
Christina Holt & Ligia Bernardet!
22nd September 2014!

HWRF Developers meeting!

Getting Started with HWRF
Development!

2

Repository Code Management
The repositories for the HWRF and other relevant components
serve the important purpose of maintaining a unified code and
for transitioning development to the operational centers

The community uses the same code as the operational centers

Everybody has access to all developments

This is meant to make your life easy! We’re here to help.

3

Outline!
�  Computing resources
�  Checking out the code

� What you get
� Where you get it
� What to expect the first time

�  Building HWRF
�  System requirements
�  Installing

�  Running HWRF
�  Development procedures

4

Computing Resources
�  HFIP PIs can apply for accounts/projects on NOAA’s Jet

�  Follow instructions at https://rdhpcs-s.noaa.gov/acctmgmt
�  Let Robert Gall (robert.gall@noaa.gov) know you’re applying
� Contact Nysheema Lett (Nysheema.Lett@noaa.gov) for a

NOAA email address if you don’t have one
�  Jet Questions go to Jet Help Queue

(rdhpcs.jet.help@noaa.gov)

�  If you need help determining the amount of resources to ask
for, please email Christina or Ligia

https://sites.google.com/a/noaa.gov/oar-jetdocs/home?pli=1

5

Checking out HWRF!
The DTC community HWRF system is available to checkout.
�  To checkout the “top of the trunk” code use the command:

svn co https://svn-dtc-hwrf.cgd.ucar.edu/trunk HWRF

�  This creates a top level directory called HWRF/.

exec
graphics
jobs
kick_scripts
nwport
parm
README
README.FGAT_JOBS
README.fix

README.rocoto
README.gsi
rocoto
scripts
sorc
test
testfile
ush
wrappers

New for everybody this
year!

Python scripts & Rocoto
workflow

6

SORC Directory Structure!
�  Notice that there are no component directories.
�  The SVN “externals” functionality populates this directory with the

component directories on checkout.
�  The file .externals contains:
!
gfdl-vortextracker https://svn-dtc-gfdl-vortextracker.cgd.ucar.edu/branches/HWRF

hwrf-utilities https://svn-dtc-hwrf-utilities.cgd.ucar.edu/branches/HWRF

ncep-coupler https://svn-dtc-ncep-coupler.cgd.ucar.edu/branches/HWRF

pomtc https://svn-dtc-pomtc.cgd.ucar.edu/branches/HWRF

UPP https://svn-dtc-unifiedpostproc.cgd.ucar.edu/branches/HWRF/

WPSV3 https://svn-wrf-wps.cgd.ucar.edu/branches/HWRF/

WRFV3 https://svn-wrf-model.cgd.ucar.edu/branches/HWRF/

7

Additional Components
�  To get GSI, you must check it out separately

cd sorc/

svn co https://gsi.fsl.noaa.gov/svn/comgsi/trunk GSI

 ~~ OR ~~

svn co https://svnemc.ncep.noaa.gov/projects/gsi/trunk EMCGSI

�  HYCOM also requires an additional checkout
cd sorc/

svn co https://svn-dtc-hycom.cgd.ucar.edu/trunk HYCOM

�  Experimental component, not supported by DTC or EMC

The EMC and Community GSI repos are temporarily out
of sync, so Community Users are encouraged to grab a
compiled copy (specific to Jet) of the EMC GSI from disk

8

Checkout: Passwords & Usernames!
� The first time each repository is accessed on a

particular machine, SVN will prompt you for your
username and password information.

� You will have at least two username/password
combinations. One for GSI and another for the
remaining repositories.

9

Checkout: Passwords & Usernames!
When checkout for the first time on a particular machine, SVN
will prompt you with a message like this:

Error validating server certificate for 'https://svn-dtc-
hwrf.cgd.ucar.edu:443':
 - The certificate is not issued by a trusted authority. Use the
 fingerprint to validate the certificate manually!
 - The certificate hostname does not match.
 - The certificate has expired.
Certificate information:
 - Hostname: localhost.localdomain
 - Valid: from Thu, 21 Feb 2008 06:32:25 GMT until Fri, 20 Feb 2009
06:32:25 GMT
 - Issuer: SomeOrganizationalUnit, SomeOrganization, SomeCity,
SomeState, --
 - Fingerprint: 86:01:bb:a4:4a:e8:4d:8b:e1:f1:01:dc:
60:b9:96:22:67:a4:49:ff
(R)eject, accept (t)emporarily or accept (p)ermanently?

!
Type “p”

10

Checkout: Passwords & Usernames!
Next you will be asked for your password.

Authentication realm: <https://svn-dtc-
hwrf.cgd.ucar.edu:443> dtc:hwrf
Password for 'stark':

!
If the default username is most likely not correct –just hit
return & enter the correct username:

Authentication realm: <https://svn-dtc-
hwrf.cgd.ucar.edu:443> dtc:hwrf
Username:

!
Hit return again, and enter the appropriate password.

Authentication realm: <https://svn-dtc-
hwrf.cgd.ucar.edu:443> dtc:hwrf
Username: stark@ucar.edu
Password for 'stark@ucar.edu':

11

Compiling HWRF on Jet!
Before you begin the compilation process, you must
have the following modules loaded on Jet to use the
build system:
!

module purge
module load intel
module load mvapich2
module load netcdf
module load pnetcdf

Refer to HWRF Users’ Guide v3.6a if you would prefer to
compile each component manually

12

Compiling HWRF!
�  In the source code directory, type make to

compile all eight components:
cd HWRF/sorc
make

�  This will take take some time.
�  Once the components are compiled,

complete the build with:

make install

�  Install places the executable in the
common directory HWRF/exec/

GSI/ OR EMCGSI/
WRFV3/
WPSV3/
UPP/
pomtc/
ncep-coupler/
hwrf-utilities/
gfdl-vortextracker/
executables.lst
Makefile
build/
README

after running make install
cp /mnt/lfs2/projects/hwrf-vd/Mingjing.Tong/GSI_HWRF/src/global_gsi HWRF/exec/hwrf_gsi

13

HWRF Directory Structure!
exec/ Component executables installed by make install

kick_scripts/ EMC run scripts (going away soon)

jobs/ Mid-level job scripts used with kick_scripts/ (also
going away soon)

nwport/ EMC utilities

parm/ Configure files to define an experiment

rocoto/ GSD workflow manager [Documentation]

scripts/ High-level Python scripts

sorc/ Source code for each component

ush/ Low-level Python scripts

wrappers/ Community scripts to run each HWRF component by
hand

14

Running HWRF
�  Link the fix files

�  README.fix explains, and is always up to date with the latest version
of EMC GSI

�  More information on the Python re-write is here:
�  https://wiki.ucar.edu/display/DTCHWRF/DTC+HWRF+Scripts+Home

�  Two options:
�  Wrapper scripts

�  Instructions are available in HWRF Users’ Guide v3.6a (HWRF UG)
�  Rocoto

�  Documentation available here: http://rdhpcs.noaa.gov/rocoto/
�  More details for using with HWRF: HWRF/README.rocoto
�  Training can be provided at a later HWRF Dev. Meeting

Helpful check: psychoanalyst
Many sanity checks on your build and the availability of executables:

cd HWRF
ush/psychoanalyst.py 18L HISTORY config.EXPT=(expt)

15

Summary!
�  You have now built the “top of trunk” version of the code.
�  It is sufficient for running HWRF
�  If you want to develop code, however, you would need a

working branch where you can commit your developments
�  You should not commit to the trunk without the

HWRF Developers Committee approval

Name Organization Email Address

Ligia Bernardet DTC Ligia.Bernardet@noaa.gov

Christina Holt DTC Christina.Holt@noaa.gov

Vijay Tallapragada NCEP/EMC Vijay.Tallapragada@noaa.gov

Sam Trahan NCEP/EMC Samuel.Trahan@noaa.gov

16

Developers Committee
�  Telecon on Mondays at noon (ET)
�  Forum for discussion on plans and updates for development

�  Including testing, evaluation, and technical aspects

�  We will send out an agenda each Friday before the Monday
meetings
� Time left for open discussion
�  Let us know if you’d like to add an agenda item

�  hwrf_developers@rap.ucar.edu is the mailing list for
exchanging information about HWRF development

17

Support/Communication!
�  A number of email lists exist for receiving information about

component development
�  It is up to the users to add themselves to the WRF developers mailing

list
�  Go to mailman.ucar.edu/mailman/listinfo/wrf-developers

�  Most others come to you by default

�  Developers may request to be removed from any of these email
lists at any time.

�  These are not discussion lists, but inform users of commits to
SVN repository

18

Development Branches
�  Once you have a development branch, you should commit

regularly (svn commit)
�  HWRF development continues in parallel
�  Keep your branch up to date with trunk (svn merge)
�  Your regular updates will prevent you from diverging too far

from the trunk
�  Integration of your developments is more streamlined
�  Transition to operations is smoother

19

Examples for Merging

�  Slides 22-32 provide more information on the
repository structure and an example of merging the
trunk (or branches/HWRF if an external repository)
into your personal branch

�  Great resource for svn: http://svnbook.red-bean.com/

20

Pushing Development Back
onto the Trunk
�  Keep in touch!

�  Let us know what you’re planning to develop
�  We can help you make better development decisions to make the

transition easier, and keep you from recreating the wheel
�  As your developments are happening, keep us in the loop

�  Don’t let your code diverge too far
�  Working on a copy of code that is a year old and then trying to merge

up to the trunk is VERY discouraged!
�  When you’ve made incremental changes that should go into the

trunk of the HWRF repo, let us know!
�  The HWRF Developers Committee should be notified by email of all

planned changes
�  Once changes are approved, we can discuss the procedures for

regression tests and merging up to the trunk

21

Questions?

22

Creation of branches/HWRF

trunk!
time!

branches/HWRF!

At some point in the trunk’s time !
evolution, a branch called HWRF !
is created. At this creation, both the!
branch and the trunk are identical. !

23

Creation of personal branch

trunk!
time!

branches/HWRF!

personal branch!

Development on the trunk is held !
fixed. Development on the branch !
HWRF continues. At some point in !
the branch HWRF’s time evolution,!
a copy is made for a personal branch.!

24

Parallel development

trunk!
time!

branches/HWRF!

personal branch!

Development continues independently on the branch HWRF and the personal
branch. Notice that you may have multiple commits to the branch HWRF from
other developers, while only a single commit is made to the personal branch. !
The two branches have diverged.!

25

More Parallel development

trunk!
time!

branches/HWRF!

personal branch!

In the case of external components such as WRF, UPP, WPS, etc., additional
development is almost guaranteed to occur on a regular basis to the trunk.
Now all three (trunk and two branches) have diverged.!

26

Merging

trunk!
time!

branches/HWRF!

personal branch!

•  DTC is responsible for updating branches/HWRF (black arrows)!
•  Developers are responsible for updating personal branches (blue arrows)!
•  Start by merging everything new in branches/HWRF into your personal

branch. Resolve any conflicts that arise from the merge, and test.!

27

Updating your branch!
�  This recipe covers updating a personal branch of one of

the components in the sorc directory. !
�  It does not cover updating the top level HWRF directory

such as the scripts and parm directory. This is slightly
different and will be covered later. !

�  Two different types of updates:!
�  Updating your branch and your working copy!

�  Update your working copy:!
�  cd HWRF && svn update (--ignore-externals)

�  Update your branch with your working copy:!
�  cd HWRF && svn commit .

�  Updating your branch with branches/HWRF!

28

Updating Branches!
There may come a time during your development,
where you need to include some update to the code
from another developer. We will start with an outline of
the simple method for doing this, and work through an
actual case later.!
1.  Save your work!

1.  Be certain your work is at a stable point.!
2.  Go into each of the directories where you’ve been

working and run an svn commit at the top of that
directory. !

3.  This will commit all of your work to your personal
branch for that component.!

!

29

Updating Branches!
2.  Checkout a fresh copy of your top level branch!

1.  svn co https://svn-dtc-hwrf.cgd.ucar.edu/branches/
personal_branch_name

2.  This will automatically update the code in any component where
you don’t have a personal branch!

3.  Manually update your personal branches by from
branches/HWRF back onto your personal branch. !

1.  svn merge http://component/branches/HWRF .
2.  Repeat with all components that have personal branches.

30

Updating Branches - Example!
Now lets consider a specific example. !
�  Suppose we have a user named Ligia with a personal

branch of the top level HWRF repo called ligia. !
�  She has personal branches for the two components

WRF and hwrf-utilities.
�  Since checking out her current copy of HWRF/
branches/ligia, she has done development only
in the WRF component.!

�  Since then, Sam has updated the top HWRF trunk,
and the UPP and WRF components. Ligia needs
those updates for her own work.!

31

Updating Branches - Example!
Ligia conducts the following steps to update her branch.!
1.  Save her work. !

1.  cd ligia/sorc/WRFV3
2.  svn commit

2.  Checkout a new copy of HWRF/branches/ligia!
1.  svn checkout

https://svn-dtc-hwrf.cgd.ucar.edu/branches/ligia

2.  This checkout updates the top of the HWRF branch, and all
of the components in which Ligia doesn’t have personal
branches, (e.g. everything but WRF and hwrf-utilities).!

32

Updating Branches - Example!
Ligia conducts the following steps to update her branch.!
3.  Update the remaining components (.e.g. WRF &

hwrf-utilities) by merging in from branches/HWRF/.!
1.  cd ligia/sorc/WRF
2.  svn merge

https://svn-wrf-model.cgd.ucar.edu/branches/HWRF/
3.  svn commit
4.  cd ../hwrf-utilities
5.  svn merge

https://svn-dtc-hwrf-utilities.cgd.ucar.edu/
branches/HWRF/

6.  svn commit
7.  Always merge from branches/HWRF/

