when using older
compiler versions. Typically the best results come from using the most recent version of a
compiler. If you have problems with compilers, please check the “Known Issues” section
of the community website (https://dtcenter.org/gmtb/users/ccpp/support/CCPP_
KnownIssues.php).

2.3 Compiling SCM with CCPP

The first step in compiling the CCPP and SCM is to match the physics variables, and
build the physics caps needed to use them. Following this step, the top level build
system will use cmake to query system parameters and make to compile the components.
A platform-specific script is provided to load modules and set the user environment for
common platforms. If you are not using one of these platforms, you will need to set up
the same environment on your platform.

1. Run the CCPP prebuild script to match required physics variables with those avail-
able from the dycore (SCM) and to generate physics caps and makefile segments.
./ccpp -framework/scripts/ccpp_prebuild.py [--debug]

2. Change directory to the top-level SCM directory.
cd scm

4

https://dtcenter.org/gmtb/users/ccpp/support/CCPP_KnownIssues.php
https://dtcenter.org/gmtb/users/ccpp/support/CCPP_KnownIssues.php

2 Quick Start Guide

3. (Optional) Run the machine setup script if necessary. This script loads compiler
modules (Fortran 2003-compliant Intel), netCDF module, etc. and sets compiler
environment variables. For t/csh shells,
source etc/Theia_setup.csh
source etc/Cheyenne_setup.csh
source etc/UBUNTU_setup.csh
source etc/CENTOS_setup.csh
source etc/MACOSX_setup.csh

For bourne/bash shells,
. etc/Theia_setup.sh
. etc/Cheyenne_setup.sh
. etc/UBUNTU_setup.sh
. etc/CENTOS_setup.sh
. etc/MACOSX_setup.sh

Note: If using a local Linux or Mac system, we provide instructions
for how to set up your development system (compilers and libraries) in
doc/README_{MACOSX,UBUNTU,CENTOS}.txt. If following these, you will need to run
the respective setup script listed above. If your computing environment was pre-
viously set up to use modern compilers with an associated netCDF installation, it
may not be necessary, although we recommend setting environment variables such
as CC, FC, and NETCDF.

4. Make a build directory and change into it.
mkdir bin && cd bin

5. Invoke cmake on the source code to build.
cmake ../src # without threading/OpenMP
cmake -DOPENMP =1 ../src # with threading/OpenMP
cmake -DCMAKE_BUILD_TYPE=Debug ../src # debug mode

6. Compile. Add VERBOSE=1 to obtain more information on the build process.
make

The resulting executable may be found at ./gmtb-scm.

If you encounter errors, please capture a log file from all of the steps, and contact the
helpdesk at: gmtb-help@ucar.edu

2.4 Run the SCM with the supplied case

The test case provided with this version of the SCM is TWP-ICE, the Tropical Warm
Pool-International Cloud Experiment. The SCM will go through the time steps, applying
forcing and calling the physics defined in the suite definition file. A single command line
argument is required, which is the name of the case configuration file (without the .nml
extension) found in ../etc/case_config/. For the provided case, that name is twpice:
./ gmtb_scm twpice

5

gmtb-help@ucar.edu

2 Quick Start Guide

A netCDF output file is generated in the location specified in the case configuration file.
Any standard netCDF file viewing or analysis tools may be used to examine the output
file (ncdump, ncview, NCL, etc). For the twpice case, it is located in:
gmtb -scm/scm/bin/output_twpice/output.nc

or, simply,
output_twpice/output.nc

if you still reside in the bin directory from which you executed the model.

Additional details regarding the SCM may be found in the remainder of this guide. More
information on the CCPP can be found in the CCPP Developers’ Corner available at
https://dtcenter.org/gmtb/users/ccpp/developers and in the CCPP Developers’
Guide at https://dtcenter.org/gmtb/users/ccpp/docs.

6

https://dtcenter.org/gmtb/users/ccpp/developers
https://dtcenter.org/gmtb/users/ccpp/docs

3 Repository

3.1 What is included in the repository?

The repository contains all code and data required to run the GMTB SCM. It is
functionally separated into 4 subdirectories representing the SCM model infrastructure
(scm directory), the CCPP infrastructure (ccpp-framework directory), the CCPP physics
schemes (ccpp-physics directory), and any necessary external library code (external
directory). The entire gmtb-scm repository resides on github’s NCAR account, and the
ccpp-framework and ccpp-physics directories are git submodules that point to reposito-
ries on the same account. The structure of the entire repository is represented below.
Note that the ccpp_physics repository contains files needed for using the CCPP with the
experimental version of the Global Forecast System (GFS) that uses the Finite-Volume
Cubed-Sphere (FV3) model (FV3GFS), even though the use of CCPP with FV3GFS is
not supported in this release.

gmtb-scm/
ccpp-framework/

cmake/...........................custom cmake code for building ccpp-framework
CMakeLists.txt......................cmake configuration file for ccpp-framework
doc/.............................doxygen configuration, output, and User’s Guide
examples/...........contains suite definition files and XML schema definition files
LICENSE
README.md
schemes/ contains schemes used for testing and obsolete scripts
scripts/ ... contains ccpp_prebuild and other python scripts for parsing metadata
src/...contains CCPP framework code

ccpp-physics/... contains all physics schemes
CCPP_CAPS.mk.................... auto-generated makefile section for physics caps
CCPP_schemes.mk auto-generated makefile section for physics schemes
CMakeLists.txt.........................cmake configuration file for ccpp-physics
GFS_layer/...driving routines
input.nml............namelist containing parameters for operational GFS physics
IPD_layer routines associated with the cap for FV3
LICENSE
makefile.........................makefile to compile ccpp-physics used with FV3
pgifix.py
physics/......................contains all CCPP physics and interstitial schemes

docs/.........................contains CCPP physics doxygen documentation
README.md

7

3 Repository

external/
bacio..............................NCEP library bacio (needed for GFS physics)
spNCEP library sp (needed for GFS physics)
w3nco.........NCEP library w3 (needed for GFS physics and SCM infrastructure)

scm/
bin/........................build directory (initially empty; populated by cmake)
data/

comparison_data/..........contains data with which to compare SCM output
GFS_physics_data/ contains data needed by the GFS physics suite
processed_case_input/.......contains initialization and forcing data for cases
raw_case_input/.................contains case data to be processed by scripts
vert_coord_data/.............. contains data to calculate vertical coordinates

doc/...................... contains doxygen configuration file, images, and output
html/...................................contains HTML output from doxygen
README_MACOSX.txt
README_UBUNTU.txt
README_CENTOS.txt

etc/........contains case configuration, machine setup scripts, and plotting scripts
case_config/.................................contains case configuration files
Cheyenne_setup.csh..............setup script for Cheyenne HPC for csh, tcsh
Cheyenne_setup.sh............... setup script for Cheyenne HPC for sh, bash
gmtb_scm_ens.py.........example script for running an SCM forcing ensemble
gmtb_scm_run.py example QSUB run script
MACOSX_setup.csh.....................setup script for Mac OS X for csh, tcsh
MACOSX_setup.sh......................setup script for Mac OS X for sh, bash
UBUNTU_setup.csh.................setup script for Ubuntu Linux for csh, tcsh
UBUNTU_setup.sh...................setup script for Ubuntu Linux for sh, bash
CENTOS_setup.csh.................setup script for CentOS Linux for csh, tcsh
CENTOS_setup.sh...................setup script for CentOS Linux for sh, bash
scripts/......................python scripts for setting up cases and plotting

f90nml.0.19/..................................... f90nml python package
plot_configs/.....................................plot configuration files

Theia_setup.csh.....................setup script for Theia HPC for csh, tcsh
Theia_setup.sh setup script for Theia HPC for sh, bash

LICENSE.txt
README.html link to doxygen generated documentation
src/ ... source code for SCM infrastructure

cmake/.................................. contains custom FindNetCDF.cmake

8

4 Algorithm

4.1 Algorithm Overview

Like most SCMs, the algorithm for the GMTB SCM is quite simple. In a nutshell, the
SCM code performs the following:

• Read in an initial profile and the forcing data.
• Create a vertical grid and interpolate the initial profile and forcing data to it.
• Initialize the physics suite.
• Perform the time integration, applying forcing and calling the physics suite each

time step.
• Output the state and physics data.

In this chapter, it will briefly be described how each of these tasks is performed.

4.2 Reading input

The following steps are performed at the beginning of program execution:

1. Call get_config_nml() in the gmtb_scm_input module to read in the case_config
and physics_config namelists. This subroutine also sets some variables within the
scm_state derived type from the data that was read.

2. Call get_case_init() in the gmtb_scm_input module to read in the case input data
file. This subroutine also sets some variables within the scm_input derived type
from the data that was read.

3. Call get_reference_profile() in the gmtb_scm_input module to read in the refer-
ence profile data. This subroutine also sets some variables within the scm_reference
derived type from the data that was read. At this time, there is no “standard” for-
mat for the reference profile data file. There is a select case statement within
the get_reference_profile() subroutine that reads in differently-formatted data.
If adding a new reference profile, it will be required to add a section that reads its
data in this subroutine.

9

4 Algorithm

4.3 Setting up vertical grid and interpolating input data

The GMTB SCM uses pressure for the vertical coordinate (lowest index is the surface).
There are two choices for generating the vertical coordinate corresponding to a) the 2017
operational GFS based on the Global Spectral Model (GSM) (set model_name = ‘GFS’ in
the case_config file), and b) the experimental FV3-based GFS (set model_name = ‘FV3’
in the case_config file). For both methods, the pressure levels are calculated using the
surface pressure and coefficients (ak and bk). For the GSM-based vertical coordinate,
the coefficient data is read from an external file. Only 28, 42, 60, 64, and 91 levels are
supported. If using the FV3-based vertical coordinate, it is possible to use potentially any
(integer) number of vertical levels. Depending on the vertical levels specified, however,
the method of specification of the coefficients may change. Please see the subroutine
get_FV3_vgrid in the source file gmtb-scm/scm/src/gmtb_scm_vgrid.F90 for details. This
subroutine was minimally adapted from the source file fv_eta.F90 from the v0 release
version of the FV3GFS model.

After the vertical grid has been set up, the state variable profiles stored in the scm_state
derived data type are interpolated from the input and reference profiles in the set_state
subroutine of the gmtb_scm_setup module.

4.4 Physics suite initialization

For the GMTB SCM, it is possible to run several columns, each with a different physics
suite. Therefore, suite initialization needs to be performed for each column. With the
CCPP framework, initializing a physics suite is a 5-step process:

1. Call ccpp_init() with the path to the suite definition file and the CCPP derived
data type (cdata) as arguments. This call will read and parse the suite definition
file and initialize the cdata derived data type.

2. Initialize variables needed for the suite initialization routine. For suites originating
from the GFS model, this involves setting some values in a derived data type used
in the initialization subroutine and manually adding ccpp_field_add() calls for all
data needed in the initialization subroutine.

3. Call ccpp_run() on the suite initialization subroutine, passing in the cdata derived
data type (this subroutine should be listed in the <init> tag of the suite definition
file.).

4. Associate the scm_state variables with the appropriate pointers in the physics
derived data type. Note: It is important that this step be performed before the
next step to avoid segmentation faults.

5. Execute the ccpp_field_add() calls for the remaining variables to be used by the
physics schemes. This step makes all physics variables that are exposed by the host
application available to all physics schemes in the suite. This is done through an
inclusion of an external file, ccpp_fields.inc that is automatically generated from
the ccpp_prebuild.py script using the metadata contained in the host application
cap (gmtb-scm/scm/src/gmtb_scm_type_defs.f90 in the current implementation).

10

4 Algorithm

4.5 Time integration

Two time-stepping schemes have been implemented within the GMTB SCM: forward
Euler (time_scheme = 1 in the case_config namelist) and filtered leapfrog (time_scheme
= 2 in the case_config namelist). If the leapfrog scheme is chosen, two time levels of
state variables are saved and the first time step is implemented as forward time step over
∆t/2.

During each step of the time integration, the following sequence occurs:

1. Update the elapsed model time.
2. Calculate the current date and time given the initial date and time and the elapsed

time.
3. If the leapfrog scheme is used, save the unfiltered model state from the previous

time step.
4. Call the interpolate_forcing() subroutine in the gmtb_scm_forcing module to

interpolate the forcing data in space and time.
5. Recalculate the pressure variables (pressure, Exner function, geopotential) in case

the surface pressure has changed.
6. Call do_time_step() in the gmtb_scm_time_integration module. Within this sub-

routine:
• Call the appropriate apply_forcing_* subroutine from the gmtb_scm_forcing

module.
• If using the leapfrog scheme, transfer the model state from one memory slot

to the other.
• For each column, call ccpp_run() to call all physics schemes within the suite

(this assumes that all suite parts are called sequentially without intervening
code execution)

7. If using the leapfrog scheme, call filter() in the gmtb_scm_time_integration mod-
ule to time filter the model state.

8. Check to see if output should be written during the current time step and call
output_append() in the gmtb_scm_output module if necessary.

4.6 Writing output

As of this release, the SCM output is only instantaneous. Specifying an output_frequency
in the case configuration file greater than the timestep will result in data loss. Prior to
the physics suite being initialized, the output_init() subroutine in the gmtb_scm_output
module is called to create the netCDF output file and define all dimensions and variables.
Immediately after the physics suite initialization and at the defined frequency within the
time integration loop, the output_append() subroutine is called and instantaneous data
values are appended to the netCDF file. Any variables defined in the scm_state and/or
physics derived data types are accessible to the output subroutines. Writing new vari-
ables to the output involves hard-coding lines in the output_init() and output_append()
subroutines.

11

5 Cases

5.1 How to run cases

Only two files are needed to set up and run a case with the SCM. The first is a config-
uration namelist file found in gmtb-scm/scm/etc/case_config. Each case configuration
file contains two fortran namelists, one called case_config that contains parameters for
the SCM infrastructure and one called physics_config that contains parameters for the
physics suite(s). The second necessary file is a netCDF file containing data to initialize
the column state and time-dependent data to force the column state. The two files are
described below.

5.1.1 Case configuration namelist parameters

The case_config namelist expects the following parameters:

• model_name
– This controls which vertical coordinates to use. Valid values are ’FV3’ or

‘GFS’. Here, ‘GFS’ refers to vertical coordinates used in the GSM.
• n_columns

– The code can be used to run a single column or multiple independent columns
using the same or different physics suites. Specify an integer, n.

• case_name
– Identifier for which dataset (initialization and forcing) to load.

This string must correspond to a dataset included in the directory
gmtb-scm/scm/data/processed_case_input/ (without the file extension).

• dt
– Time step in seconds (floating point)

• time_scheme
– Specify 1 for the forward-Euler time-stepping scheme or 2 for the filtered

leapfrog scheme.
• runtime

– Specify the model runtime in seconds (integer). This should correspond with
the forcing dataset used. If a runtime is specified that is longer than the
supplied forcing, the forcing is held constant at the last specified values.

• output_frequency
– Specify the frequency of the model output in seconds (floating point). Cur-

rently, no averaging of the output fields is done if output_frequency 6= dt; only
12

5 Cases

instantaneous output at the supplied frequency is implemented.
• n_levels

– Specify the integer number of vertical levels. If model_name=‘GFS’, only values
of 28, 42, 60, 64, 91 are supported.

• output_dir
– A string representing the path (relative to the build directory) to which output

should be written.
• output_file

– A string representing the name of the netCDF output file to be written (no
.nc extension expected).

• case_data_dir
– A string representing the path (relative to the build directory) where case

initialization and forcing data files can be found.
• vert_coord_data_dir

– A string representing the path (relative to the build directory) where vertical
coordinate data files can be found (for model_name=‘GFS’ only).

• thermo_forcing_type
– An integer representing how forcing for temperature and moisture state vari-

ables is applied (1 = total advective tendencies, 2 = horizontal advective ten-
dencies with prescribed vertical motion, 3 = relaxation to observed profiles
with vertical motion prescribed)

• mom_forcing_type
– An integer representing how forcing for horizontal momentum state variables

is applied (1 = total advective tendencies; not implemented yet, 2 = hori-
zontal advective tendencies with prescribed vertical motion, 3 = relaxation to
observed profiles with vertical motion prescribed)

• relax_time
– A floating point number representing the timescale in seconds for the relaxation

forcing (only used if thermo_forcing_type = 3 or mom_forcing_type = 3)
• sfc_flux_spec

– A boolean set to .true. if surface flux are specified from the forcing data
(there is no need to have surface schemes in a suite definition file if so)

• sfc_type
– An integer representing the character of the surface (0 = sea surface, 1 = land

surface, 2 = sea-ice surface)
• reference_profile_choice

– An integer representing the choice of reference profile to use above the supplied
initialization and forcing data (1 = “McClatchey” profile, 2 = mid-latitude
summer standard atmosphere)

• year
– An integer representing the year of the initialization time

• month
– An integer representing the month of the initialization time

• day
– An integer representing the day of the initialization time

• hour
– An integer representing the hour of the initialization time

13

5 Cases

5.1.2 Physics configuration namelist parameters

The physics_config namelist expects the following parameters:

• physics_suite
– A string list representing the names of the physics suite for each column (must

correspond a suite definition file name; if using multiple columns, you may
specify an equal number of physics suites)

• physics_suite_dir
– A string representing the path (relative to the build directory) where suite

definition files files can be found.
• physics_nml

– A string list representing the paths (relative to the build directory) to the
physics namelist files.

• column_area
– A list of floating point values representing the characteristic horizontal domain

area of each atmospheric column in square meters (this could be analogous
to a 3D model’s horizontal grid size or the characteristic horizontal scale of
an observation array; these values are used in scale-aware schemes; if using
multiple columns, you may specify an equal number of column areas)

5.1.3 Case input data file

The initialization and forcing data for each case is stored in a netCDF (version 4) file
within the gmtb-scm/scm/data/processed_case_input directory. Each file has two dimen-
sions (time and levels) and is organized into 3 groups: scalars, initial, and forcing. Not
all fields are required for all cases. For example the fields sh_flux_sfc and lh_flux_sfc
are only needed if the variable sfc_flx_spec = .true. in the case configuration file and
state nudging variables are only required if thermo_forcing_type = 3 or mom_forcing_type
= 3.

Listing 5.1: example netCDF file header for case initialization and forcing data
netcdf arm_sgp_summer_1997 {
dimensions :

time = UNLIMITED ; // (233 currently)
levels = UNLIMITED ; // (35 currently)

variables :
float time(time) ;

time: units = "s" ;
time: description = " elapsed time since the beginning of the simulation " ;

float levels (levels) ;
levels : units = "Pa" ;
levels : description = " pressure levels " ;

// global attributes :
: description = "GMTB SCM forcing file for the ARM SGP Summer of 1997 case" ;

group : scalars {
} // group scalars

group : initial {
variables :

float height (levels) ;

14

5 Cases

height : units = "m" ;
height : description = " physical height at pressure levels " ;

float thetail (levels) ;
thetail : units = "K" ;
thetail : description = " initial profile of ice - liquid water potential temperature " ;

float qt(levels) ;
qt: units = "kg kg ^ -1" ;
qt: description = " initial profile of total water specific humidity " ;

float ql(levels) ;
ql: units = "kg kg ^ -1" ;
ql: description = " initial profile of liquid water specific humidity " ;

float qi(levels) ;
qi: units = "kg kg ^ -1" ;
qi: description = " initial profile of ice water specific humidity " ;

float u(levels) ;
u: units = "m s^ -1" ;
u: description = " initial profile of E-W horizontal wind" ;

float v(levels) ;
v: units = "m s^ -1" ;
v: description = " initial profile of N-S horizontal wind" ;

float tke(levels) ;
tke: units = "m^2 s^ -2" ;
tke: description = " initial profile of turbulence kinetic energy " ;

float ozone (levels) ;
ozone : units = "kg kg ^ -1" ;
ozone : description = " initial profile of ozone mass mixing ratio " ;

} // group initial

group : forcing {
variables :

float lat(time) ;
lat: units = " degrees N" ;
lat: description = " latitude of column " ;

float lon(time) ;
lon: units = " degrees E" ;
lon: description = " longitude of column " ;

float p_surf (time) ;
p_surf : units = "Pa" ;
p_surf : description = " surface pressure " ;

float T_surf (time) ;
T_surf : units = "K" ;
T_surf : description = " surface absolute temperature " ;

float sh_flux_sfc (time) ;
sh_flux_sfc : units = "K m s^ -1" ;
sh_flux_sfc : description = " surface sensible heat flux" ;

float lh_flux_sfc (time) ;
lh_flux_sfc : units = "kg kg^-1 m s^ -1" ;
lh_flux_sfc : description = " surface latent heat flux" ;

float w_ls(levels , time) ;
w_ls: units = "m s^ -1" ;
w_ls: description = " large scale vertical velocity " ;

float omega (levels , time) ;
omega : units = "Pa s^ -1" ;
omega : description = " large scale pressure vertical velocity " ;

float u_g(levels , time) ;
u_g: units = "m s^ -1" ;
u_g: description = " large scale geostrophic E-W wind" ;

float v_g(levels , time) ;
v_g: units = "m s^ -1" ;
v_g: description = " large scale geostrophic N-S wind" ;

float u_nudge (levels , time) ;
u_nudge : units = "m s^ -1" ;
u_nudge : description = "E-W wind to nudge toward " ;

float v_nudge (levels , time) ;
v_nudge : units = "m s^ -1" ;
v_nudge : description = "N-S wind to nudge toward " ;

float T_nudge (levels , time) ;
T_nudge : units = "K" ;
T_nudge : description = " absolute temperature to nudge toward " ;

float thil_nudge (levels , time) ;
thil_nudge : units = "K" ;
thil_nudge : description = " potential temperature to nudge toward " ;

float qt_nudge (levels , time) ;

15

5 Cases

qt_nudge : units = "kg kg ^ -1" ;
qt_nudge : description = "q_t to nudge toward " ;

float dT_dt_rad (levels , time) ;
dT_dt_rad : units = "K s^ -1" ;
dT_dt_rad : description = " prescribed radiative heating rate" ;

float h_advec_thetail (levels , time) ;
h_advec_thetail : units = "K s^ -1" ;
h_advec_thetail : description = " prescribed theta_il tendency due to horizontal

advection " ;
float v_advec_thetail (levels , time) ;

v_advec_thetail : units = "K s^ -1" ;
v_advec_thetail : description = " prescribed theta_il tendency due to vertical

advection " ;
float h_advec_qt (levels , time) ;

h_advec_qt : units = "kg kg^-1 s^ -1" ;
h_advec_qt : description = " prescribed q_t tendency due to horizontal advection " ;

float v_advec_qt (levels , time) ;
v_advec_qt : units = "kg kg^-1 s^ -1" ;
v_advec_qt : description = " prescribed q_t tendency due to vertical advection " ;

} // group forcing
}

5.2 How to set up new cases

Setting up a new case involves preparing the two types of files listed above. For the
case initialization and forcing data file, this typically involves writing a custom script
or program to parse the data from its original format to the format that the SCM ex-
pects, listed above. An example of this type of script written in python is included
in /gmtb-scm/scm/etc/scripts/twpice_forcing_file_generator.py. The script reads in
the data as supplied from its source, converts any necessary variables, and writes a
netCDF (version 4) file in the format described in subsection 5.1.3. For reference, the
following formulas are used:

θil = θ − θ

T

(
Lv

cp

ql + Ls

cp

qi

)
(5.1)

qt = qv + ql + qi (5.2)

where θil is the ice-liquid water potential temperature, θ is the potential temperature, Lv

is the latent heat of vaporization, Ls is the latent heat of sublimation cp is the specific
heat capacity of air at constant pressure, T is absolute temperature, qt is the total water
specific humidity, qv is the water vapor specific humidity, ql is the suspended liquid water
specific humidity, and qi is the suspended ice water specific humidity.

As shown in the example netCDF header, the SCM expects that the vertical dimension
is pressure levels (index 1 is the surface) and the time dimension is in seconds. The
initial conditions expected are the height of the pressure levels in meters, and arrays
representing vertical columns of θil in K, qt, ql, and qi in kg kg−1, u and v in m s−1,
turbulence kinetic energy in m2 s−2 and ozone mass mixing ratio in kg kg−1.

For forcing data, the SCM expects a time series of the following variables: latitude and
longitude in decimal degrees [in case the column(s) is moving in time (e.g., Lagrangian
column)], the surface pressure (Pa) and surface temperature (K). If surface fluxes are

16

5 Cases

specified for the new case, one must also include a time series of the kinematic surface
sensible heat flux (K m s−1) and kinematic surface latent heat flux (kg kg−1 m s−1).
The following variables are expected as 2-dimensional arrays (vertical levels first, time
second): the geostrophic u (E-W) and v (N-S) winds (m s−1), and the horizontal and
vertical advective tendencies of θil (K s−1) and qt (kg kg−1 s−1), the large scale vertical
velocity (m s−1), large scale pressure vertical velocity (Pa s−1), the prescribed radiative
heating rate (K s−1), and profiles of u, v, T, θil and qt to use for nudging.

Although it is expected that all variables are in the netCDF file, only those that
are used with the chosen forcing method are required to be nonzero. For example,
the following variables are required depending on the values of mom_forcing_type and
thermo_forcing_type specified in the case configuration file:

• mom_forcing_type = 1
– Not implemented yet

• mom_forcing_type = 2
– geostrophic winds and large scale vertical velocity

• mom_forcing_type = 2
– u and v nudging profiles

• thermo_forcing_type = 1
– horizontal and vertical advective tendencies of θil and qt and prescribed radia-

tive heating (can be zero if radiation scheme is active)
• thermo_forcing_type = 2

– horizontal advective tendencies of θil and qt, prescribed radiative heating (can
be zero if radiation scheme is active), and the large scale vertical pressure
velocity

• thermo_forcing_type = 2
– θil and qt nudging profiles and the large scale vertical pressure velocity

For the case configuration file, it is most efficient to copy an existing file in
gmtb-scm/scm/etc/case_config and edit it to suit one’s case. Recall from subsections
5.1.1 and 5.1.2 that this file is used to configure both the SCM framework parameters
(including how forcing is applied) and some physics suite parameters. Be sure to check
that model timing parameters such as the time step and output frequency are appropri-
ate for the physics suite being used. There is likely some stability criterion that governs
the maximum time step based on the chosen parameterizations and number of vertical
levels (grid spacing). The case_name parameter should match the name of the case in-
put data file that was configured for the case (without the file extension). The runtime
parameter should be less than or equal to the length of the forcing data unless the de-
sired behavior of the simulation is to proceed with the last specified forcing values after
the length of the forcing data has been surpassed. The initial date and time should fall
within the forcing period specified in the case input data file. If the case input data is
specified to a lower altitude than the vertical domain, the remainder of the column will be
filled in with values from a reference profile. There is a tropical profile and mid-latitude
summer profile provided, although one may add more choices by adding a data file to
gmtb-scm/scm/data/processed_case_input and adding a parser section to the subroutine
get_reference_profile in gmtb-scm/scm/src/gmtb_scm_input.f90. Surface fluxes can ei-
ther be specified in the case input data file or calculated using a surface scheme using

17

5 Cases

surface properties. If surface fluxes are specified from data, set sfc_flux_spec to .true..
Otherwise, specify a sfc_type.

To control the forcing method, one must choose how the momentum and scalar variable
forcing are applied. The three methods of Randall and Cripe (1999, JGR) have been
implemented: “revealed forcing” where total (horizontal + vertical) advective tendencies
are applied (type 1), “horizontal advective forcing” where horizontal advective tendencies
are applied and vertical advective tendencies are calculated from a prescribed vertical
velocity and the calculated (modeled) profiles (type 2), and “relaxation forcing” where
nudging to observed profiles replaces horizontal advective forcing combined with vertical
advective forcing from prescribed vertical velocity (type 3). If relaxation forcing is chosen,
a relaxation_time that represents the timescale over which the profile would return to
the nudging profiles must be specified.

The physics_config namelist portion of the case configuration file provides a place to
specify which physics are called. One needs to specify the path where the CCPP suite
definition file is located in the physics_suite_dir parameter. If one has specified that
more than one (independent) columns be simulated, one also need to specify the name
of the physics suite to be used for each column (corresponding to a suite definition
file without the file extension) and a namelist that contains physics suite parameters
for each column. The physics suite parameter namelist files are read as part of the
suite initialization subroutine specified in the suite definition file. In addition, one must
specify a column_area for each column. As of this release, multiple column functionality
is limited to changes in the physics – one can run multiple different physics suites using
the same initial conditions and forcing, perform sensitivity test through multiple physics
suite parameter namelists, and/or sensitivity tests with different representative column
areas.

18

6 CCPP Interface

Chapter 3 of the CCPP Developers’ Guide provides a wealth of information on the overall
process of connecting a host model to the CCPP framework for calling physics. This
chapter describes the particular implementation within the GMTB SCM, including how
to set up, initialize, call, and change a physics suite using the CCPP framework.

6.1 Setting up a suite

Setting up a physics suite for use in the GMTB SCM with the CCPP framework involves
three steps: preparing data to be made available to physics through the CCPP, running
the ccpp_prebuild.py script to reconcile SCM-provided variables with physics-required
variables, and preparing a suite definition file.

6.1.1 Preparing data from the SCM

As described in sections 3.1 and 3.2 of the CCPP Developers’ Guide a host model
must allocate memory and provide metadata for variables that are passed into and
out of the schemes within the physics suite. As of this release, in practice this
means that a host model must do this for all variables needed by all physics schemes
that are expected to be used with the host model. For the GMTB SCM, all
variables needed by the physics schemes are allocated and documented in the file
gmtb-scm/scm/src/gmtb_scm_type_defs.f90 and are contained within the physics de-
rived data type. This derived data type initializes its component variables in a
create type-bound procedure. As mentioned in section 3.2 of the CCPP Devel-
opers’ Guide, a table containing all required metadata was constructed for describ-
ing all variables in the physics derived data type. The standard names of all
variables in this table must match with a corresponding variable within one or
more of the physics schemes. A list of all standard names used can be found in
ccpp-framework/doc/DevelopersGuide/CCPP_VARIABLES_SCM.pdf. The local_name for
each variable corresponds to how a variable is referenced from the point in the code where
ccpp_field_add() statements are made. For the GMTB SCM, then, all local_names be-
gin with the physics derived data type. Nested within most of the local_names is also the
name of a derived data type used within the FV3GFS cap (re-used here for expediency).
Since the ccpp_field_add() statements are made within a loop over all columns within
gmtb_scm.F90, most local_names are also referenced with i as an array index.

19

6 CCPP Interface

6.1.2 Editing and running ccpp_prebuild.py

General instructions for configuring and running the ccpp_prebuild.py script can be
found in section 3.4 of the CCPP Developers’ Guide. The script expects to be run with
a host-model-dependent configuration file. The HOST_MODEL variable within the script
determines which configuration file is read. If HOST_MODEL = “SCM” (the default value in
this release), the file gmtb-scm/ccpp-framework/scripts/ccpp_prebuild_config_SCM.py is
used. Within this configuration file are variables that hold paths to the variable definition
files (where metadata tables can be found on the host model side), the scheme files (a list
of paths to all source files containing scheme entry points), the auto-generated physics
schemes makefile snippet, the auto-generated physics scheme caps makefile snippet, the
file where ccpp_modules.inc and ccpp_fields.inc are included, and the directory where
the auto-generated physics caps should be written out to. Other variables less likely to be
modified by a user are included in this configuration file as well, such as code sections to
be included in the auto-generated scheme caps. As mentioned in section 2.3, this script
must be run to reconcile data provided by the SCM with data required by the physics
schemes before compilation by following step 1 in that section.

6.1.3 Preparing a suite definition file

The suite definition file is a text file read by the model at run time. It is used to
specify the physical parameterization suite, and includes information about the number of
parameterization groupings, which parameterizations that are part of each of the groups,
the order in which the parameterizations should be run, and whether subcycling will be
used to run any of the parameterizations with shorter timesteps.

In addition to the six or so major parameterization categories (such as radiation, boundary
layer, deep convection, resolved moist physics, etc.), the suite definition file can also have
an arbitrary number of additional interstitial schemes in between the parameterizations
to prepare or postprocess data. In many models, this interstitial code is not known to
the model user but with the suite definition file, both the physical parameterizations and
the interstitial processing are listed explicitly.

The suite definition file also invokes an initialization step, which is run only once when the
model is first initialized. Finally, the name of the suite is listed in the suite definition file.
By default, this suite name is used to compose the name of the shared library (.so file)
that contains the code for the physical parameterizations and that must be dynamically
linked at run time.

For this release, the suite definition file used with the GMTB SCM is found
in gmtb-scm/ccpp-framework/examples/suite_scm_GFS_test.xml. The suite has been
named “GFS_operational_2017” and an initialization routine of GFS_initialize_scm_run
has been specified. The physics schemes have been organized into 3 groupings following
how the physics are called in the FV3GFS model, although no code is executed in the
SCM time loop between execution of the grouped schemes. Several “interstitial” schemes

20

6 CCPP Interface

are included in the suite definition file to execute code that previously was part of a hard-
coded physics driver. Many of these schemes will eventually be rolled into the schemes
themselves, improving portability.

6.2 Initializing/running a suite

The process for initializing and running a suite in the GMTB SCM is described in sections
4.4 and 4.5, respectively. A more general description of the process for performing suite
initialization and running can also be found in section 3.3 of the CCPP Developers’
Guide.

6.3 Changing a suite

6.3.1 Replacing a scheme with another

When the CCPP has reached a state of maturity, the process for modifying the contents
of an existing physics suite will be a very straightforward process, consisting of merely
changing the name of the scheme in the suite definition file. As of this release, which
consists of one scheme of each “type” in the pool of CCPP-compliant physics schemes
with many short interstitial schemes, the process requires some consideration. Of course,
prior to being able to swap a scheme within a suite, one must first add a CCPP-compliant
scheme to the pool of available schemes in the CCPP physics repository. This process is
described in section 2.2 of the CCPP Developers’ Guide.

Once a CCPP-compliant scheme has been added to the CCPP physics repository, the
process for modifying an existing suite should take the following steps into account:

• Examine and compare the arguments of the scheme being replaced and the replace-
ment scheme.
– Are there any new variables that the replacement scheme needs from the host

application? If so, these new variables must be added to the host model
cap. For the SCM, this involves adding a component variable to the physics
derived data type and a corresponding entry in the metadata table. The new
variables must also be allocated and initialized in the physics%create type-
bound procedure.

– Do any of the new variables need to be calculated in an interstitial scheme?
If so, one must be written and made CCPP-compliant itself. The CCPP
Developers’ Guide will help in this endeavor, and the process outlined in its
section 2.2 should be followed.

– Do other schemes in the suite rely on output variables from the scheme being
replaced that are no longer being supplied by the replacement scheme? Do

21

6 CCPP Interface

these output variables need to be derived/calculated in an interstitial scheme?
If so, see the previous bullet about adding one.

• Examine existing interstitial schemes related to the scheme being replaced.
– There may be scheme-specific interstitial schemes (needed for one specific

scheme) and/or type-generic interstitial schemes (those that are called for all
schemes of a given type, i.e. all PBL schemes). Does one need to write analo-
gous scheme-specific interstitial schemes for the replacement?

– Are the type-generic interstitial schemes relevant or do they need to be modi-
fied?

• Depending on the answers to the above considerations, edit the suite definition file
as necessary. Typically, this would involve finding the <scheme> elements associated
with the scheme to be replaced and its associated interstitial <scheme> elements and
simply replacing the scheme names to reflect their replacements.

6.3.2 Modifying “groups” of parameterizations

The concept of grouping physics in the suite definition file (currently reflected in the
<ipd part=“n”> elements) enables “groups” of parameterizations to be called with other
computation (perhaps related to the dycore, I/O, etc.) in between. In the suite definition
file included in this release, three groups are specified, but currently no computation
happens between ccpp_run calls for these groups. However, one can edit the groups to
suit the needs of the host application. For example, if a subset of physics schemes needs
to be more tightly connected with the dynamics and called more frequently, one could
create a group consisting of that subset and place a ccpp_run call in the appropriate place
in the host application. The remainder of the parameterizations groups could be called
using ccpp_run calls in a different part of the host application code.

6.3.3 Subcycling parameterizations

The suite definition file allows subcycling of schemes, or calling a subset of schemes at
a smaller time step than others. The <subcycle loop = n> element in the suite defini-
tion file controls this function. All schemes within such an element are called n times
during one ccpp_run call. All schemes within the included suite definition file are within
<subcycle loop = 1> elements, meaning that they are only called once. Note that no
time step information is included in the suite definition file. If subcycling is used for
a set of parameterizations, the smaller time step must be an input argument for those
schemes.

22

	Preface
	1 Introduction
	1.1 Release Notes
	1.1.1 Limitations

	2 Quick Start Guide
	2.1 Obtaining Code
	2.2 System Requirements, Libraries, and Tools
	2.2.1 Compilers

	2.3 Compiling SCM with CCPP
	2.4 Run the SCM with the supplied case

	3 Repository
	3.1 What is included in the repository?

	4 Algorithm
	4.1 Algorithm Overview
	4.2 Reading input
	4.3 Setting up vertical grid and interpolating input data
	4.4 Physics suite initialization
	4.5 Time integration
	4.6 Writing output

	5 Cases
	5.1 How to run cases
	5.1.1 Case configuration namelist parameters
	5.1.2 Physics configuration namelist parameters
	5.1.3 Case input data file

	5.2 How to set up new cases

	6 CCPP Interface
	6.1 Setting up a suite
	6.1.1 Preparing data from the SCM
	6.1.2 Editing and running ccpp_prebuild.py
	6.1.3 Preparing a suite definition file

	6.2 Initializing/running a suite
	6.3 Changing a suite
	6.3.1 Replacing a scheme with another
	6.3.2 Modifying ``groups'' of parameterizations
	6.3.3 Subcycling parameterizations

