
Community HWRF
Users’ Guide v3.9a

October 2017

Mrinal K. Biswas, Laurie Carson, Kathryn Newman
National Center for Atmospheric Research and Developmental Testbed Center

Ligia Bernardet, Evan Kalina
University of Colorado Cooperative Institute for Research in Environmental Sciences at the

NOAA Earth System Research Laboratory/Global Systems Division and Developmental Testbed Center

Evelyn Grell
University of Colorado Cooperative Institute for Research in Environmental Sciences at the

NOAA Earth System Research Laboratory/Physical Sciences Division and Developmental Testbed Center

James Frimel
Colorado State University Cooperative Institute for Research in the Atmosphere at the

NOAA Earth System Research Laboratory/Global Systems Division and Developmental Testbed Center

Acknowledgements
Christina Holt∗, Shaowu Bao†, and Timothy Brown*

NOAA/ESRL Global Systems Division, Developmental Testbed Center and CIRES/CU

Subashini Subramanian
Purdue University

∗Present affiliation: Spire Global
†Present Affiliation: Carolina Coastal University

Acknowledgement

If significant help was provided via the HWRF helpdesk for work resulting in a publication,
please acknowledge the Developmental Testbed Center Hurricane Team.

For referencing this document please use:

Biswas, M. K., L. Carson, K. Newman, L. Bernardet, E. Kalina, E. Grell, J. Frimel, 2017:
Community HWRF Users’ Guide V3.9a, 160 pp.

Contents

Preface vii

1. Introduction 1
1.1. HWRF System Overview . 1
1.2. HWRF Development and Support . 4
1.3. HWRF Source Code Directory Structure . 5

1.3.1. HWRF Utilities Programs and Scripts 6
1.3.2. MPIPOM-TC Ocean Model . 7
1.3.3. NCEP Coupler . 8
1.3.4. GFDL Vortex Tracker . 8
1.3.5. WRFV3 – Atmospheric Model . 9
1.3.6. WPSV3 – WRF Preprocessor . 9
1.3.7. UPP – Unified Post-Processor . 10
1.3.8. GSI – Gridpoint Statistical Interpolation 10
1.3.9. HWRF Run . 11

2. Software Installation 12
2.1. Introduction . 12
2.2. Obtaining the HWRF Source Code . 13
2.3. Setting up HWRF . 13
2.4. System Requirements, Libraries, and Tools 14

2.4.1. Compilers . 15
2.4.2. netCDF, pnetCDF, and MPI . 15
2.4.3. LAPACK and BLAS . 16

2.5. Included Libraries . 17
2.5.1. Component Dependencies . 17

2.6. Building WRF-NMM . 18
2.6.1. Set Environment Variables . 18
2.6.2. Configure and Compile WRF-NMM 19
2.6.3. Configure and Compile: Idealized Tropical Cyclone WRF-NMM . . . 21

2.7. Building HWRF-utilities . 22
2.7.1. Set Environment Variables . 22
2.7.2. Configure and Compile . 23

iii

Contents

2.8. Building MPIPOM-TC . 26
2.8.1. Set Environment Variables . 26
2.8.2. Configure and Compile . 27

2.9. Building GFDL Vortex Tracker . 28
2.9.1. Set Environment Variables . 28
2.9.2. Configure and Compile . 29

2.10. Building the NCEP Coupler . 30
2.10.1. Configure and Compile . 30

2.11. Building WPS . 31
2.11.1. Set Environment Variables . 31
2.11.2. Configure and Compile . 31

2.12. Building UPP . 33
2.12.1. Set Environment Variables . 33
2.12.2. Configure and Compile . 34

2.13. Building GSI . 35
2.13.1. Set Environment Variables . 36
2.13.2. Configure and Compile . 36

3. Running HWRF 38
3.1. HWRF Scripts Overview . 38
3.2. Defining an Experiment . 39

3.2.1. Standard Configuration Files . 39
3.3. Input Data and Fix Directory Structure . 44
3.4. Production Directory Structure . 50
3.5. Scripts for Running HWRF . 52

3.5.1. Submitting a Job . 52
3.6. Running HWRF End-to-End . 53

3.6.1. Editing global_vars.sh . 53
3.6.2. Using Wrapper Scripts . 54

3.7. Operational HWRF for the Various Ocean Basins 55
3.7.1. Atlantic and Eastern Pacific Basin . 55
3.7.2. All Other N. Hemispheric Basins . 56
3.7.3. Southern Hemispheric Basins . 56

3.8. Running HWRF in Non-operational Configurations 57
3.8.1. Running Coupled/Uncoupled Forecast 57
3.8.2. MPIPOM-TC Options . 59
3.8.3. Running with Optional GSI . 60
3.8.4. Running without GFS Ensemble files: 3DVAR GSI 61
3.8.5. Running without Vortex Initialization 61
3.8.6. Running without Spectral Files (GRIB Only) 62
3.8.7. Running with 43 Vertical Levels and Coarser (27/9/3) Horizontal Res-

olution . 63
3.8.8. Running with Smaller D02 and D03 Size 63
3.8.9. Running with Alternate Physics Configurations 63

4. HWRF Preprocessing System 65
4.1. Introduction . 65

iv

Contents

4.2. Scripts . 68
4.2.1. Overview of exhwrf_launch.py 71
4.2.2. Overview of the Init Scripts: exhwrf_init.py and Wrappers . . . 73
4.2.3. Overview of Initialization Modules 73

5. Vortex Relocation 84
5.1. Introduction . 84
5.2. Scripts . 88

5.2.1. Overview of exhwrf_relocate.py 88
5.2.2. Overview of the Relocate Modules 88

6. Data Assimilation 99
6.1. Introduction . 99
6.2. Scripts . 100

6.2.1. Overview of exhwrf_bufrprep.py 101
6.2.2. Overview of the Bufrprep Module . 101
6.2.3. Overview of exhwrf_gsi.py . 102
6.2.4. Overview of the GSI Module . 102

7. Merge 104
7.1. Introduction . 104
7.2. Scripts . 104

7.2.1. Overview of exhwrf_merge.py . 104
7.2.2. Overview of Merge Module . 105

8. Ocean Initialization for MPIPOM-TC 107
8.1. Introduction . 107
8.2. Scripts . 107

8.2.1. Overview of exhwrf_ocean_init.py 107
8.2.2. Overview of Ocean Init Modules . 108

8.3. MPIPOM-TC Diagnostics . 112
8.4. User-provided Datasets for MPIPOM-TC Initialization 113

9. Forecast Model 114
9.1. Introduction . 114
9.2. Scripts . 114

9.2.1. Overview of exhwrf_forecast.py 115
9.2.2. Overview of the Forecast Module . 115

10.HWRF Post-Processor 119
10.1. Introduction . 119
10.2. Scripts . 119

10.2.1. Overview of exhwrf_unpost.py 120
10.2.2. Overview of exhwrf_post.py . 120
10.2.3. Overview of UPP Python Modules 120

11.Forecast Products 122
11.1. Introduction . 122

v

Contents

11.2. Scripts . 124
11.2.1. Overview of exhwrf_products.py 124
11.2.2. Additional Tracking Utilities . 130

11.3. How to Plot the Tracker Output Using ATCF_PLOT 131

12.HWRF Idealized Tropical Cyclone Simulation 133
12.1. Introduction . 133
12.2. How to Use HWRF for Idealized Tropical Cyclone Simulations 134

12.2.1. Source Code . 134
12.2.2. Input Files and Datasets . 134
12.2.3. General Instructions for Running the Executables 135
12.2.4. Running WPS to Create the ICs and LBCs 135
12.2.5. Running ideal.exe and wrf.exe 137

A. Example of Computational Resources for NOAA’s Supercomputer Jet 139

B. Example of Computational Resources and Notes for NCAR-Cheyenne 141

C. Example HWRF Namelist 143

D. Additional GFDL Tracker Information 147

vi

Preface

Meaning of typographic changes and symbols

Table 1 describes the type changes and symbols used in this book.

Typeface or Symbol Meaning Example
AaBbCc123 The names of commands, Edit your .bashrc

files, and directories; Use ls -a to list all files.
on-screen computer output host$ You have mail!.

AaBbCc123 What you type, contrasted host$ su
with on-screen computer
output

AaBbCc123 Command line placeholder: To delete a file, type
replace with a real name rm filename
or value

Table 1: Typographic Conventions

vii

1
Introduction

1.1 HWRF System Overview

The Weather Research and Forecast (WRF) system for hurricane prediction (HWRF) is an op-
erational model implemented at the National Centers for Environmental Prediction (NCEP)
of the National Weather Service (NWS) to provide numerical guidance to the National Hur-
ricane Center (NHC) for the forecasting of tropical cyclones’ track, intensity, and structure.
HWRF v3.9a and this Users’ Guide contain the capabilities of, and information regarding,
the operational 2017 implementation of HWRF, as well as alternate and research configura-
tions of the modeling system.

The HWRF model is a primitive-equation, non-hydrostatic, coupled atmosphere-ocean
model with an atmospheric component that employs the Non-hydrostatic Mesoscale Model
(NMM) dynamic core of the WRF model (WRF-NMM), with a parent and two nest domains.
The parent domain covers roughly 80◦ x 80◦ on a rotated latitude/longitude E-staggered
grid. The location of the parent domain is determined based on the initial position of the
storm and on the NHC/ Joint Typhoon Warning Center (JTWC) forecast of the 72-h position,
if available. The middle nest domain, of about 24◦ x 24◦, and the inner nest domain, of
about 7◦ x 7◦, move along with the storm using two-way interactive nesting. The stationary
parent domain has a grid spacing of 0.135◦ (about 18 km) while the middle nest grid spacing
is 0.045◦ (about 6 km) and the inner nest grid spacing is 0.015◦ (about 2 km). The dynamic
time steps are 30, 10, and 3.33 s, respectively, for the parent, middle nest, and inner nest
domains. The model top and number of vertical levels used in operations is dependent on
the basin. In the north Atlantic (AL), north Eastern Pacific (EP), and north Central Pacific
(CP) basins, the model top is 10 hPa and 75 levels are used. In the Western North Pacific
(WP) and North Indian Ocean (NIO) basins, the model top is 10 mb and 61 levels are used.

1

1. Introduction

In all other basins, the model top is 50 hPa and 43 levels are used. The system is flexible so
that different model tops and numbers of vertical levels can be used.

HWRF v3.9a includes an updated scale-aware Arakawa-Schubert scheme for cumulus pa-
rameterization and a Ferrier-Aligo cloud microphysics package for explicit moist physics.
The Global Forecasting System (GFS) Eddy-diffusivity Mass flux scheme is used for the
planetary boundary layer, along with the modified Geophysical Fluid Dynamics Laboratory
(GFDL) surface layer scheme. The Monin-Obukhov scheme is used for surface flux cal-
culations, which employs an improved air-sea momentum flux parameterization in strong
wind conditions. The Noah land surface model is used to represent the land surface for
the purpose of calculating the surface fluxes and the amount of upwelling radiation at the
lower atmospheric model boundary. Radiation effects are evaluated by the Rapid Radiative
Transfer Model for General Circulation Models (RRTMG) scheme, which includes diurnal
variations and interactive effects of clouds. The HWRF physics operational suite also in-
cludes parameterization of dissipative heating.

The time integration is performed with a forward-backward scheme for fast waves, an im-
plicit scheme for vertically propagating sound waves, and the Adams-Bashforth scheme for
horizontal advection and for the Coriolis force. In the vertical, the hybrid pressure-sigma
coordinate is used. Horizontal diffusion in based on a 2nd order Smagorinsky-type, for
more details see the HWRF Scientific Documentation at http://dtcenter.org/HurrWRF/
users/.

HWRF is run for all global basins in operations at NCEP, and different configurations are
used for the different global basins. The default configuration of HWRF is based on the
full capabilities of HWRF as it is run for the AL and EP basins, with reduced complexity
in all other basins. The following discussion outlines the AL and EP configuration, while
sections 3.7 and 3.8 describe alternate configurations used operationally in other basins and
for research applications.

Model initialization is comprised of both a vortex improvement procedure and data assimi-
lation. The NCEP Global Forecast System (GFS) analysis is used to generate the initial condi-
tions (ICs) for the hurricane model parent domain in the operational configuration. Starting
in 2017, the operational HWRF is run with GFS output in NEMSIO format to create initial
conditions and in GRIB2 format to create boundary conditions. More details of the NEM-
SIO output can be found at http://www.emc.ncep.noaa.gov/NEMS/nemsio.php. On the
inner 6-km and 2-km nests, the NCEP Global Data Assimilation System (GDAS) 6-hour
forecast initialized 6 hours prior to the HWRF analysis is interpolated to the appropriate
grid and is used as the first guess.

The analysis is modified by first separating the vortex and environment fields of the respec-
tive first guess on each domain, i.e. the GFS vortex is separated from the environment on the
parent domain, the GDAS vortex is removed from the environment on the inner domains. A
new vortex is then incorporated onto the environment field. The new vortex that is added to
the environment depends on the observed intensity of the cyclone, and on the existence of a
previous HWRF forecast. The new vortex may derive from a bogus procedure, from the 6-h
forecast of the HWRF model initialized 6-h previously (referred to as cycling), or from the
GDAS 6-h forecast initialized 6 hours previously. In any case, the vortex is modified so that
the initial storm position, structure, and intensity conform to the storm message. Cycling the

2

http://dtcenter.org/HurrWRF/users/
http://dtcenter.org/HurrWRF/users/
http://www.emc.ncep.noaa.gov/NEMS/nemsio.php

1. Introduction

vortex from a previous HWRF forecast of a NHC area of investigation (invest) onto a current
HWRF forecast of a numbered storm is a supported capability.

The first guess with an improved vortex is modified using the HWRF Data Assimilation
System (HDAS) by ingesting observations in a three-dimensional (3D) hybrid ensemble-
variational (VAR) data assimilation system called Gridpoint Statistical Interpolation (GSI).
HWRF assimilates conventional observations, Tail Doppler Radar (TDR), and satellite obser-
vations. In operations, the information for the flow-dependent background error covariance
is obtained from the GFS ensemble. However, when TDR data are present and for priority
storms (designated by NHC), the operational HWRF uses a 40-member HWRF ensemble
instead of the GFS ensemble. Due to the complexity of the HWRF ensemble and the large
computational resource needed to generate it, the 40-member HWRF ensemble capability
is not supported with the HWRF v3.9a public release. The assimilation of TDR data using
HWRF v3.9a can still be performed using the GFS ensemble. Satellite observations utilized
by HWRF include hourly Atmospheric Motion Vectors (AMV), clear-water-vapor AMVs, ra-
diances from infrared instruments (HIRS, AIRS, IASI, and GOES sounders) and microwave
instruments (AMSU-A, MHS, and ATMS), satellite-derived wind, observations from CrIS,
SSMI/S, METOP-B, and Global Positioning System (GPS) radio occultation bending angle.
First Guess at Appropriate Time (FGAT) is used to ensure that GSI uses innovations cal-
culated by comparing observations with corresponding model analysis fields valid at the
approximate time when the observations were collected. The GFS forecast fields are used to
provide lateral boundary conditions every 6 hours during the forecast.

The community HWRF model can be used in atmosphere-ocean coupled mode. In opera-
tions, HWRF runs in atmosphere-only mode in the Southern Hemisphere basins, employs
the HYbrid Coordinate Ocean (HYCOM) model in the WP and NIO basins, and employs the
Message Passaging Interface (MPI) to run a parallel version of the Princeton Ocean Model
(POM) for Tropical Cyclones (POM-TC) in the AL, EP, and CP basins. The POM was de-
veloped at Princeton University and coupled to the WRF model at the University of Rhode
Island (URI). In all basins, MPIPOM-TC is run in three dimensions with 1/12◦ (approximately
9-km) horizontal grid spacing and 40 half-sigma vertical levels. The only ocean model
supported in HWRF v3.9a is MPIPOM-TC, which is activated by default for all Northern
Hemisphere basins, but can be disabled if desired. HYCOM is not supported in HWRF
v3.9a and will not be discussed in this Users’ Guide.

In the EP and CP basins, the Real-Time Ocean Forecast System (RTOFS) is used to initialize
the ocean. In the other basins, the ocean is initialized by a diagnostic and prognostic
spin up of the ocean circulations using climatological ocean data. For storms located in
the western part of the Atlantic basin, the initial conditions are enhanced with real-time sea
surface temperature (SST), sea surface height data, and the assimilation of oceanic “features”.
During the ocean spin up, realistic representations of the structure and positions of the Loop
Current, Gulf Stream, and warm- and cold-core eddies are incorporated using a features-
based data assimilation technique developed at URI.

The atmospheric and oceanic components are interactively coupled with a MPI-based cou-
pler, which was developed at NCEP’s Environmental Modeling Center (EMC). The atmo-
spheric and oceanic components exchange information through the coupler; the ocean sends
the SST to the atmosphere; the atmosphere receives the SST and sends the surface fluxes,
including sensible heat flux, latent heat flux and short-wave radiation to the ocean. The

3

1. Introduction

frequency of information exchange is six minutes.

HWRF is suitable for use in tropical applications including real-time NWP, forecast research,
data assimilation and tropical cyclone initialization research, physics parameterization re-
search, air-sea coupling research, and teaching. Additionally, the capability to perform ideal-
ized tropical cyclone simulations is included. The HWRF system support to the community
by the Developmental Testbed Center (DTC) includes the following four main modules:

• HWRF atmospheric components
– WRF-NMM (which has tropical physics schemes and a vortex-following moving

nest)
– WRF Preprocessing System (WPS)
– Prep-hybrid utility
– Vortex initialization
– GSI
– Unified Post-Processor (UPP)
– GFDL vortex tracker

• HWRF oceanic components
– MPIPOM-TC model
– Ocean initialization

• Atmosphere-Ocean Coupler
• HWRF Run Module (scripts in the Python language)

The NCEP 2017 operational implementation of HWRF and HWRF v3.9a are almost identical,
with a few exceptions. Starting in 2015, NCEP runs an HWRF ensemble for priority storms
– a capability that is not currently supported to the community. The HYCOM ocean model,
instead of the MPIPOM-TC ocean model, is used operationally in the WP and NIO basins.
The operational HWRF runs coupled one-way to the WAVEWATCH III wave model, which is
not supported in the v3.9a public release. The HWRF Scientific Documentation is available
at http://www.dtcenter.org/HurrWRF/users/docs/scientific_documents/HWRFv3.
9a_ScientificDoc.pdf. Frequently-Asked-Questions (FAQ) or Known Issues can be found
at http://dtcenter.org/HurrWRF/users.

1.2 HWRF Development and Support

All of the HWRF components are under revision control using Subversion or Git. The sys-
tem is modular and distributed, with community code repositories hosted and maintained at
Github for WRF and WPS, at the National Oceanic and Atmospheric Administration (NOAA)
for GSI, and at the National Center for Atmospheric Research for the other HWRF com-
ponents. A HWRF code management protocol has been established for proposing HWRF-
related modifications to the software, whether the modifications are simply updates to the
current features, bug fixes, or the addition of new features. HWRF code development must
be carried out in the branches of the repositories and frequently synchronized with the
trunks. Proposed software modifications must be thoroughly tested prior to being commit-
ted to the code repository to protect the integrity of the evolving code base. Advanced users
interested in contributing to the HWRF system are encouraged to visit the HWRF Devel-

4

http://www.dtcenter.org/HurrWRF/users/docs/scientific_documents/HWRFv3.9a_ScientificDoc.pdf
http://www.dtcenter.org/HurrWRF/users/docs/scientific_documents/HWRFv3.9a_ScientificDoc.pdf
http://dtcenter.org/HurrWRF/users

1. Introduction

opers page at http://www.dtcenter.org/HurrWRF/developers/index.php to get more
information on the protocols of HWRF development.

HWRF is being actively developed and advanced. In the future, more components will be
coupled into the HWRF system, including hydrology, storm surge, and inundation compo-
nents.

The HWRF modeling system software is in the public domain and is freely available for
community use. Information about obtaining the codes, datasets, documentation, and tu-
torials can be found at http://www.dtcenter.org/HurrWRF/users and in the following
chapters of this Users’ Guide. Please refer to http://www.dtcenter.org/HurrWRF/users/
support/index_help.php on how to contact the HWRF helpdesk.

1.3 HWRF Source Code Directory Structure

The HWRF system source code has the following nine components:

• WRF Atmospheric Model
• WPS
• UPP
• GSI
• HWRF Utilities
• MPIPOM-TC
• GFDL Vortex Tracker
• NCEP Atmosphere-Ocean Coupler
• HWRF Run Component

The code for all components can be obtained by downloading the following tar files from
the DTC website (see Chapter 2 for installation information).

• HWRF_v3.9a_WRFV3.tar.gz
• HWRF_v3.9a_WPSV3.tar.gz
• HWRF_v3.9a_UPP.tar.gz
• HWRF_v3.9a_GSI.tar.gz
• HWRF_v3.9a_hwrf-utilities.tar.gz
• HWRF_v3.9a_gfdl-vortextracker.tar.gz
• HWRF_v3.9a_ncep-coupler.tar.gz
• HWRF_v3.9a_pomtc.tar.gz
• HWRF_v3.9a_hwrfrun.tar.gz

First expand HWRF_v3.9a_hwrfrun.tar.gz in a user-defined HWRF top directory. Once
completed, change directory to ${SCRATCH}/hwrfrun/sorc to expand the remaining tar
files, where SCRATCH refers to the top level directory where the HWRF system will be
installed. The following directories should be present once all files are expanded:

• WRFV3 – Weather Research and Forecasting model
• WPSV3 – WRF Preprocessing System

5

http://www.dtcenter.org/HurrWRF/developers/index.php
http://www.dtcenter.org/HurrWRF/users
http://www.dtcenter.org/HurrWRF/users/support/index_help.php
http://www.dtcenter.org/HurrWRF/users/support/index_help.php

1. Introduction

• UPP – Unified Post-Processor
• GSI – Gridpoint Statistical Interpolation hybrid ensemble 3D-VAR data assimilation
• hwrf-utilities – Vortex initialization, utilities, tools, and supplemental libraries
• gfdl-vortextracker – Vortex tracker
• ncep-coupler – Ocean/atmosphere coupler
• pomtc – Tropical cyclone version of MPIPOM

For the remainder of this document, we assume that the tar files have been expanded un-
der ${SCRATCH}/hwrfrun/sorc, where ${SCRATCH} is an environment variable that de-
scribes the location of the directory in which you installed the HWRF components.

The directory trees for these nine components are listed as follows. Note that these are the
directories after the code is compiled. Not all of these directories will be present before
compilation.

1.3.1 HWRF Utilities Programs and Scripts
hwrf-utilities/

arch/ ... architecture compiling options
clean................................script to clean created files and executables
compile...script to compile component
configure..................................... script to create the configure file
exec/...executables
graphics/
libs/..................libraries: blas, sp, sfcio, bacio, w3, nemsio, grib2, and bufr
makefile..top-level makefile
pure-openmp.inc
tools/............................source code for tools to run the HWRF system

Makefile...makefile for utilities
bufr_remorest/
cnvgrib/
copygb/
grb2index/
grbindex/
hwrf_afos/
hwrf_atcf_to_stats/
hwrf_aux_rw/
hwrf_bdy_update/
hwrf_binary_grads/
hwrf_bin_io/
hwrf_blend_gsi/
hwrf_combinetrack/
hwrf_ensemble/
hwrf_ens_prob/
hwrf_final_merge/
hwrf_gridgenfine/
hwrf_htcfstats/

6

1. Introduction

hwrf_interpolate/
hwrf_metgrid_levels/
hwrf_netcdf_grads/
hwrf_nhc_products/
hwrf_prepbufr/
hwrf_prep_hybrid/
hwrf_read_indi/
hwrf_readtdrinfo/
hwrf_regrid_merge/
hwrf_supvit/
hwrf_swath/
hwrf_wrfbdy_tinterp/
hwrf_wrfout_newtime/
Makefile
mdate/
mpi_example/
mpiserial/
ndate/
nhour/
satgrib2/
serpoe/
ships/
wave_sample/
wgrib/
wgrib2/

vortex_init......................source code for the HWRF vortex initialization
Makefile.......................................makefile for vortex_init code
hwrf_anl_bogus/
hwrf_anl_cs/
hwrf_anl_step2/
hwrf_create_trak_fnl/
hwrf_create_trak_guess/
hwrf_diffwrf_3dvar/
hwrf_pert_ct/
hwrf_set_ijstart/
hwrf_split/
interpolate/
merge_nest/

1.3.2 MPIPOM-TC Ocean Model
pomtc

arch/ ... architecture compiling options
clean................................script to clean created files and executables
compile...script to compile component
configure..................................... script to create the configure file
makefile...makefile for tools code

7

1. Introduction

ocean_diag/......................................software to plot ocean output
fortran/
matlab/
Makefile/

ocean_exec/..ocean model executables
ocean_init/............source code for generating ocean model initial conditions

Makefile............................makefile for the ocean initialization code
archv2data3z/
date2day/
day2date/
fbtr/
gdm3/
getsst/
hycom2raw/
hycu/
idel/
ncda/
pom/
pom_bs/
rtof/
rtof_bs/
sharp_mcs_rf_l2m_rmy5/
tran/

ocean_main/...........................source code for the ocean forecast model
Makefilemakefile for the ocean model code
pom/
pom_bs/

1.3.3 NCEP Coupler
ncep-coupler/

arch/ ... architecture compiling options
clean................................script to clean created files and executables
compile...script to compile component
configure..................................... script to create the configure file
cpl_exec/..coupler executable
hwrf_wm3c/...source code for the coupler
makefile..top-level makefile

1.3.4 GFDL Vortex Tracker
gfdl-vortextracker/

arch/ ... architecture compiling options
clean................................script to clean created files and executables
compile...script to compile component
configure..................................... script to create the configure file

8

1. Introduction

makefile..top-level makefile
trk_exec/..executables
trk_plot/..plot scripts and data
trk_src/.....................................source code for the vortex tracker

1.3.5 WRFV3 – Atmospheric Model
WRFV3/

Makefile.....................................makefile used to compile WRFV3
arch/ ... architecture compiling options
chem/....................................chemistry module, not used by HWRF
clean................................script to clean created files and executables
compile...script to compile component
configure..................................... script to create the configure file
dyn_em/..........Advanced Research WRF dynamic modules, not used by HWRF
dyn_exp/ ’toy’ dynamic core, not used by HWRF
dyn_nmm/ ..WRF-NMM dynamic modules
external/ external packages including ocean coupler interface
frame/..modules for WRF framework
hydro/...................................hydrology module, not used by HWRF
inc/ ... include files
main/..WRF main routines, such as wrf.F
phys/ .. physics modules
Registry/...WRFV3 Registry files
run/..run directory, not used by HWRF
share/..........................modules for WRF mediation layer and WRF I/O
test/.........sub-dirs for specific configurations of WRF, such as idealized HWRF
tools/...tools directory
var/..WRF-Var, not used by HWRF

Refer to the WRF-NMM Users’ Guide for more information. The WRF-NMM Users’ Guide
is available online at:
http://www.dtcenter.org/HurrWRF/users/docs/index.php.

1.3.6 WPSV3 – WRF Preprocessor
WPSV3/

arch/ ... architecture compiling options
clean................................script to clean created files and executables
compile...script to compile component
configure..................................... script to create the configure file
geogrid/...source code for geogrid.exe
link_grib.csh........script to link input GRIB files, used in idealized simulations
metgrid/...source code for metgrid.exe
ungrib/...source code for ungrib.exe

9

http://www.dtcenter.org/HurrWRF/users/docs/index.php

1. Introduction

util/..utility programs for WPSV3

1.3.7 UPP – Unified Post-Processor
UPP/

arch/ ... architecture compiling options
bin/. .. location of executables
clean................................script to clean created files and executables
compile...script to compile component
configure..................................... script to create the configure file
makefile..top level makefile
include/...include files
lib/..library files
parm/.............parameter files to control UPP performance, not used by HWRF
scripts/........................sample scripts running UPP, not used by HWRF
src/..................................UPP and dependent libraries source codes

1.3.8 GSI – Gridpoint Statistical Interpolation
GSI/

cmake/.......................................Modules for cmake, not supported
CMakeLists.txt
core-libs/
doc/
dtc/

arch/ .. architecture compiling options
clean.............................script to clean created files and executables
compile..script to compile component
configure.................................. script to create the configure file
dtcbuild...Options for compilers
include/
lib/
makefile_DTC .. top level makefile
run/...executables

lib/
libsrc
makefile_DTC

libsrc/
bacio/
bufr/
crtm/
nemsio/
sfcio/
sp/
w3emc/
w3nco/

10

1. Introduction

src/...source codes
util/..utilities, not used by HWRF

1.3.9 HWRF Run
hwrfrun/

doc/..Doxygen documents
modulefiles/...................................Modules for different platforms
nwport/ extra utilities for HWRF used in operations
parm/......................................files to configure HWRF experiment
scripts/ Python scripts to run the HWRF components
sorc/...........empty directory where HWRF components’ code should be placed
ush/..Python modules

hwrf/.......................................HWRF-specific Python modules
pom/...................................MPIPOM-TC-specific Python modules
produtil/...........HWRF-independent Python modules for generalization of
platforms and systems

wrappers/......................sh wrapper scripts used to run the Python scripts

11

2
Software Installation

2.1 Introduction

The DTC community HWRF system, which is based on the NOAA operational HWRF,
consists of nine components:

• WRF Atmospheric Model
• WPS
• UPP
• GSI
• HWRF-utilities
• MPIPOM-TC
• GFDL Vortex Tracker
• NCEP Atmosphere-Ocean Coupler
• HWRF Run

The first three of these components are the traditional WRF components: Weather Re-
search and Forecasting model (WRF), WRF Preprocessing System (WPS), and Unified Post-
Processor (UPP). Gridpoint Statistical Interpolation (GSI) is a hybrid ensemble - 3D varia-
tional data assimilation code used for data assimilation, and the remaining four components
are specific to the hurricane system itself, and as such are referred to as the hurricane
components of the HWRF system. The last component contains files required to run the
HWRF system including the Python scripts, configuration files (also called as conf files) and
wrappers scripts.

This chapter discusses how to build the HWRF system. It starts in section 2.2 with a
description of where to find the source code. Section 2.3 covers the preferred directory

12

2. Software Installation

structure and how to unpack the tar files. Section 2.4 covers the system requirements for
building and running the components. Section 2.5 discusses the libraries included in the
HWRF-utilities component. Section 2.6 explains how to build WRF-NMM for HWRF. The
remaining sections are devoted to building each of the remaining components of the HWRF
system.

2.2 Obtaining the HWRF Source Code

The HWRF hurricane system consists of nine components. All of these are available from
the HWRF website,

http://www.dtcenter.org/HurrWRF/users.

While most of these codes are also available from other community websites, the versions
needed for HWRF should be acquired from the DTC HWRF website to ensure they are a
consistent set.

To download HWRF, select the "Download" and "HWRF System" tabs on the left vertical
menu of the HWRF Users’ Website. New users must first register before downloading the
source code. Returning users need only provide their registration email address. A successful
download produces nine tar files:

• HWRF_v3.9a_WRFV3.tar.gz
• HWRF_v3.9a_WPSV3.tar.gz
• HWRF_v3.9a_UPP.tar.gz
• HWRF_v3.9a_GSI.tar.gz
• HWRF_v3.9a_hwrf-utilities.tar.gz
• HWRF_v3.9a_gfdl-vortextracker.tar.gz
• HWRF_v3.9a_ncep-coupler.tar.gz
• HWRF_v3.9a_pomtc.tar.gz
• HWRF_v3.9a_hwrfrun.tar.gz

After downloading each of the component codes, the user should check the links to
"Known Issues" and "Bug Fixes" to see if any code updates are required. You now have
all the HWRF system components as gzipped tar files. The next section describes how to
organize them.

2.3 Setting up HWRF

Although the HWRF scripts may be modified for any directory structure, in this discussion,
we assume that the HWRF system will be set up in a single flat directory structure. Because
of the storage requirements necessary for the complete HWRF system setup, it will typically
need to be located on a computer’s “scratch” or “work” partition.

13

http://www.dtcenter.org/HurrWRF/users

2. Software Installation

The tar files can be unpacked by use of the GNU gunzip command,

gunzip *.tar.gz

and the tar files extracted by running tar -xvf individually on each of the tar files. The
User should first move to a user-defined HWRF top directory. This directory will be referred
to as SCRATCH. In SCRATCH, expand HWRF_v3.9a_hwrfrun.tar.gz. This will create a
directory called hwrfrun. Then within ${SCRATCH}/hwrfrun/sorc/ directory, unpack
the remaining tar files.

Once unpacked, there should be eight source directories in sorc/.

• WRFV3 – Weather Research and Forecasting model
• WPSV3 – WRF Preprocessing System
• UPP – Unified Post-Processor
• GSI – Gridpoint Statistical Interpolation
• hwrf-utilities – Vortex initialization, utilities, tools, and supplemental libraries
• gfdl-vortextracker – Vortex tracker
• ncep-coupler – Ocean/atmosphere coupler
• pomtc – Tropical cyclone version of MPIPOM

The next section covers the system requirements to build the HWRF system.

2.4 System Requirements, Libraries, and Tools

In practical terms, the HWRF system consists of a collection of Python modules, which runs a
sequence of serial and parallel code executables. The source code for these executables is in
the form of programs written in FORTRAN, FORTRAN 90, and C. In addition, the parallel
executables require some flavor of MPI/OpenMP for the distributed memory parallelism, and
the I/O relies on the netCDF I/O libraries. Beyond the standard scripts, the build system
relies on use of the Perl scripting language, along with GNU make and date.

The basic requirements for building and running the HWRF system are listed below:

• FORTRAN 90+ compiler
• C compiler
• MPI v1.2+
• Perl
• netCDF v3.6+

– if netCDF v4.1+ is used, HDF5 and SZIP libs may also be required
• LAPACK and BLAS
• Python
• Parallel-netCDF
• PNG
• JasPer
• zlib

14

2. Software Installation

Because these tools and libraries are typically the purview of system administrators to
install and maintain, they are considered part of the basic system requirements.

2.4.1 Compilers

The DTC community HWRF system has been tested on a variety of computing platforms.
Currently the HWRF system is actively supported on Linux computing platforms using the
Intel Fortran compilers. Unforeseen build issues may occur when using older compiler
versions. Typically the best results come from using the most recent version of a compiler.
The "Known Issues" section of the community website provides the complete list of compiler
versions currently supported.

While the community HWRF build system provides legacy support for the IBM AIX
platforms, the unavailability of AIX test platforms means all AIX support is cursory at best.

2.4.2 netCDF, pnetCDF, and MPI

The HWRF system requires a number of support libraries not included with the source
code. Many of these libraries may be part of the compiler installation, and are subsequently
referred to as system libraries. For our needs, the most important of these libraries are
netCDF, pnetCDF, and MPI.

An exception to the rule of using the most recent version of code, libraries, and compilers
is the netCDF library. The HWRF system I/O requires the most recent V3 series of the
library. The preferred version of the library is netCDF v4.2+. The netCDF libraries can be
downloaded from the Unidata website.

http://www.unidata.ucar.edu

Typically, the netCDF library is installed in a directory that is included in the users path
such as /usr/local/lib. When this is not the case, the environment variables NETCDF
and PNETCDF can be set to point to the location of the library.

For csh/tcsh, the path can be set with the following command:

setenv NETCDF path_to_netcdf_library/
setenv PNETCDF path_to_pnetcdf_library/

For bash/ksh, the equivalent command is as follows:

export NETCDF=path_to_netcdf_library/
export PNETCDF=path_to_pnetcdf_library/

It is crucial that system libraries, such as netCDF, be built with the same FORTRAN
compiler, compiler version, and compatible flags, as used to compile the remainder of the

15

http://www.unidata.ucar.edu

2. Software Installation

source code. This is often an issue on systems with multiple FORTRAN compilers, or when
the option to build with multiple word sizes (e.g. 32-bit vs. 64-bit addressing) is available.

Many default Linux installations include a version of netCDF. Typically this version is
only compatible with code compiled using gcc. To build the HWRF system, a version of
the library must be built using your preferred compiler and with both C and FORTRAN
bindings. If you have any doubts about your installation, ask your system administrator.

Building and running the HWRF distributed memory parallel executables requires that
a version of the MPI library be installed. Just as with the netCDF library, the MPI library
must be built with the same FORTRAN compiler, and use the same word size option flags,
as the remainder of the source code. Installing MPI on a system is typically a job for
the system administrator and will not be addressed here. If you are running HWRF on a
computer at a large center, check the machine’s documentation before you ask the local
system administrator.

2.4.3 LAPACK and BLAS

The LAPACK and BLAS libraries are open source mathematics libraries for solving linear
algebra problems. The source code for these libraries is freely available to download from
NETLIB at

http://www.netlib.org/lapack/.

Most commercial compilers provide their own optimized versions of these routines. These
optimized versions of BLAS and LAPACK provide superior performance to the open source
versions.

On Linux systems, HWRF supports the Intel ifort Fortran compilers. The Intel compiler
has its own optimized version of the BLAS and LAPACK routines called the Math Kernel
Library or MKL. The MKL libraries provide most of the LAPACK and BLAS routines
needed by the HWRF system. Since the vender versions of the libraries are often incomplete,
a copy of the full BLAS library is provided with the HWRF-utilities component. The build
system links to this version of the libraries last.

On the IBM machines, the AIX compiler is often, but not always, installed with the
Engineering and Scientific Subroutine Libraries or ESSL. In part, the ESSL libraries are
highly optimized parallel versions of many of the LAPACK and BLAS routines. The ESSL
libraries provide all of the necessary linear algebra library routines needed by the HWRF
system.

16

http://www.netlib.org/lapack/

2. Software Installation

2.5 Included Libraries

For convenience in building HWRF-utilities, the MPIPOM-TC, and the GFDL Vortex Tracker
components, the HWRF-utilities component includes a number of libraries in the hwrf-
utilities/libs/src/ directory. The following libraries are built automatically when the
HWRF-utilities component is built:

• BACIO
• BLAS
• BUFR
• G2
• G2C
• IP
• NEMSIO
• SFCIO
• SIGIO
• SP
• W3EMC
• W3NCO

The other components, WPS, WRF, UPP, and GSI, come with their own versions of many
of these libraries, but typically they have been customized for that particular component and
should not be used by the other components.

When the HWRF-utilities component is compiled, it starts by first building all the included
libraries. The vortex initialization code contained in the HWRF-utilities component requires
all of the above libraries except for the SFCIO library. In addition, it requires both the BLAS
and LAPACK mathematical libraries when the IBM ESSL library is not included with the
compiler installation.

The MPIPOM-TC component requires the BACIO, NEMSIO, SFCIO, SP and W3 libraries.
In addition, the local copy of the BLAS library is required when the ESSL library is not in-
cluded with the compiler installation. This is because the vender-supplied versions of BLAS
are typically incomplete, and the local version supplements the vender version. Typically
this is for any system other than IBM. The GFDL vortex tracker component requires the
BACIO and W3 libraries. The NCEP-Coupler does not require any additional libraries.

2.5.1 Component Dependencies

The eight components of the HWRF system that contain source code have certain inter-
dependencies. Many of the components depend on libraries produced by other components.
For example, four of the components, WPS, UPP, GSI, and the HWRF-utilities, require
linking to the WRF I/O API libraries to build. Since these I/O libraries are created as part of
the WRF build, the WRF component must be built first. Once WRF is built, WPS, UPP, GSI,
or the HWRF-utilities can be built in any order. Since building the HWRF-utilities produces
the supplemental libraries needed by MPIPOM-TC and by the GFDL Vortex Tracker, the

17

2. Software Installation

HWRF-utilities must be built before either of these components. The remaining component,
the NCEP Coupler, can be built independently of any of the other components. The main
system component dependency is as follows:

• WRF
– WPS
– UPP
– GSI
– HWRF-utilities

* MPIPOM-TC (BLAS on Linux, sfcio, sp, w3)

* GFDL vortex tracker (w3, bacio, G2)
• NCEP Coupler

2.6 Building WRF-NMM

The WRF code has a fairly sophisticated build mechanism. The package attempts to deter-
mine the machine where the code is being built, and then presents the user with supported
build options on that platform. For example, on a Linux machine, the build mechanism
determines whether the machine is 32-bit or 64-bit, prompts the user for the desired type
of parallelism (such as serial, shared memory, distributed memory, or hybrid), and then
presents a selection of possible compiler choices.

In addition, the user may choose to run WRF with either real or idealized input data. The
idealized data case requires setting environment flags prior to compiling the code, which
creates a unique executable that should only be run with the idealized data. See section
2.6.3 for compiling WRF for ideal runs.

2.6.1 Set Environment Variables

To correctly configure WRF-NMM for the HWRF system, set the following additional envi-
ronment variables beyond what WRF typically requires.

In C-Shell use the following commands:

setenv HWRF 1
setenv WRF_NMM_CORE 1
setenv WRF_NMM_NEST 1
setenv JASPERLIB path_to_jasper_library/
setenv JASPERINC path_to_jasper_includes/
setenv PNETCDF_QUILT 1
setenv WRFIO_NCD_LARGE_FILE_SUPPORT 1

Add the following command for IBM AIX builds using C-Shell:

setenv IBM_REDUCE_BUG_WORKAROUND 1

18

2. Software Installation

In Bash shell, use the following commands:

export HWRF=1
export WRF_NMM_CORE=1
export WRF_NMM_NEST=1
export JASPERLIB=path_to_jasper_library/
export JASPERINC=path_to_jasper_includes/
export PNETCDF_QUILT=1
export WRFIO_NCD_LARGE_FILE_SUPPORT=1

Add the following command for IBM AIX builds using Bash:

export IBM_REDUCE_BUG_WORKAROUND=1

These settings produce a version of WRF-NMM compatible with the HWRF system.

Some versions of the IBM MPI implementation contain a bug. Some MPI processes will
get stuck in MPI_Reduce and not return until the PREVIOUS I/O server group finishes
writing. When the environment variable IBM_REDUCE_BUG_WORKAROUND=1, a workaround
is used that replaces the MPI_Reduce call with many MPI_Send and MPI_Recv calls that
perform the sum on the root of the communicator.

Note that setting the environment variable WRF_NMM_NEST to 1 does not preclude running
with a single domain.

2.6.2 Configure and Compile WRF-NMM

To configure WRF-NMM, go to the top of the WRF directory (cd
${SCRATCH}/hwrfrun/sorc/WRFV3) and use the following command:

./configure

You will be presented with a list of build choices for your computer. These choices may
include multiple compilers and parallelism options.

For Linux architectures, there are currently 63 options. For the HWRF system, only the
distributed memory (dmpar) builds are valid. Therefore as an example, the acceptable Intel
options (15, 20, 24, and 28) are shown below:

13. (serial) 14. (smpar) 15. (dmpar) 16. (dm+sm) INTEL (ifort/icc)

18. (serial) 19. (smpar) 20. (dmpar) 21. (dm+sm) INTEL (ifort/icc): Xeon (S...

22. (serial) 23. (smpar) 24. (dmpar) 25. (dm+sm) INTEL (ifort/icc): SGI MPT

26. (serial) 27. (smpar) 28. (dmpar) 29. (dm+sm) INTEL (ifort/icc): IBM POE

The configure step for the WRF model is now completed. A file has been created in the
WRF directory called configure.wrf. The compile options and paths in the config-
ure.wrf file can be edited for further customization of the build process.

19

2. Software Installation

To build the WRF-NMM component enter the following command:

./compile nmm_real

In general, it is good practice to save the standard out and error to a log file for reference.
In the csh/tcsh shell this can be done with the following command:

./compile nmm_real |& tee build.log

For the ksh/bash shell use the following command:

./compile nmm_real 2>& 1 | tee build.log

In both cases, the standard out and the standard error are sent to both the file build.log
and to the screen. The approximate compile time varies according to the system being
used and the aggressiveness of the optimization. On IBM AIX machines, the compiler
optimization significantly slows down the build time, and it typically takes at least half an
hour to complete. On most Linux systems, the WRF model typically compiles in around 20
minutes.

It is important to note that the commands ./compile -h and ./compile produce a
listing of all of the available compile options, but only the nmm_real option is relevant to
the HWRF system.

A successful compilation produces two executables listed below in the directory main/.

real_nmm.exe WRF initialization
wrf.exe WRF model integration

If a recompilation is necessary, a clean to remove all object files (except those in exter-
nal/) should be completed first:

./clean

A complete clean is strongly recommended if the compilation failed, the Registry has been
changed, or the configuration file is changed. To conduct a complete clean that removes all
built files in all directories, as well as the configure.wrf use the "-a" option:

./clean -a

Further details on the HWRF atmospheric model, physics options, and running the model
can be found in the Running HWRF chapter of the Users’ Guide.

Complete details on building and running the WRF-NMM model are available in the
WRF-NMM Users’ Guide, which is available here:

http://www.dtcenter.org/HurrWRF/users/docs/index.php.

20

http://www.dtcenter.org/HurrWRF/users/docs/index.php

2. Software Installation

2.6.3 Configure and Compile: Idealized Tropical Cyclone WRF-
NMM

The HWRF idealized tropical cyclone WRF-NMM component requires different executables
than for the real case. The following section will describe how to build the executables for
the idealized case.

Building the idealized component requires a slightly different configuration than for the
standard WRF build outlined in section 2.6.1. If a user has already built the standard WRFV3
and created real_nmm.exe and wrf.exe, and now wants to build WRFV3 for idealized
tropical cyclone simulations, they first need to completely clean the previous build. This is
done by typing:

./clean -a

which removes ALL build files, including the executables, libraries, and the configure.hwrf.
To correctly configure WRF-NMM for the HWRF idealized tropical cyclone simulation re-
quires setting the additional environment variable IDEAL_NMM_TC. Several other variables
must also be set.

In C-Shell use the following commands:

setenv WRF_NMM_CORE 1
setenv WRF_NMM_NEST 1
setenv HWRF 1
setenv IDEAL_NMM_TC 1
setenv WRFIO_NCD_LARGE_FILE_SUPPORT 1

The following commands should be used for bash/ksh:

export WRF_NMM_CORE=1
export WRF_NMM_NEST=1
export HWRF=1
export IDEAL_NMM_TC=1
export WRFIO_NCD_LARGE_FILE_SUPPORT=1

To configure WRF-NMM, go to the top of the WRF directory (cd
${SCRATCH}/hwrfrun/sorc/WRFV3) before issuing the following command:

./configure

You will be presented with a list of build choices for your computer. These choices may
include multiple compilers and parallel options.

For Linux architectures, there are currently 51 options. For the HWRF system, only the
distributed memory (dmpar) builds are valid. Therefore as an example, the acceptable Intel
options (15, 20, 24, 28) are shown below:

13. (serial) 14. (smpar) 15. (dmpar) 16. (dm+sm) INTEL (ifort/icc)

21

2. Software Installation

18. (serial) 19. (smpar) 20. (dmpar) 21. (dm+sm) INTEL (ifort/icc): Xeon (S...

22. (serial) 23. (smpar) 24. (dmpar) 25. (dm+sm) INTEL (ifort/icc): SGI MPT

26. (serial) 27. (smpar) 28. (dmpar) 29. (dm+sm) INTEL (ifort/icc): IBM POE

The configure step for the WRF model is now completed. A file has been created in the
WRF directory called configure.wrf. The compile options and paths in the config-
ure.wrf file can be edited for further customization of the build process.

Once the configure step is complete, the code is compiled by including the target
nmm_tropical_cyclone to the compile command:

./compile nmm_tropical_cyclone

A successful compilation produces two executables in the directory main/.

ideal.exe WRF initialization
wrf.exe WRF model integration

Note: The only compilation requirements for the idealized capability are WPS and WRF.
If desired, UPP may also be used. The components MPIPOM-TC and coupler, GSI, GFDL
vortex tracker, and HWRF-utilities are not used in HWRF idealized tropical cyclone simula-
tions.

2.7 Building HWRF-utilities

The hwrf-utilities/ directory consists of an eclectic collection of source code and li-
braries. The libraries, which are provided in support of the MPIPOM-TC and the GFDL
Vortex Tracker, include the BACIO, BLAS, BUFR, SIGIO, SFCIO, NEMSIO, SP, and W3
libraries. In addition to these libraries, this component includes the source code for the
vortex initialization routines and software tools such as the grbindex.

2.7.1 Set Environment Variables

The HWRF-utilities build requires that two path variables, NETCDF and WRF_DIR, be set to
the appropriate paths. The netCDF library path NETCDF is required for building the WRF-
NMM component, and its value should be appropriately set if that component compiled
successfully. The WRF_DIR path variable should point to the WRF directory compiled in the
previous section. You must first build WRF before compiling most of the other components.

If you have followed the directory structure suggested in section 2.3, the WRF_DIR path
should be set to ${SCRATCH}/hwrfrun/sorc/WRFV3. In csh/tcsh, the variables may be
set with two commands:

setenv NETCDF /absolute_path_to_appropriate_netCDF_library/

22

2. Software Installation

setenv WRF_DIR ${SCRATCH}/hwrfrun/sorc/WRFV3

For the ksh/bash shells, use the following two commands:

export NETCDF=/absolute_path_to_appropriate_netCDF_library/
export WRF_DIR=${SCRATCH}/hwrfrun/sorc/WRFV3

It is crucial that the Fortran compiler used to build the libraries (Intel, PGI, XLF, etc.) be
the same as the compiler used to compile the source code. Typically, this is only an issue in
two situations, on Linux systems having multiple compilers installed, and on systems where
there is a choice between building the code with either 32-bit or 64-bit addressing.

2.7.2 Configure and Compile

To configure HWRF-utilities for compilation, from within the hwrf-utilities directory,
type the following command:

./configure

The configure script checks the system hardware, and if the path variables are not set,
asks for the correct paths to the netCDF libraries and the WRF build directory. It concludes
by asking the user to choose a configuration supported by current machine architecture.

For Linux, these options are available.

1. Linux x86_64, PGI compiler w/LAPACK (dmpar)
2. Linux x86_64, PGI compiler w/LAPACK, SGI MPT (dmpar)
3. Linux x86_64, Intel compiler w/MKL (dmpar)
4. Linux x86_64, Intel compiler w/MKL, SGI MPT (dmpar)
5. Linux x86_64, Intel compiler w/MKL, IBM POE (dmpar)
6. Linux x86_64, Intel compiler w/MKL, CrayPE (dmpar)
7. Linux x86_64, Intel compiler w/LAPACK (dmpar)
8. Linux x86_64, Intel compiler w/LAPACK, SGI MPT (dmpar)

For Intel builds, pick option 3, 4, or 5 if your compiler includes the MKL libraries, and
option 6 or 7 if it does not.

If successful, the configure script creates a file called configure.hwrf in the hwrf-
utilities/ directory. This file contains compilation options, rules, and paths specific
to the current machine architecture, and can be edited to change compilation options, if
desired.

In csh/tcsh, compile the HWRF-utilities and save the build output to a log file:

./compile |& tee build.log

For the ksh/bash shell, use the following command:

23

2. Software Installation

./compile 2>&1 | tee build.log

If the compilation is successful, it will create the following executables in the directory
exec/:

bufr_remorest.exe
cnvgrib.exe
copygb.exe
diffwrf_3dvar.exe
getcenter.exe
grbindex.exe
grb2index.exe
gridparse.exe
grp_atcf_to_stats.exe
grp_getcenter.exe
grp_gridparse.exe
grp_hwrf_atcf_intensity.exe
grp_hwrf_atcf_tracks.exe
grp_inddiag.exe
grp_inddiagnull.exe
grp_nameparse.exe
grp_statsin_domain.exe
grp_statsin_domain_TI.exe
grp_totaldiag.exe
hwrf_afos.exe
hwrf_anl_4x_step2.exe
hwrf_anl_bogus_10m.exe
hwrf_anl_cs_10m.exe
hwrf_atcf_prob.exe
hwrf_atcf_to_stats.exe
hwrf_aux_rw.exe
hwrf_bdy_update.exe
hwrf_binary_grads.exe
hwrf_bin_io.exe
hwrf_blend_gsi.exe
hwrf_change_prepbufr_qm_in_circle.exe
hwrf_change_prepbufr_qm_typ.exe
hwrf_combinetrack.exe
hwrf_create_trak_fnl.exe
hwrf_create_trak_guess.exe
hwrf_ensemble.exe
hwrf_ens_prob.exe
hwrf_final_merge.exe
hwrf_gridgenfine.exe
hwrf_htcfstats.exe

hwrf_inter_2to1.exe
hwrf_inter_2to2.exe
hwrf_inter_2to6.exe
hwrf_inter_4to2.exe
hwrf_inter_4to6.exe
hwrf_merge_nest_4x_step12_3n.exe
hwrf_merge_nest_4x_step12_enkf.exe
hwrf_metgrid_levels.exe
hwrf_netcdf_grads.exe
hwrf_nhc_products.exe
hwrf_pert_ct1.exe
hwrf_prep.exe
hwrf_read_indi_write_all.exe
hwrf_readtdrstmid.exe
hwrf_readtdrtime.exe
hwrf_readtdrtrack.exe
hwrf_readtdrtrigger.exe
hwrf_regrid_merge.exe
hwrf_rem_prepbufr_typ_in_circle.exe
hwrf_split1.exe
hwrf_supvit.exe
hwrf_swath.exe
hwrf_swcorner_dynamic.exe
hwrf_wrfbdy_tinterp.exe
hwrf_wrfout_newtime.exe
inddiag.exe
inddiagnull.exe
mdate.exe
mpi_example.exe
mpiserial.exe
nameparse.exe
ndate.exe
nhour.exe
satgrib2.exe
serpoe.exe
totaldiag.exe
wave_sample.exe
wgrib2.exe
wgrib.exe

In addition, it will create twenty-five libraries in the directory libs/:

24

2. Software Installation

libbacio_4.a — BACIO library built with -r4 flags
libbacio_8.a — BACIO library built with -r8 flags
libbacio.a — BACIO library - default
libblas.a — BLAS library
libbufr_i4r4.a — BUFR library built with -i4 -r4 flags
libbufr_i4r8.a — BUFR library built with -i4 -r8 flags
libg2.a — GRIB2 library
libg2c_v1.5.0_4.a — GRIB2 utilities
libg2tmpl.a — GRIB2 utilities
libgctpc.a — GRIB2 utilities
libhwrfutil_i4r4.a — Miscellaneous data manipulation utilities
libip_i4r4.a — SFCIO library built with -i4 -r4 flags
libip_i4r8.a — SIGIO library built with -i4 -r4 flags
libnemsio.a — NEMS I/O library
libsfcio_i4r4.a — SFCIO library built with -i4 -r4 flags
libsigio_i4r4.a — SIGIO library built with -i4 -r4 flags
libsp_i4r4.a — SP library built with -i4 -r4 flags
libsp_i4r8.a — SP library built with -i4 -r8 flags
libw3emc_i4r8.a — W3EMC library built with -i4 -r8 flags
libw3_i4r4.a — W3 library built with -i4 -r4 flags
libw3_i4r8.a — W3 library built with -i4 -r8 flags
libw3_i8r8.a — W3 library built with -i8 -r8 flags
libw3nco_i4r4.a — W3NCO library built with -i4 -r4 flags
libw3nco_i4r8.a — W3NCO library built with -i4 -r8 flags
libw3nco_i8r8.a — W3NCO library built with -i8 -r8 flags

These libraries will be used by the GFDL Vortex Tracker and the MPIPOM-TC ocean
model. The configuration step for these components will require setting a path variable to
point to the hwrf-utilities/libs/ directory in the HWRF-utilities directory.

If a recompilation is necessary, a clean to remove all object files (except those in exter-
nal/) should be completed first:

./clean

A complete clean is strongly recommended if the compilation failed, the WRFV3 Registry
has been changed, or the configuration file is changed. To conduct a complete clean that
removes all built files in all directories, as well as the configure.hwrf, use the "-a" option:

./clean -a

The HWRF-utilities can be compiled to produce only the libraries by typing the command
below:

./compile library

This is useful for users that do not intend to use the entire HWRF system, but just need
the libraries to build the tracker.

25

2. Software Installation

2.8 Building MPIPOM-TC

2.8.1 Set Environment Variables

The Tropical Cyclone version of the MPIPOM-TC requires six external libraries: BACIO,
NEMSIO, SFCIO, SP, W3, G2, and PNETCDF. On platforms that lack the ESSL mathemat-
ical libraries, typically anything other than IBM AIX machines, a seventh library (BLAS) is
required. The first six of these libraries are located in the hwrf-utilities/libs/ direc-
tory and should be available if the HWRF-utilities component has been built successfully.
You must first build them before building MPIPOM-TC.

Set the library paths (assuming the directory structure proposed in section 2.3) using
C-Shell:

setenv LIB_W3_PATH ${SCRATCH}/hwrfrun/sorc/hwrf-utilities/libs/
setenv LIB_SP_PATH ${SCRATCH}/hwrfrun/sorc/hwrf-utilities/libs/
setenv LIB_NEMSIO_PATH ${SCRATCH}/hwrfrun/sorc/hwrf-utilities/libs/
setenv LIB_SFCIO_PATH ${SCRATCH}/hwrfrun/sorc/hwrf-utilities/libs/
setenv LIB_BACIO_PATH ${SCRATCH}/hwrfrun/sorc/hwrf-utilities/libs/
setenv LIB_G2_PATH ${SCRATCH}/hwrfrun/sorc/hwrf-utilities/libs/
setenv PNETCDF PATH_TO_PNETCDF

Similarly, the libraries can be set using the ksh/bash shell:

export LIB_W3_PATH=${SCRATCH}/hwrfrun/sorc/hwrf-utilities/libs/
export LIB_SP_PATH=${SCRATCH}/hwrfrun/sorc/hwrf-utilities/libs/
export LIB_SFCIO_PATH=${SCRATCH}/hwrfrun/sorc/hwrf-utilities/libs/
export LIB_BACIO_PATH=${SCRATCH}/hwrfrun/sorc/hwrf-utilities/libs/
export LIB_NEMSIO_PATH=${SCRATCH}/hwrfrun/sorc/hwrf-utilities/libs/
export LIB_G2_PATH=${SCRATCH}/hwrfrun/sorc/hwrf-utilities/libs/
export PNETCDF=PATH_TO_PNETCDF

In addition to these libraries, MPIPOM-TC requires linear algebra routines from the BLAS
library. When building MPIPOM-TC on an IBM platform, the build will automatically use
the ESSL library, which includes highly optimized versions of some of the BLAS routines.
When building MPIPOM-TC in a platform without ESSL (such as Linux), the build system
uses the BLAS mathematical library provided with the hwrf-utilities component. In such a
case, the fifth and final path must be set:

setenv LIB_BLAS_PATH ${SCRATCH}/hwrfrun/sorc/hwrf-utilities/libs/

For the ksh/bash shells the path can be set similarly:

export LIB_BLAS_PATH=${SCRATCH}/hwrfrun/sorc/hwrf-utilities/libs/

26

2. Software Installation

2.8.2 Configure and Compile

Configure MPIPOM-TC for compilation from within the pomtc/ directory:

./configure

The configure script checks the system hardware, and if the path variables are not set,
asks for software paths to the W3, SP, SFCIO, and PNETCDF, and for Linux, the BLAS
libraries. It concludes by asking the user to choose a configuration supported by current
machine architecture.

For the IBM, only one choice is available:

1. AIX (dmpar)

The following options exist for Linux:

1. Linux x86_64, PGI compiler (dmpar)
2. Linux x86_64, PGI compiler, SGI MPT (dmpar)
3. Linux x86_64, Intel compiler (dmpar)
4. Linux x86_64, Intel compiler, SGI MPT (dmpar)
5. Linux x86_64, Intel compiler, IBM POE (dmpar)
6. Linux x86_64, Intel compiler, CrayPE (dmpar)

After selecting the desired compiler option, the configure script creates a file called con-
figure.pom. This file contains compilation options, rules, and paths specific to the current
machine architecture, and can be edited to change compilation options, if desired.

Compile the MPIPOM-TC and save the build output to a log file with csh/tcsh:

./compile |& tee ocean.log

Similarly, for ksh, use the following syntax:

./compile 2>&1 | tee ocean.log

If the compilation is successful, 19 files (including 9 executables) are created in
ocean_exec/:

archv2data3z.xc
gfdl_date2day.exe
gfdl_day2date.exe
gfdl_getsst.exe
gfdl_sharp_mcs_rf_l2m_rmy5.exe
hwrf_ocean_bs_fcst.exe
hwrf_ocean_bs_init.exe
hwrf_ocean_fcst.exe
hwrf_ocean_init.exe
hycom2raw.xc
pomprep_fb_rtof.xc

27

2. Software Installation

pomprep_fbtr.xc
pomprep_gdm3.xc
pomprep_hycu.xc
pomprep_idel.xc
pomprep_ncda.xc
pomprep_rtof.xc
readsstuvhflux.exe
transatl06prep.xc

If a recompilation is necessary, a clean to remove all object files should be completed:

./clean

A complete clean is strongly recommended if the compilation failed or the configuration
file is changed. To conduct a complete clean that removes all built files in all directories, as
well as the configure.pom, use the "-a" option.

./clean -a

2.9 Building GFDL Vortex Tracker

2.9.1 Set Environment Variables

The GFDL Vortex Tracker requires two external libraries, W3 G2, and BACIO. These li-
braries are located in the hwrf-utility/libs/ directory and should be available if the
HWRF-utilities are successfully built. You must build the HWRF-utilities before building the
vortex tracker.

Again, assuming that the directory structure is the same as that proposed in section 2.3,
set the library paths:

setenv LIB_W3_PATH ${SCRATCH}/hwrfrun/sorc/hwrf-utilities/libs/
setenv LIB_BACIO_PATH ${SCRATCH}/hwrfrun/sorc/hwrf-utilities/libs/
setenv LIB_G2_PATH ${SCRATCH}/hwrfrun/sorc/hwrf-utilities/libs/
setenv LIB_Z_PATH SYSTEM_LOCATION
setenv LIB_PNG_PATH SYSTEM_LOCATION
setenv LIB_JASPER_PATH SYSTEM_LOCATION

Similarly, the syntax for the ksh/bash shell can be used:

export LIB_W3_PATH=${SCRATCH}/hwrfrun/sorc/hwrf-utilities/libs/
export LIB_BACIO_PATH=${SCRATCH}/hwrfrun/sorc/hwrf-utilities/libs/
export LIB_G2_PATH=${SCRATCH}/hwrfrun/sorc/hwrf-utilities/libs/
export LIB_Z_PATH=SYSTEM_LOCATION
export LIB_PNG_PATH=SYSTEM_LOCATION

28

2. Software Installation

export LIB_JASPER_PATH=SYSTEM_LOCATION

where SYSTEM_LOCATION should be replaced with the full path to the installed library.
On many systems, these libraries reside in /usr/lib or /usr/lib64.

2.9.2 Configure and Compile

Configure the Vortex Tracker for compilation from within the gfdl-vortextracker di-
rectory:

./configure

The configure script checks the system hardware, and if the path variables are not set,
asks for software paths to the W3 and BACIO libraries. It concludes by asking the user to
choose a configuration supported by current machine architecture.

For Linux, there are seven options:

1. Linux x86_64, PGI compiler (serial)
2. Linux x86_64, Intel compiler (serial)
3. Linux x86_64, Intel compiler super debug (serial)
4. Linux x86_64, PGI compiler, SGI MPT (serial)
5. Linux x86_64, Intel compiler, SGI MPT (serial)
6. Linux x86_64, Intel compiler, IBM POE (serial)
7. Linux x86_64, Intel compiler, CrayPE (serial)

The configure script creates a file called configure.trk. This file contains compilation
options, rules, and paths specific to the current machine architecture.

The configure file can be edited to change compilation options, if desired.

Compile the vortex tracker and save the build output to a log file:

./compile |& tee tracker.log

The command for the ksh/bash shell follows:

./compile 2>&1 | tee tracker.log

If the compilation was successful, three executables are created in the directory
trk_exec/.

hwrf_gettrk.exe
hwrf_tave.exe
hwrf_vint.exe

If a recompilation is necessary, a clean to remove all object files should be completed:

./clean

29

2. Software Installation

A complete clean is strongly recommended if the compilation failed, or the configuration
file is changed. To conduct a complete clean that removes all built files in all directories, as
well as the configure.trk, use the "-a" option:

./clean -a

2.10 Building the NCEP Coupler

2.10.1 Configure and Compile

Configure the NCEP Coupler for compilation from within the ncep-coupler/ directory:

./configure

The configure script checks the system hardware, asks the user to choose a configuration
supported by current machine architecture, and creates a configure file called
configure.cpl.

There are six dmpar options for Linux:

1. Linux x86_64, PGI compiler (dmpar)
2. Linux x86_64, PGI compiler, SGI MPT (dmpar)
3. Linux x86_64, Intel compiler (dmpar)
4. Linux x86_64, Intel compiler, SGI MPT (dmpar)
5. Linux x86_64, Intel compiler, IBM POE (dmpar)
6. Linux x86_64, Intel compiler, CrayPE (dmpar)

The configure file configure.cpl contains compilation options, rules, and paths specific
to the current machine architecture, and can be edited to change compilation options if
desired.

Compile the coupler and save the build output to a log file.

./compile |& tee coupler.log

For the ksh/bash shell, use the following command:

./compile 2>&1 | tee coupler.log

If the compilation is successful, it will create the single executable hwrf_wm3c.exe in the
cpl_exec/ directory.

If a recompilation is necessary, a clean to remove all object files should be completed:

./clean

A complete clean is strongly recommended if the compilation failed, or the configuration

30

2. Software Installation

file is changed. To conduct a complete clean that removes all built files in all directories, as
well as the configure.cpl, use the "-a" option:

./clean -a

2.11 Building WPS

2.11.1 Set Environment Variables

The WRF WPS requires the same build environment as the WRF-NMM model, including
the netCDF libraries and MPI libraries. Since the WPS makes direct calls to the WRF I/O
API libraries included with the WRF model, the WRF-NMM model must be built prior to
building the WPS.

Set up the build environment for WPS by setting the WRF_DIR environment variable:

setenv WRF_DIR ${SCRATCH}/hwrfrun/sorc/WRFV3/

For bash/ksh, use the command that follows:

export WRF_DIR=${SCRATCH}/hwrfrun/sorc/WRFV3/

Further details on using the WPS to create HWRF input data can be found in Chapter 4
of the HWRF Users’ Guide.

Complete details on building and running the WPS are available from the WRF-NMM
Users’ Guide, and can be downloaded from:

http://www.dtcenter.org/HurrWRF/users/docs/index.php.

2.11.2 Configure and Compile

Following the compilation of the WRF-NMM executables, change to the WPSV3 directory
and issue the configure command:

./configure

Select the appropriate dmpar option for your architecture and compiler choice. If you
plan to use GRIB2 data, you will also need to select a build option that supports GRIB2 I/O.
This will generate the configure resource file.

On Linux computers, there are 41 listed options. The first 28 are the most relevant
to HWRF, and are listed below. Select a "NO_GRIB2" option if you do not want GRIB2
support.

31

http://www.dtcenter.org/HurrWRF/users/docs/index.php

2. Software Installation

1. Linux x86_64, gfortran (serial)
2. Linux x86_64, gfortran (serial_NO_GRIB2)
3. Linux x86_64, gfortran (dmpar)
4. Linux x86_64, gfortran (dmpar_NO_GRIB2)
5. Linux x86_64, PGI compiler (serial)
6. Linux x86_64, PGI compiler (serial_NO_GRIB2)
7. Linux x86_64, PGI compiler (dmpar)
8. Linux x86_64, PGI compiler (dmpar_NO_GRIB2)
9. Linux x86_64, PGI compiler, SGI MPT (serial)
10. Linux x86_64, PGI compiler, SGI MPT (serial_NO_GRIB2)
11. Linux x86_64, PGI compiler, SGI MPT (dmpar)
12. Linux x86_64, PGI compiler, SGI MPT (dmpar_NO_GRIB2)
13. Linux x86_64, IA64 and Opteron (serial)
14. Linux x86_64, IA64 and Opteron (serial_NO_GRIB2)
15. Linux x86_64, IA64 and Opteron (dmpar)
16. Linux x86_64, IA64 and Opteron (dmpar_NO_GRIB2)
17. Linux x86_64, Intel compiler (serial)
18. Linux x86_64, Intel compiler (serial_NO_GRIB2)
19. Linux x86_64, Intel compiler (dmpar)
20. Linux x86_64, Intel compiler (dmpar_NO_GRIB2)
21. Linux x86_64, Intel compiler, SGI MPT (serial)
22. Linux x86_64, Intel compiler, SGI MPT (serial_NO_GRIB2)
23. Linux x86_64, Intel compiler, SGI MPT (dmpar)
24. Linux x86_64, Intel compiler, SGI MPT (dmpar_NO_GRIB2)
25. Linux x86_64, Intel compiler, IBM POE (serial)
26. Linux x86_64, Intel compiler, IBM POE (serial_NO_GRIB2)
27. Linux x86_64, Intel compiler, IBM POE (dmpar)
28. Linux x86_64, Intel compiler, IBM POE (dmpar_NO_GRIB2)

Select the appropriate dmpar option for your choice of compiler.

Compile the coupler and save the build output to a log file:

./compile |& tee wps.log

For the ksh/bash shell, use the equivalent command:

./compile 2>&1 | tee wps.log

After issuing the compile command, a successful compilation of WPS produces the three
symbolic links: geogrid.exe, ungrib.exe, and metgrid.exe in the WPSV3/ directory,
and several symbolic links in the util/ directory:

avg_tsfc.exe
calc_ecmwf_p.exe
g1print.exe
g2print.exe
height_ukmo.exe

32

2. Software Installation

int2nc.exe
mod_levs.exe
rd_intermediate.exe

If any of these links do not exist, check the compilation log file to determine what went
wrong.

A complete clean is strongly recommended if the compilation failed or if the configuration
file is changed. To conduct a complete clean that removes ALL build files, including the
executables, libraries, and the configure.wps, use the "-a" option to clean:

./clean -a

For full details on the operation of WPS, see the WPS chapter of the WRF-NMM Users’
Guide.

2.12 Building UPP

The NCEP Unified Post-Processor was designed to interpolate WRF output from native
coordinates and variables to coordinates and variables more useful for analysis. Specifically,
UPP destaggers the HWRF output, interpolates the data from its native vertical grid to
standard levels, and creates additional diagnostic variables.

The UPP requires the same Fortran and C compilers used to build the WRF model. In
addition, UPP requires the netCDF library and the WRF I/O API libraries (the latter is
included with the WRF build). The UPP build requires a number of support libraries (IP, SP,
W3), which are provided with the source code and are located in the UPP/lib/ directory.
These libraries are for the UPP build only. They should not be confused with the libraries
of the same name located in the hwrf-utilities/libs/ directory.

2.12.1 Set Environment Variables

The UPP requires the WRF I/O API libraries to successfully build. These are created when
the WRF model is built. If the WRF model has not yet been compiled, it must first be built
before compiling UPP.

Since the UPP build requires linking to the WRF-NMM I/O API libraries, it must be able
to find the WRF directory. The UPP build uses the WRF_DIR environment variable to define
the path to WRF. The path variable WRF_DIR must therefore be set to the location of the
WRF directory.

In addition to setting the path variable, building UPP for use with HWRF requires setting
the environment variable HWRF. This is the same variable set when building WRF-NMM
for HWRF.

33

2. Software Installation

Set up the environment for UPP:

setenv HWRF 1
setenv WRF_DIR ${SCRATCH}/hwrfrun/sorc/WRFV3/
setenv JASPERLIB SYSTEM_LOCATION_SO_FILE
setenv JASPERINC SYSTEM_LOCATION_HEADER_FILE

The syntax for bash/ksh is as follows:

export HWRF=1
export WRF_DIR=${SCRATCH}/hwrfrun/sorc/WRFV3/
export JASPERLIB=SYSTEM_LOCATION_SO_FILE
export JASPERINC=SYSTEM_LOCATION_HEADER_FILE

2.12.2 Configure and Compile

UPP uses a build mechanism similar to that used by the WRF model. Within the UPP
directory type:

./configure

to generate the UPP configure file. The configure script will complain if the WRF_DIR
path has not been set. You will then be given a list of configuration choices tailored to your
computer.

For the LINUX operating systems, there are 11 options. Select the appropriate dmpar
option compatible with your system:

1. Linux x86_64, PGI compiler (serial)
2. Linux x86_64, PGI compiler (dmpar)
3. Linux x86_64, Intel compiler (serial)
4. Linux x86_64, Intel compiler (dmpar)
5. Linux x86_64, Intel compiler, SGI MPT (serial)
6. Linux x86_64, Intel compiler, SGI MPT (dmpar)
7. Linux x86_64, gfortran compiler (serial)
8. Linux x86_64, gfortran compiler (dmpar)
9. Linux x86_64, Intel compiler, IBM POE (serial)
10. Linux x86_64, Intel compiler, IBM POE (dmpar)
11. Linux x86_64, Intel compiler, CrayPE (dmpar)

The configuration script will generate the configure file configure.upp. If necessary,
the configure.upp file can be modified to change the default compile options and paths.
NOTE: When using PGI compilers, please edit configure.upp and remove the -Ktrap
flags from FFLAGS.

To compile UPP, enter the following command (csh/tcsh):

34

2. Software Installation

./compile |& tee build.log

Alternatively, the ksh/bash command can be used:

./compile 2>&1 | tee build.log

This command should create 13 UPP libraries in lib/:

libbacio.a
libCRTM.a
libg2.a
libg2tmpl.a
libgfsio.a
libip.a
libnemsio.a

libsfcio.a
libsigio.a
libsp.a
libw3emc.a
libw3nco.a
libxmlparse.a

Six UPP executables are produced in bin/:

cnvgrib.exe
copygb.exe
ndate.exe
satgrib2.exe
spccoeff_inspect.exe
unipost.exe

Once again, these libraries are for the UPP only, and should not be used by the other
components.

A complete clean is strongly recommended if the compilation failed, or if the configuration
file or source code is changed. Conduct a complete clean that removes ALL build files,
including the executables, libraries, and the configure.upp:

./clean

For full details on the operation of UPP, see the HWRF Post-Processor chapter of the
HWRF Users’ Guide, and for complete details on building and running the UPP, see the
UPP Users’ Guide, which can be downloaded at:

http://www.dtcenter.org/upp/users/docs/user_guide/V3/upp_users_guide.pdf.

2.13 Building GSI

The community GSI requires the same build environment as the WRF-NMM model, includ-
ing the netCDF, MPI, and LAPACK libraries. In addition, GSI makes direct calls to the WRF
I/O API libraries included with the WRF model. Therefore the WRF model must be built
prior to building the GSI.

35

http://www.dtcenter.org/upp/users/docs/user_guide/V3/upp_users_guide.pdf

2. Software Installation

Further details on using the GSI with HWRF can be found in later chapters of this HWRF
Users’ Guide.

2.13.1 Set Environment Variables

Building GSI for use with HWRF requires setting three environmental variables. The first,
HWRF, indicates to turn on the HWRF options in the GSI build. This is the same flag set
when building WRF-NMM for HWRF. The second is a path variable pointing to the root
of the WRF build directory. The third is the variable LAPACK_PATH, which indicates the
location of the LAPACK library on your system.

Set up the environment for GSI:

setenv HWRF 1
setenv WRF_DIR ${SCRATCH}/hwrfrun/sorc/WRFV3/

You may use bash/ksh instead:

export HWRF=1
export WRF_DIR=${SCRATCH}/hwrfrun/sorc/WRFV3/

The additional environment variable LAPACK_PATH may be needed on some systems.
Typically, the environment variable LAPACK_PATH needs only to be set on Linux systems
without a vender-provided version of LAPACK. IBM systems usually have the ESSL library
installed and therefore do not need the LAPACK. Problems with the vender-supplied LA-
PACK library are more likely to occur with the Intel compiler. While the Intel compilers
typically have the MKL libraries installed, the ifort compiler does not automatically load
the library. It is therefore necessary to set the LAPACK_PATH variable to the location of the
MKL libraries when using the Intel compiler.

Supposing that the MKL library path is set to the environment variable MKL, then the
LAPACK environment may be set in terms of MKL:

setenv LAPACK_PATH $MKL

Alternatively, the bash/ksh option is as follows:

export LAPACK_PATH=$MKL

2.13.2 Configure and Compile

To build GSI for HWRF, change into the GSI/dtc directory and issue the configure com-
mand:

./configure

36

2. Software Installation

Choose one of the configure options listed. On Linux computers, the listed options are as
follows:

1. Linux x86_64, PGI compilers (pgf90 & pgcc) (dmpar,optimize)

2. Linux x86_64, PGI compilers (pgf90 & gcc) (dmpar,optimize)

3. Linux x86_64, PGI compilers (pgf90 & gcc) Supercomp (w/o -f90=SFC) (dmpar,optimize)

4. Linux x86_64, PGI compilers (pgf90 & pgcc) Supercomp (w/o -f90=SFC) (dmpar,optimize)

5. Linux x86_64, GNU compilers (gfortran & gcc) (dmpar,optimize)

6. Linux x86_64, Intel/gnu compiler (ifort & gcc) (dmpar,optimize)

7. Linux x86_64, Intel compiler (ifort & icc) (dmpar,optimize)

8. Linux x86_64, Intel compiler (ifort & icc), IBM POE (EXPERIMENTAL) (dmpar,optimize)

9. Linux x86_64, Intel compiler (ifort & icc), SGI MPT (EXPERIMENTAL) (dmpar,optimize)

Select the appropriate dmpar option for your platform and compiler. For a generic Linux
machine, choose option (5), (6) or (7) for an Intel build depending upon the available com-
pilers.

After selecting the proper option, run the compile script:

./compile |& tee build.log

For the ksh/bash shell, use the following command:

./compile 2>&1 | tee build.log

The successful completion of the compile will place the GSI executable gsi.exe in the
src/ directory. If the executable is not found, check the compilation log file to determine
what went wrong.

A complete clean is strongly recommended if the compilation failed or if the configuration
file is changed. To conduct a complete clean that removes ALL build files, including the
executables, libraries, and the configure.gsi, use the "-a" option with clean:

./clean -a

For details on using GSI with HWRF, see the GSI chapter in the HWRF Users’ Guide. For
full details on the operation of GSI, see the DTC Community GSI Users’ Guide:

http://www.dtcenter.org/com-GSI/users/docs/index.php

37

http://www.dtcenter.org/com-GSI/users/docs/index.php

3
Running HWRF

3.1 HWRF Scripts Overview

HWRF v3.9a is run by a series of high-level shell scripts in the wrappers/ directory, whose
primary function is to set environment variables and call the mid-level Python scripts in the
scripts/ directory. The mid-level Python scripts call HWRF-specific Python modules in
the ush/ directory and subdirectories. Many of the experiment configuration parameters
and variables are set by files in the parm/ directory. The directory structure is shown below.

hwrfrun/
doc/
exec/
modulefiles/
nwport/
parm/
scripts/
sorc/
ush/

hwrf/
pom/
produtil/
hwrf_*.py
hwrf_*.sh
rocoto_*.sh
rocoto_*.py
setup_hurricane.py
setup_hurricane

38

3. Running HWRF

ush.dox
confdoc.py

wrappers/

The doc directory contains Doxygen based documentation about the scripting system.
Please refer to http://www.dtcenter.org/HurrWRF/users/docs/index.php to access
the documentation.

3.2 Defining an Experiment

3.2.1 Standard Configuration Files

The configuration of an HWRF experiment is controlled through the use of the configuration
(*.conf) files in the parm/ directory. Each of these configuration files has sections with
headers contained in square brackets, e.g., [config], [dir], etc. Within a section, related
variables are set.

There are four configuration files that are required by HWRF. These files set all of the re-
quired variables needed to run every component of the workflow in the default configuration,
which is the AL operational configuration. These four files are listed below.

hwrf.conf
hwrf_basic.conf
hwrf_input.conf
system.conf

The HWRF launcher, which is the first step in running HWRF, gathers all of the op-
tions for a particular user configuration into the single file storm1.conf in the ${CD-
SCRUB}/hwrfrun/com/YYYYMMDDHH/SID directory [${CDSCRUB} is the top level output
directory]. It does this by first reading in the configuration variables in the four files
listed above and then by accepting additional configuration files and variables as com-
mand line arguments to the script exhwrf_launch.py. This script is called by running
launcher_wrapper in the wrappers/ directory. The last option passed to the launcher
overrides any previous settings, except for when basin_overrides=yes (more on that
later). When the user passes a variable on the command line, the section and variable name
are required, e.g., config.diskproject=dtc-hwrf.

We recommend that users not edit the four main configuration files, but instead pass in
their own configuration files and variables as arguments in the call to exhwrf_launch.py
inside launcher_wrapper, which will override the default settings. Most of the variables
are documented within the four main configuration files.

39

http://www.dtcenter.org/HurrWRF/users/docs/index.php

3. Running HWRF

Overview of hwrf_v3.9a_release.conf

For the HWRF v3.9a public release, there is a fifth configuration file,
hwrf_v3.9a_release.conf, which sets configuration options that require changes
by the user, or that are required to be set based on the capabilities of HWRF v3.9a. For this
release, a configuration file has been provided that contains key variables and settings that
the user must modify, called hwrf_v3.9a_release.conf, described below.

[config]
disk_project User’s project on the computational platform.
input_catalog Section within any configuration file that includes informa-

tion about the locations and names of the input files. Com-
munity users should set it to comm_hist, which is defined
below.

archive Path to the output archive. Default is set to none.
run_ensemble_da Generates regional ensemble for data assimilation. This

must be set to no because this capability is not supported
in HWRFv3.9a.

publicrelease Indicates that the run is from the public release. This must
be set to yes.

scrub Scrub option: do we delete temporary files? Setting this to
no will disable most, but not all, temporary file deletion.
Default is set to no.

[dir]
inputroot Path to the top-level input data directory.
syndat Path to the input TC Vitals. Community users should set

it to the location of the staged SYNDAT–PLUS dataset, as
explained later in this chapter.

outputroot Path to the desired location of the parent output directory.
CDNOSCRUB Path to the saved output.
CDSCRUB Path to the top-level output. Files and directories contained

within this directory would be scrubbed in the operational
workflow by default to save disk space.

CDSAVE Path to the parent of the hwrfrun directory.

Other Variables
scrub Sets the automatic removal of temporary files in [relo-

cate], [gsi_d02], and [gsi_d03] working directo-
ries.

To turn off scrubbing for any component of HWRF, set scrub=no for that section of the
configuration, e.g., pass relocate.scrub=no to the exhwrf_launch.py script.

The [comm_hist] section provides the directory structure and naming conventions for the
input data, where inputroot defines the parent input data directory path.

The [exe] section provides the paths to the compiled executables. Do not change these.
HOMEhwrf is the top level HWRF directory, defined in global_vars.sh, described later.

40

3. Running HWRF

Overview of hwrf.conf

The variables contained in hwrf.conf primarily define namelist options for the components
of HWRF. Please refer to the descriptions of the variables within hwrf.conf, along with the
WRF NMM Users’ Guide. Also included in this file is the mapping to the executables used
in operations, which differ only by location from the executables used in the public release
(overridden by hwrf_v3.9a_release.conf).

Overview of hwrf_basic.conf

The variables that are found in hwrf_basic.conf define the HWRF workflow configura-
tion. Users should be familiar with a few of the relevant sections and variables within this
file, as follows. Further discussion about the use of these options is reserved for section 3.6.

[config]
forecast_length Length of atmospheric forecast. Default is 126 hours.
run_gsi Option to run GSI and FGAT initialization.
run_ocean Option to run ocean coupling.
ocean_model Option to select ocean model: POM or HYCOM. Only

POM is supported.
atmos_model Only WRF is supported.
run_wave Option to run wave model (not supported in v3.9a). Must

be set to no.
wave_model Only WW3 (WAVEWATCH III wave model); not supported

in v3.9a.
run_relocation Option to run vortex relocation/initialization.
run_ensemble_da Option to run the DA ensemble (not supported in v3.9a).
ensda_opt Options to run the DA ensemble (not supported in v3.9a).
ensda_when Options to trigger HWRF ensemble (not supported in

v3.9a).
ensda_fallback Option to run HWRF when GFS EnKF files are missing

(not supported in v3.9a).
run_ens_relocation Option to run relocation for ensemble members (not sup-

ported in v3.9a).
run_satpost Option to output synthetic satellite products.
run_multistorm Option to run as multistorm (not supported in v3.9a).
gfsinit_type Specify data format of GFS/GDAS IC input. 1=grib2,

2=nemsio (default for v3.9a), 3=spectral, 4=highres grib2.
gfsbdy_type Specify data format of GFS/GDAS BC input. 1=grib2 (de-

fault for v3.9a), 2=nemsio, 3=spectral.
extra_trackers Option to run the GFDL vortex tracker on d02 and d03

(not supported in v3.9a).

Note that data format nemsio pertains to files with spectral decomposition coefficients in
the NOAA Environmental Modeling System (NEMS) Input/Output (IO) format as produced
by the version of the GFS that went operational in July 2017, while data format spectral

41

3. Running HWRF

pertains to files with spectral decomposition coefficients in Fortran binary format produced
by older versions of the GFS. To learn more about the NEMSIO format, visit http://www.
emc.ncep.noaa.gov/NEMS/nemsio.php.

Another important variable in this configuration file is allow_fallbacks. Most commu-
nity users will want to set it to no, which is the default. In operations, this variable is set to
yes, which enables alternate paths in the HWRF run in case a component fails. For instance,
when allow_fallbacks is set to yes and the GSI fails, the run does not stop. Instead, the
initial conditions for the main forecast are obtained directly from the output of the vortex
relocation.

[prelaunch]
When set to yes, the basin_overrides variable will cause HWRF to run with operational
settings for each basin by automatically loading a configuration file for a particular basin.
Command line arguments to exhwrf_launch.py will not override the settings within the
basin-specific configuration files. Default settings for v3.9a in each basin, along with the
corresponding configuration files, are described in table 3.1.

[sanity]
Variables in this section control which checks run during the execution of
launcher_wrapper.

[dir]
Contains variables that build paths based on the paths provided by CDSAVE, CDSCRUB,
CDNOSCRUB, and EXPT. EXPT is defined in global_vars.sh, described later. A descrip-
tion of three of the most important [dir] variables follows:

WORKhwrf The working directory for all jobs. These direc-
tories are scrubbed in the operational workflow to
save disk space.

HOMEhwrf HWRF installation location.
com Location of output files for delivery to operational

centers or for use by the next HWRF cycle.

Overview of hwrf_input.conf

This file defines the input data directory structure. It currently contains input data locations
for users on the NOAA operational and research and development machines WCOSS, Theia
or Jet that have access to the EMC input data directory, and for community users that stage
the input data using the directory structure described in section 3.3. These three sets of
input data are described in the sections labeled [wcoss_hist*], [theia_hist*] or
[jet_hist*], and [comm_hist], respectively. Settings for [comm_hist] for this release
can be found in hwrf_v3.9a_release.conf.

Users who wish to adopt a different input data directory structure may define it within this
file with an additional section, or by editing the existing [comm_hist] section. While the
input data can be placed anywhere that is locally available to the compute nodes, users are

42

http://www.emc.ncep.noaa.gov/NEMS/nemsio.php
http://www.emc.ncep.noaa.gov/NEMS/nemsio.php

3. Running HWRF

Basin Ocean Data
assimi-
lation

Vertical
levels

Model
top
(hPa)

Extra con-
figuration
file

AL POM
with
GDEM
and FB*

Yes 75 10 None

EP POM
with
RTOFS

Yes 75 10 hwrf_EP.conf

NC Pac POM
with
RTOFS

No 75 10 hwrf_CP.conf

NW Pac POM
with
GDEM**

No 61 10 hwrf_WP.conf

N Ind POM
with
GDEM**

No 61 10 hwrf_IO.conf

S Pac None No 43 50 hwrf_other_
basins.conf

S Ind None No 43 50 hwrf_other_
basins.conf

S Atl None No 43 50 hwrf_other_
basins.conf

Table 3.1: Default settings for each basins.
* FB is the feature-based initialization. **HYCOM with RTOFS in operations, not supported for

v3.9a.

43

3. Running HWRF

not advised to change the input file naming convention.

The choice of which set of input data will actually be used in an experi-
ment is determined by the variable input_catalog in file hwrf_basic.conf and
hwrf_v3.9a_release.conf. To use the test datasets provided by DTC, users should set
this variable to comm_hist in the [config] section of the hwrf_v3.9a_release.conf
file. The user must also set the path to the location of the input data within the
[comm_hist] section of hwrf_v3.9a_release.conf by editing the variable inputroot.
As discussed above, users are urged to make all edits in the hwrf_v3.9a_release.conf
file, which will override the default settings, rather than by making changes in the four main
configuration files.

Overview of system.conf

This file defines the top-level output directory structure and a handful of other variables
used for running HWRF. Community users need to copy or link the appropriate example file
to system.conf depending on the machine to be used. The following variables are user-
dependent and originate from this file, but should be set in hwrf_v3.9a_release.conf.

input_catalog Variable that sets the configuration section that defines
the input file location. This section must exist in one of
the configuration files used by HWRF. Community users
should set it to comm_hist.

disk_project Account name to submit batch jobs.
[dir] section CDNOSCRUB, CDSCRUB, and CDSAVE set the location of

the HWRF install and output files.
syndat The path to input TC Vitals. Community users should set

it to the path for the staged SYNDAT–PLUS dataset, as
explained later in this chapter.

The sections [wrfexe] and [runwrf] describe the mapping of the processor distribution
for the WRF runs and should not be altered.

3.3 Input Data and Fix Directory Structure

Users will need the datasets below as input to HWRF components, but depending upon the
configuration, some files are not needed (enkf, tdr, etc.).

The following lists outline the files needed to initialize a forecast using the opera-
tional configuration. Analysis times are indicated by capital letters, such as YYYYM-
MDDHH or HH, and forecast hours are indicated by lowercase letters, i.e., hhh. For
example, gfs.2012102806.pgrbf024 is a GFS 24-h forecast in Gridded Binary
(GRIB) format whose initial time is October 28 06Z 2012 and would be indicated as
gfs.YYYYMMDDHH.pgrbfhhh. The storm identifier sid is the storm number with a lower-case
letter that corresponds to the basin (e.g., 08l).

44

3. Running HWRF

./
DATA/..Top level data directory

gfs.YYYYMMDDHH/
enkf.YYYYMMDDHH/
loop/
gdas1.YYYYMMDD/
tdr.SID.YYYYMMDDHH/...............................TDR data, if available
recon.YYYYMMDDHH/
rtofs/...RTOFS data, if available

rtofs.YYYYMMDD/
fix/

bogus/
hwrf_60_storm_30
hwrf_cpat.ice
hwrf_cpat.moddef
hwrf_cpat.wind
hwrf-crtm-2.0.6/.............Updated Coefficients for Radiative Transfer
hwrf-crtm-2.2.3/.............Updated Coefficients for Radiative Transfer
hwrf_disclaimer.txt
hwrf_eta_micro_lookup.dat
hwrf_fix_datestamp
hwrf-hycom/
hwrf-hycom_old/
hwrf-pom/.......................................Ocean init climate data
hwrf_storm_20
hwrf_storm_25
hwrf_storm_cyn_axisy_47
hwrf_storm_cyn_axisy_50_ep
hwrf_storm_radius
hwrf_track
hwrf_wps_geo/ Land use fixed files
hwrf-wrf/...Fixed files for WRF
hwrf-ww3/...Fixed files for WRF
loop_curr/...............................Loop current initialization data
rtofs-navy-32/
rtofs-navy-41/
syndat/

The loop/ directory contains loop current and warm core ring data for ocean initialization
in the following two files. These are not time independent but distributed here for user
convenience.

hwrf_gfdl_loop_current_rmy5.dat.YYYYMMDD Loop current data
hwrf_gfdl_loop_current_wc_ring_rmy5.dat.
YYYYMMDD

Warm core ring data

The gfs.YYYYMMDDHH/ directory contains spectral atmospheric analyses in NEMSIO for-
mat.

45

3. Running HWRF

gfs.tHHz.sfcanl GFS sfc analysis for ocean initialization
gfs.tHHz.sf00 GFS analysis for atmospheric initialization

(0 h) (NEMS)

The gfs.YYYYMMDDHH/ directory also contains data for the initialization of the atmosphere.
These fall into three categories: observations, gridded data, and spectral data in NEMSIO
format. The prefix for each file denotes the numerical weather prediction (NWP) system
from which the data originate.

The following files are considered observations, and are in either BUFR or prepBURF formats
where HH is the analysis time:

gfs.tHHz.prepbufr Conventional obs
gfs.tHHz.SATELLITE.tm00.bufr_d Satellite obs

In the list above, SATELLITE can be any of the following, but this is not an all-inclusive list:

1bamua
1bhrs4
1bmhs
airsev
atms

avcsam
avcspm
cris
esamua
esamub

eshrs3
goesfv
gpsro
mtiasi
sevcsr

ssmisu
satwind

The following files are in GRIB format:

gfs.tHHz.pgrb2.0p25.fhhh GFS analysis and forecast for atmospheric initialization
(0 to 126h in 6 hr increments)

The enkf.YYYYMMDDHH/ directory contains the GFS ensemble spectral data in NEMSIO
format used for data assimilation. The directory is from previous 6 hr forecasts. There are
eighty files named:

sfg_YYYYMMDDHH_fhrhhs_mem{mmm},

where mmm is the 3-digit ensemble member ID, which ranges from 001 to 080.

The gdas1.YYYYMMDDHH/ directory contains the GDAS files to provide first guess informa-
tion for data assimilation. The directory is from the previous 6 hr forecast.

The following files are in gridded binary (GRIB) format:

gdas1.tHHz.pgrb2.0p25.f0033-h forecast from previous 6-h GDAS cycle
gdas1.tHHz.pgrb2.0p25.f0066-h forecast from previous 6-h GDAS cycle
gdas1.tHHz.pgrb2.0p25.f0099-h forecast from previous 6-h GDAS cycle

The following files are considered observations, and are in either BUFR or PrepBUFR for-
mats. HH is the analysis time and HH-6 is the analysis time six hours prior.

gdas1.t{HH-6z}.abias Satellite bias correction coefficients
gdas1.t{HH-
6z}.abias_pc

Bias correction coefficients for passive satellite radiance ob-
servations

46

3. Running HWRF

The remainder of the files are spectral files in NEMSIO format.

gdas1.tHH-6z.sf03 3-h forecast from previous 6-h GDAS analysis
gdas1.tHH-6z.sf06 6-h forecast from previous 6-h GDAS analysis
gdas1.tHH-6z.sf09 9-h forecast from previous 6-h GDAS analysis

The SYNDAT-PLUS directory contains the TC Vitals files for several years.

The tdr.SID.YYYYMMDDHH directory (if TDR present) contains TDR data in BUFR format
in a file named as follows:

gdas1.tHHz.tldplr.tm00.bufr_d

The recon.YYYYMMDDHH directory (if present) contains reconnaissance data in BUFR format
in a file named as follows:

gdas1.tHHz.hdob.tm00.bufr_d

The rtofs/rtofs.YYYYMMDD directory (for EP and CP runs) contains RTOFS initialization
data in files named as follows:

rtofs_glo.tHHz.n00.archv.a rtofs_glo.tHHz.n00.archv.b

The fix files are time-independent and are included in the following directories:

• bogus/

hwrf_ofs_atl.A12grid.dat
hwrf_ofs_atl.intp_pars.dat
hwrf_ofs_atl.ismus_msk1152x576.dat
hwrf_ofs_atl.ismus_msk384x190.dat
hwrf_ofs_atl.ismus_msk512x256.dat
hwrf_ofs_atl.ismus_msk768x384.dat
hwrf_ofs_atl.ncep1_12.regional.depth.a
hwrf_ofs_atl.ncep1_12.regional.depth.b
hwrf_ofs_atl.ncep1_12.regional.grid.a
hwrf_ofs_atl.ncep1_12.regional.grid.b
hwrf_ofs_atl.ncep1_12.regional.mask.a
hwrf_ofs_atl.ncep1_12.regional.mask.b

• hwrf-crtm-2.2.3/

AerosolCoeff/
CloudCoeff/
EmisCoeff/
fix-4-hwrf/
SpcCoeff/
TauCoeff/

• hwrf-pom/ – [#-#] represents multiple files numbered consecutively, e.g. [01-12]

47

3. Running HWRF

means there are twelve files with a two-digit number ranging from 01-12 replacing the
string within the brackets.

depths_sfc_000000_000000_1o2161x
1051_datafld

gfdl_albedo.fall
gfdl_albedo.spring
gfdl_albedo.summer
gfdl_albedo.winter
gfdl_datainp1
gfdl_datainp1.l42
gfdl_datainp2
gfdl_disclaimer.txt
gfdl_fildef.afos
gfdl_fildef.sdm
gfdl_fort.7
gfdl_fort.7.l42
gfdl_gdem.[00-13].ascii
gfdl_Hdeepgsu.eastatl
gfdl_Hdeepgsu.united
gfdl_height
gfdl_huranal.data
gfdl_initdata.eastatl.[01-12]
gfdl_initdata.gdem3.united.[05-12]
gfdl_initdata.gdem.united.[01-12]
gfdl_initdata.levit.united.[05-12]
gfdl_initdata.united.[01-12]
gfdl_limit_2nest_dat_x.1
gfdl_limit_2nest_dat_x.5
gfdl_limit_2nest_dat_x.6
gfdl_limit_2nest_dat_y.1
gfdl_limit_2nest_dat_y.12
gfdl_limit_2nest_dat_y.15
gfdl_limit_2nest_dat_y.16
gfdl_limit_2nest_dat_y.6
gfdl_ocean_dat
gfdl_ocean_readu.dat.[01-12]
gfdl_ocean_spinup.BAYuf
gfdl_ocean_spinup.FSgsuf
gfdl_ocean_spinup_gdem3.dat.
[01-12]

gfdl_ocean_spinup_gspath.[01-12]
gfdl_ocean_spinup.SGYREuf
gfdl_ocean_topo_and_mask.eastatl_1
2th

gfdl_ocean_topo_and_mask.eastatl_e
xtn
gfdl_ocean_topo_and_mask.eastpac
lores
gfdl_ocean_topo_and_mask.eastpac_x.
lores
gfdl_ocean_topo_and_mask.northind.
lores
gfdl_ocean_topo_and_mask.sepac.
lores
gfdl_ocean_topo_and_mask.southatl.
lores
gfdl_ocean_topo_and_mask.southind.
lores
gfdl_ocean_topo_and_mask.swpac.
lores
gfdl_ocean_topo_and_mask.transatl.
lores
gfdl_ocean_topo_and_mask.united
gfdl_ocean_topo_and_mask.united_
12th
gfdl_ocean_topo_and_mask.united.
lores
gfdl_ocean_topo_and_mask.westpac.
lores
gfdl_pctwat
gfdl_raw_temp_salin.eastpac.
[04-12]
gfdl_wetness
gfdl_znot
glb_ocn.txt
grdlat_sfc_000000_000000_1o2161x105
1_datafld
grdlon_sfc_000000_000000_1o2161x105
1_datafld
maskls_sfc_000000_000000_1o2161x105
1_datafld
sgdemv3s[01-12].nc
tgdemv3s[01-12].nc
the.diff
there.diff

• hwrf_wps_geo/

albedo_ncep/
greenfrac/
hangl/
hanis/
hasynw/
hasys/
hasysw/
hasyw/
hcnvx/

hlennw/
hlens/
hlensw/
hlenw/
hslop/
hstdv/
hzmax/
islope/
landuse_10m/

48

3. Running HWRF

landuse_2m/
landuse_30s/
landuse_30s_with_lakes/
landuse_5m/
maxsnowalb/
modis_landuse_20class_30s/
modis_landuse_21class_30s/
orogwd_10m/
orogwd_1deg/
orogwd_20m/
orogwd_2deg/
orogwd_30m/
soiltemp_1deg/
soiltype_bot_10m/
soiltype_bot_2m/

soiltype_bot_30s/
soiltype_bot_5m/
soiltype_top_10m/
soiltype_top_2m/
soiltype_top_30s/
soiltype_top_5m/
ssib_landuse_10m/
ssib_landuse_5m/
topo_10m/
topo_2m/
topo_30s/
topo_5m/
varsso/

• hwrf-wrf/

aerosol.formatted
aerosol_lat.formatted
aerosol_lon.formatted
aerosol_plev.formatted
bulkdens.asc_s_0_03_0_9
bulkradii.asc_s_0_03_0_9
CAM_ABS_DATA
CAM_AEROPT_DATA
CAMtr_volume_mixing_ratio.A1B
CAMtr_volume_mixing_ratio.A2
CAMtr_volume_mixing_ratio.RCP4.5
CAMtr_volume_mixing_ratio.RCP6
CAMtr_volume_mixing_ratio.RCP8.5
capacity.asc
CCN_ACTIVATE.BIN
CLM_ALB_ICE_DFS_DATA
CLM_ALB_ICE_DRC_DATA
CLM_ASM_ICE_DFS_DATA
CLM_ASM_ICE_DRC_DATA
CLM_DRDSDT0_DATA
CLM_EXT_ICE_DFS_DATA
CLM_EXT_ICE_DRC_DATA
CLM_KAPPA_DATA
CLM_TAU_DATA
co2_trans
coeff_p.asc
coeff_q.asc
constants.asc
ETAMPNEW_DATA
ETAMPNEW_DATA_DBL
ETAMPNEW_DATA.expanded_rain

ETAMPNEW_DATA.expanded_rain_DBL
GENPARM.TBL
grib2map.tbl
gribmap.txt
kernels.asc_s_0_03_0_9
kernels_z.asc
LANDUSE.TBL
masses.asc
MPTABLE.TBL
ozone.formatted
ozone_lat.formatted
ozone_plev.formatted
README.fix
README.namelist
README.tslist
RRTM_DATA
RRTM_DATA_DBL
RRTMG_LW_DATA
RRTMG_LW_DATA_DBL
RRTMG_SW_DATA
RRTMG_SW_DATA_DBL
SOILPARM.TBL
termvels.asc
tr49t67
tr49t85
tr67t85
URBPARM.TBL
URBPARM_UZE.TBL
VEGPARM.TBL
wind-turbine-1.tbl

• loop_curr/
hwrf_gfdl_loop_current_rmy5.dat.YYYYMMDD
hwrf_gfdl_loop_current_wc_ring_rmy5.dat.YYYYMMDD
hwrf_lc2a.*
hwrf_lc2a_ring.*
lc2a.*
lc2a_ring.*

49

3. Running HWRF

Sample fix files and datasets for running two consecutive forecasts of Hurricane Matthew
(October 04, 2016 00 and 06 UTC) can be obtained from the DTC website: http://www.
dtcenter.org/HurrWRF/users. To use the DTC-supported scripts for running HWRF,
these datasets should be stored following the directory structure described above, and must
be on a disk accessible by the HWRF scripts and executables.

The following files are available for download:
HWRF_v3.9a_datasets_enkf.2016100318.tar.gz
HWRF_v3.9a_datasets_enkf.2016100400.tar.gz
HWRF_v3.9a_datasets_gfs.2016100400.tar.gz
HWRF_v3.9a_datasets_gfs.2016100406.tar.gz
HWRF_v3.9a_datasets_gdas.2016100318.tar.gz
HWRF_v3.9a_datasets_gdas.2016100400.tar.gz
HWRF_v3.9a_datasets_SYNDAT-PLUS.tar.gz
HWRF_v3.9a_datasets_loop.tar.gz
HWRF_v3.9a_fix.tar.gz

3.4 Production Directory Structure

The top production directory is ${WORKhwrf}/YYYYMMDDHH/SID (where ${WORKhwrf}
is an environment variable defined by the scripts, SID is storm ID (e.g., 09L), and
YYYYMMDDHH is the forecast initial time. The following subdirectories will be present for the
default AL configuration.

${WORKhwrf}/YYYYMMDDHH/SID
bufrprep..Pre-processing bufr files

cpl.out..Coupler std out

fgat.tYYYYMMDDHHHH/.....................Production dir for processing GDAS at each of the fgat hours: -3, 0 +3

gdas1.YYYYMMDDHH/

gfsinit/ ... Production dir for processing GFS input

ghost/

prep_hybrid/

realfcst/

realinit/

relocate/

regribber/

tracker/

wps/

wrfanl/

gsi_d02/..Production dir for data assimilation on 6 km domain

gsi_d03/..Production dir for data assimilation on 2 km domain

hwrf_state.sqlite3..Datastore file

hwrf_state.sqlite3.lock

intercom/ ...Dir containing files needed for subsequent processes

lock/...Datastore directory

50

http://www.dtcenter.org/HurrWRF/users
http://www.dtcenter.org/HurrWRF/users

3. Running HWRF

oldvit..Previous 6 h Tcvitals

PDY..Text file with date information

pom/...Production dir for the ocean initialization

regribber/..................................Working dir for regribbing process. All files are delivered to other locations

regribber-[0003-0010].out/ .. Standard output from regribber

regribber-[0003-0010].err/..Standard error from regribber

runwrf/...Production dir for coupled or uncoupled forecast

storm1.vitals.Text file containing TC Vitals for forecast storm, including only the current storm label, i.e., 14L for Matthew

storm1.vitals.allids.....Text file containing TC Vitals for forecast storm, including its Invest labels, i.e., 97L and 14L for

Matthew

storm1.vitals.oldid.Text file containing TC Vitals for forecast storm, including only its Invest labels, i.e., 97L for Matthew

storm1.vitals.renumberlog...Log file for vitals messages processed

tmpvit...Text file containing only the analysis TC Vital message

tracker/..Production dir for the GFDL Vortex Tracker

tracker-[0000].out/ .. Standard output from tracker

The purpose of intercom/ is to store the files that are used for subsequent processes,
separating them from the working directory. Within the intercom/ directory, the structure
is similar to that in the ${WORKhwrf} directory, except each subdirectory contains only the
files that will be used in subsequent steps. The following outlines the structure of intercom/
when running all components of HWRF as in the default AL configuration.

intercom/
bufrprep/
fgat.tYYYYMMDDHHHH/
gdas_merge/
gfsinit/
{STORMNAME}{SID}.YYYYMMDDHH.hwrftrk.grbfhh
{STORMNAME}{SID}.YYYYMMDDHH.hwrftrk.grbfhh.grbindex
gsi_d02/
gsi_d03/
nonsatpost-f{hh}h00m/

nonsatpost-f{hh}h00m/
nonsatpost-f{hh}h00m-moad.egrb
nonsatpost-f{hh}h00m-storm1inner.egrb
nonsatpost-f{hh}h00m-storm1outer.egrb

regribber/
satpost-f{hh}h00m/

satpost-f{hh}h00m/
satpost-f{hh}h00m-moad.egrb
satpost-f{hh}h00m-storm1inner.egrb
satpost-f{hh}h00m-storm1outer.egrb

Additionally, some output files are transferred to the com/ directory, which is reserved for
transfer of files between cycles and for delivery of final products (in an operational setting).
This is discussed in Chapter 11.

In the list above, date strings will be substituted for each forecast hour or fgat time. In
this context, moad stands for Mother Of All Domains, or the HWRF parent grid. Conversely,

51

3. Running HWRF

outer and inner refer to the intermediate and innermost nests. More information about
each grid can be found in section 11.2.1.

3.5 Scripts for Running HWRF

We recommend that HWRF v3.9a be run using the wrapper and Python scripts provided
with the HWRF v3.9a release. In scripts/, users can find mid-level Python scripts that
call HWRF-specific Python utilities located in ush/. Users are encouraged to run the scripts
in the scripts/ directory using the wrapper scripts located in wrappers/. The wrapper
scripts set the proper environment variables to run each Python script, as well as execute
multiple iterations as needed.

3.5.1 Submitting a Job

Some of the executables are parallel code and can only run on the computation nodes. We
recommend that users first connect to the computer’s remote computation nodes. To do this
on Linux machines that run the MOAB/Torque, such as NOAA’s Jet, users can use the qsub
command. For example, the command below requests a two-hour connection of 24 cores on
the "sJet" nodes using the account "dtc-hurr".

qsub -X -I -l procs=24,walltime=2:00:00,partition=sjet -A dtc-hurr

The user should seek assistance from the system administrator on how to connect to the
computation nodes on the machine used to run HWRF.

Parallel code can also be submitted to the computation nodes using a batch system. For
a platform that uses the batch system Load Sharing Facility (LSF), the beginning of each
wrapper script should be edited to add the LSF options listed below:

#BSUB -P 99999999 # Project name
#BSUB -a poe # Select poe
#BSUB -n 202 # Number of total (MPI) tasks
#BSUB -R "span[ptile=32]" # Run a max of 16 tasks per node
#BSUB -J hwrf # Job name
#BSUB -o hwrf.%J.out # Standard output file name
#BSUB -e hwrf.%J.out # Standard error file name
#BSUB -W 2:30 # Wallclock time
#BSUB -q debug # Queue name
#BSUB -K # Don’t return prompt until the job is fin-

ished

For a platform that uses the MOAB/Torque batch system, the beginning of each wrapper
script should be edited to add the PBS options listed:

52

3. Running HWRF

#PBS -A project # Project name
#PBS -l procs=202 # Number of total (MPI) tasks
#PBS -o stdout.txt # Standard output file name
#PBS -e stder.txt # Standard error file name
#PBS -N hwrf # Job name
#PBS -l walltime=02:30:00 # Wallclock time
#PBS -q batch # Queue name
#PBS -d . # Working directory of the job

After the batch system options and environment variables are defined, run the wrapper
scripts using the command:

• On machines with LSF:
bsub sample_wrapper

• On machines with MOAB/Torque:
qsub sample_wrapper

The wrapper script sample_wrapper will be submitted to the computation nodes and, once
it starts, will call the low-level script from the scripts/ directory. Appendix A contains
the guidelines for resources used to run HWRF at near operational efficiency.

Examples of the values of wall clock time, total cores, core layout, and memory required for
each job for a end-to-end HWRF run are listed in Appendix A.

3.6 Running HWRF End-to-End

3.6.1 Editing global_vars.sh

In hwrfrun/wrappers directory, the file global_vars.sh is used for setting a few envi-
ronment variables to define the cycle(s) to be run by the wrapper scripts. The user should
set the first four variables. Variables are set for the Matthew case provided by the DTC, they
should be set to the values below.

export START_TIME=YYYYMMDDHH Initial time of the forecast
export SID=14L Storm ID, e.g. 14L is Matthew – the 14th

storm of the Atlantic season; Invest 99 in
the East Pacific would be 99E

export CASE=HISTORY For most users, this will be HISTORY. FORE-
CAST is reserved for real-time mode.

export HOMEhwrf= Full path to the directory where HWRF has
been installed, including /hwrfrun

53

3. Running HWRF

3.6.2 Using Wrapper Scripts

Once all configure files and global_vars.sh have been edited to define an experiment,
the wrapper scripts should be submitted to the batch system. Some of the wrappers have
dependencies on previous wrappers, while others can be run simultaneously. The following
list contains all of the wrappers to be run for a default Atlantic Basin case. The items
under the same number can be submitted together in any order, but only after the previous
numbered item(s) runs to completion:

1. launcher_wrapper
2. init_gdas_wrapper

init_gfs_wrapper
init_ocean_wrapper
bufrprep_wrapper

3. init_bdy_wrapper
relocate_wrapper

4. gsi_d02_wrapper
gsi_d03_wrapper

5. merge_wrapper
6. unpost_wrapper
7. forecast_wrapper

post_wrapper†

products_wrapper†

†Wrapper can run at the same time as forecast_wrapper, but should only be submitted
after the forecast job has started, i.e., no longer in queue.

Wrappers with the same number may be run sequentially or simultaneously. Because the
forecast job often waits in the queue before it starts, a post job submitted at the same time
as the forecast job will have nothing to do for quite a while and will use wallclock time
waiting on output from the forecast. Therefore, we suggest submitting the post and products
wrappers after the forecast job has started running.

By default, the launcher_wrapper reads in the global_vars.sh and the configure
files system.conf, hwrf.conf, hwrf_input.conf, hwrf_v3.9a_release.conf
and hwrf_basic.conf. Additional variables and configure files can be passed to exh-
wrf_launcher.py within the launcher_wrapper by following the syntax documented
within the Python script. For variables defined more than once, the variable will take the
value that was last passed to exhwrf_launcher.py.

The configuration set by the user will determine the wrapper scripts that are required.
Keep in mind, however, that when the variable basin_overrides=yes, the configuration
changes based on the basin for which you are running, so wrappers should be submitted
accordingly.

An example of the command used in the launcher_wrapper for running AL storm
Matthew is as follows. Please refer to the documentation block of scripts/exh-
wrf_launch.py for complete argument list. The environment variables $HOMEhwrf,

54

3. Running HWRF

$EXPT, $CASE_ROOT, and $startfile are defined in global_vars.sh.

$HOMEhwrf/scripts/exhwrf_launch.py 2016100400 14L HISTORY
"$HOMEhwrf/parm" "config.EXPT=$EXPT" "config.startfile=$startfile"
"config.HOMEhwrf=$HOMEhwrf" "config.case_root=$CASE_ROOT"
"$HOMEhwrf/parm/hwrf_v3.9a_release.conf"

To run the full default AL configuration for any other basin, simply set
prelaunch.basin_overrides=no as an additional argument in the previous example
and choose the date and storm ID for a storm in a different basin.

In addition to editing the launcher_wrapper, the forecast_wrapper will also require
the user to edit the number of processors, depending on the status of ocean coupling and
resolution used for the forecast. Please refer to the Appendix for the appropriate choice of
processors.

3.7 Operational HWRF for the Various Ocean Basins

In the 2017 operational implementation of HWRF, the configuration of the system varies by
basin. Therefore, the v3.9a default configuration also varies by basin, as described in table
3.1. The following sections describe the workflow of each of those configurations, and the
appropriate wrappers to go with them.

3.7.1 Atlantic and Eastern Pacific Basin

In Figure 3.1, each blue box corresponds to a component of HWRF that is run in the default
configuration. Except for the forecast grouping (WRF, coupler, and MPIPOM-TC), each box
has its own corresponding wrapper. The three components of the forecast are run simul-
taneously by the forecast_wrapper. The bufrprep_wrapper and unpost_wrappers
are preparation steps for the GSI and the post jobs, respectively, and are not shown as
components in the figures.

Launcher

Ocean Init

GFS Init Vortex
Initialization

GDAS Init Vortex
Initialization

GSI D02

GSI D03

Merge

WRF

UPP ProductsCoupler

MPI-
POM-TC

Figure 3.1: Components of HWRF that run for the default AL and EP configuration.

55

3. Running HWRF

3.7.2 All Other N. Hemispheric Basins

In the 2017 operational configurations, data assimilation is not applied in N. Hemispheric
basins other than AL or EP. The GFS analysis, after undergoing vortex relocation, is used
as initial conditions. While the number of vertical levels differs in some of these basins, the
workflow configuration does not. The only wrappers required to run the default cases for
these basins are as follows:

1. launcher_wrapper
2. init_gfs_wrapper

init_ocean_wrapper
3. init_bdy_wrapper
4. relocate_wrapper
5. unpost_wrapper
6. forecast_wrapper

post_wrapper†

products_wrapper†

†Wrapper can run at the same time as forecast_wrapper, but should only be submitted
after the forecast job has started, i.e., no longer in queue.

Launcher

GFS Init

GDAS Init Vortex
Initialization

GSI D02

GSI D03

Merge

WRF

UPP ProductsCoupler

MPI-
POM-TC

Ocean Init

Vortex
Initialization

Figure 3.2: Components of HWRF that run for the default configuration in all other N.
Hemisphere basins.

3.7.3 Southern Hemispheric Basins

The Southern Hemisphere basins are run operationally without ocean coupling or data
assimilation. Notice in Fig. 3.3 that the workflow has been simplified a great deal. The only
wrappers required to run the default cases for these basins are as follows:

1. launcher_wrapper
2. init_gfs_wrapper
3. init_bdy_wrapper
4. relocate_wrapper
5. unpost_wrapper
6. forecast_wrapper

post_wrapper†

56

3. Running HWRF

products_wrapper†

†Wrapper can run at the same time as forecast_wrapper, but should only be submitted
after the forecast job has started, i.e., no longer in queue.

Note: Do not forget to edit the number of tasks in forecast_wrapper for an uncoupled
run.

Launcher

GFS Init

GDAS Init Vortex
Initialization

GSI D02

GSI D03

Merge

WRF

UPP ProductsCoupler

MPI-
POM-TC

Ocean Init

Vortex
Initialization

Figure 3.3: Components of HWRF that run for the default configuration in all Southern
Hemisphere basins.

3.8 Running HWRF in Non-operational Configurations

Users may wish to run HWRF with a different set of components than those used in opera-
tions. Most alternate configurations will require the user to set basin_overrides=no. If
basin_overrides=no is the only additional configuration option set, all runs in all basins
will be configured as the AL default.

The basin-specific configuration files listed in the "Extra conf" column of table 3.1 may still
be passed through the launcher, but the variables within can be overridden by a subsequent
argument to exhwrf_launch.py.

The remainder of this section describes a few alternate options that are supported when
using HWRF v3.9a. These examples are also included in launcher_wrapper. It is left to
the user to choose combinations of the following configuration options.

3.8.1 Running Coupled/Uncoupled Forecast

Coupling with the ocean is enabled by default for all the N. Hemispheric basins. To run an
uncoupled forecast (no ocean) in any N. Hemispheric basin, set config.run_ocean=no.

This configuration option also requires a change in the number of processors in the fore-
cast_wrapper. Please see the explanation contained in the Appendix to set the appropriate
number of processors.

If the ocean is the only component to be changed, the basin-specific extra configuration

57

3. Running HWRF

file described in table table 3.1 must also be used explicitly in the launcher_wrapper,
otherwise the default AL configuration will be run.

An example of the arguments passed to exhwrf_launch.py within the
launcher_wrapper to run an uncoupled forecast for a WP storm, retaining all
other operational setting, follows:

$HOMEhwrf/scripts/exhwrf_launch.py 2014100906 19W HISTORY
"$HOMEhwrf/parm" "config.EXPT=$EXPT" "config.startfile=$startfile"
"config.HOMEhwrf=$HOMEhwrf" "config.case_root=$CASE_ROOT"
"$HOMEhwrf/parm/hwrf_v3.9a_release.conf" "prelaunch.basin_overrides=no"
"$HOMEhwrf/parm/hwrf_WP.conf" "config.run_ocean=no"

Alternatively, to run an uncoupled forecast with full AL configuration for any basin, pass the
following arguments:

prelaunch.basin_overrides=no
run_ocean=no

Run this configuration with the following wrappers as shown in Fig 3.4:

1. launcher_wrapper
2. init_gdas_wrapper

init_gfs_wrapper
bufrprep_wrapper

3. init_bdy_wrapper
4. relocate_wrapper
5. gsi_d02_wrapper

gsi_d03_wrapper
6. merge_wrapper
7. unpost_wrapper
8. forecast_wrapper

post_wrapper†

products_wrapper†

†Wrapper can run at the same time as forecast_wrapper, but should only be submitted
after the forecast job has started, i.e., no longer in queue.

Note: Do not forget to edit the forecast_wrapper for the appropriate number of proces-
sors.

58

3. Running HWRF

Launcher

GFS Init

GDAS Init Vortex
Initialization

GSI D02

GSI D03

Merge

WRF

UPP ProductsCoupler

MPI-
POM-TC

Ocean Init

Vortex
Initialization

Figure 3.4: Components of HWRF that run for uncoupled configuration.

3.8.2 MPIPOM-TC Options

Using GDEM in EP and CP Basins

In the EP and CP basins, the default HWRF configuration uses the RTOFS for model ini-
tialization. If a user does not have the RTOFS dataset, MPIPOM-TC can be initialized from
the GDEM climatology, as done by default in the WP basin. To use GDEM initialization in
the EP or CP basins, users should set variable

pom.ini_data=gdem

Running with GFS SSTs

If a user does not have access to the GFS spectral files in NEMSIO required to complement
the GDEM ocean initialization in the AL, WP, and NIO basins, one can use the GFS SSTs
(from GFS GRIB2 files) to run the ocean initialization.

Pass the following variable:

pom.gfssst_type=1

By default, gfssst_type is set to 2 (NEMSIO).

Initial Geostrophic Velocity

In the [pom] section the calculation of initial geostrophic velocity is triggered by the
geovflag variable. In the AL basin it should be equal to 1. For other basins it should
be equal to 0. If a user encounters Error: SST exceeds 50 C, check the geovflag

59

3. Running HWRF

option.

3.8.3 Running with Optional GSI

A user may choose to run with or without data assimilation in any given basin. To force
HWRF to run with GSI in any basin while retaining the other operational settings, set the
following variables:

prelaunch.basin_overrides=no
run_gsi=yes

Also pass the appropriate basin-specific configuration file listed in the "Extra conf" column
of table 3.1 to exhwrf_launch.py.

To run without GSI in a full AL/EP configuration for any basin, the following arguments
should be passed to exhwrf_launch.py.

prelaunch.basin_overrides=no
run_gsi=no

These arguments will set up the configuration shown in Fig. 3.5, and the following wrappers
should be run:

1. launcher_wrapper
2. init_gfs_wrapper

init_ocean_wrapper
3. init_bdy_wrapper
4. relocate_wrapper
5. unpost_wrapper
6. forecast_wrapper

post_wrapper†

products_wrapper†

†Wrapper can run at the same time as forecast_wrapper, but should only be submitted
after the forecast job has started, i.e., no longer in queue.

Launcher

GFS Init

GDAS Init Vortex
Initialization

GSI D02

GSI D03

Merge

WRF

UPP ProductsCoupler

MPI-
POM-TC

Ocean Init

Vortex
Initialization

Figure 3.5: Components of HWRF that run with GSI turned off.

60

3. Running HWRF

3.8.4 Running without GFS Ensemble files: 3DVAR GSI

The HWRF system can be run without hybrid data assimilation if one does not have access
to GFS Ensemble files. The GSI data assimilation can be run on 3DVAR mode (using only
static Background Error).

To run 3DVAR data assimilation using the default AL configuration in any basin, pass the
following arguments:

prelaunch.basin_overrides=no
config.run_gsi=yes
gsi_d02_nml.HYBENS_REGIONAL=F
gsi_d03_nml.HYBENS_REGIONAL=F

However, if the GSI is the only component to be changed, follow the instructions similar
to 3.8.1.

3.8.5 Running without Vortex Initialization

The HWRF scripts require vortex relocation to be run before data assimilation can
be performed. However, a user can turn off the vortex adjustment component of the
vortex initialization, and allow for only vortex relocation. Both options require con-
fig.run_relocate=yes. The configuration variable relocate.initopt controls the
initialization procedure and should be set to "0" for full vortex initialization, or "1" for re-
location only. Pass the relocate.initopt option to exhwrf_launch.py to change the
relocation behavior.

To turn vortex initialization off completely from the full AL configuration for any basin,
data assimilation must also be turned off, and the following arguments must be passed to
exhwrf_launch.py:

run_gsi=no
run_relocate=no

There is no need to turn off prelaunch.basin_overrides for this case.

This configuration corresponds to that shown in Fig. 3.6 and requires the following wrappers:

1. launcher_wrapper
2. init_gfs_wrapper

init_ocean_wrapper
3. init_bdy_wrapper
4. unpost_wrapper
5. forecast_wrapper

post_wrapper†

products_wrapper†

61

3. Running HWRF

†Wrapper can run at the same time as forecast_wrapper, but should only be submitted
after the forecast job has started, i.e., no longer in queue.

Launcher

GFS Init

GDAS Init Vortex
Initialization

GSI D02

GSI D03

Merge

WRF

UPP ProductsCoupler

MPI-
POM-TC

Ocean Init

Vortex
Initialization

Figure 3.6: Components of HWRF that run without vortex initialization.

3.8.6 Running without Spectral Files (GRIB Only)

To run with GRIB2 input files only for atmospheric initialization, the following arguments
should be passed to exhwrf_launch.py.

gfsinit_type=1

When running with GRIB files only, data assimilation needs to be disabled or used in 3DVAR-
only mode (hybrid data assimilation is not supported since it depends on the ingesting the
spectral ensemble files). Therefore, one of the following two options must be adopted when
using gfsinit_type=1:

No data assimilation:
config.run_gsi=no See section 3.8.3 for details on running these configurations.

3DVAR data assimilation using the default AL configuration in any basin:
prelaunch.basin_overrides=no
config.run_gsi=yes
gsi_d02_nml.HYBENS_REGIONAL=F
gsi_d03_nml.HYBENS_REGIONAL=F

Also set gsi_d02.use_gfs_stratosphere=no if you do not have GDAS forecast spectral
files.

Note that by default the ocean initialization is not set up to use GRIB files. In order to use
GRIB files, ocean initialization must be based on GDEM (not RTOFS) and a configuration
option must be set to use GRIB files instead of spectral files in NEMSIO format. See section
3.8.2 for more details.

62

3. Running HWRF

3.8.7 Running with 43 Vertical Levels and Coarser (27/9/3) Hori-
zontal Resolution

In HWRF v3.9a, the use of 43 vertical levels in the Northern Hemisphere is only sup-
ported in conjunction with coarser (27/9/3) horizontal resolution. To use this option for any
configuration, pass prelaunch.basin_overrides=no, parm/hwrf_43lev.conf , and
hwrf_3km.conf as arguments to exhwrf_launch.py. Note that hwrf_3km.conf must
be passed after hwrf_43lev.conf file.

3.8.8 Running with Smaller D02 and D03 Size

HWRF v3.9a runs with a smaller D02 and D03 domain sizes compared to v3.8a (v3.7a ran
with smaller D02 and D03 domain sizes than both v3.8a and v3.9a). To run with v3.7a
(2015) domain sizes, create a new conf file and pass as arguments to exhwrf_launch.py
after the hwrf_v3.9a_release.conf argument. The new conf file should have:
[storm1outer]
nx = 142
ny = 274
[storm1inner]
nx = 265
ny = 472
[storm1ghost]
nx = 435
ny = 868
[storm1ghost_parent]
nx = 290
ny = 580

3.8.9 Running with Alternate Physics Configurations

HWRF v3.9a runs with alternate physics configurations. These physics configurations were
well tested:

Microphysics:
Thompson
WSM6
Tropical Ferrier
Cumulus:
SAS
Kain Fritsch
Tiedtke
Grell-Freitas

63

3. Running HWRF

Land Surface:
GFDL
Radiation:
GFDL
As an example, to run Kain Fritsch cumulus scheme in all the domains create a new conf
file and pass as arguments to exhwrf_launch.py. The new conf file should have:
[moad_namelist]
physics.cu_physics=1
The launcher argument will look like:
$HOMEhwrf/scripts/exhwrf_launch.py YYYYMMDDHH SID HISTORY
"$HOMEhwrf/parm" "config.EXPT=$EXPT" "config.startfile=$startfile"
"config.HOMEhwrf=$HOMEhwrf" "config.case_root=$CASE_ROOT"
"$HOMEhwrf/parm/hwrf_v3.9a_release.conf"
"$HOMEhwrf/parm/hwrf_cu.conf"

64

4
HWRF Preprocessing System

4.1 Introduction

HWRF needs data from the operational GFS and GDAS for its initialization procedures.
Ultimately, the GFS dataset is used to create initial and boundary conditions for the 18-km
outer domain, while the GDAS dataset is used to initialize the inner 6- and 2-km domains.
However, as we explain later, the GDAS analysis and forecast are also used in the 18-km
domain for an intermediate step.

The GFS analysis and forecast employed are from the same cycle as the HWRF initializa-
tion (e.g., to initialize a HWRF forecast at 12 UTC, the 12 UTC run of GFS is used). However,
the GDAS data used by HWRF are forecasts from the previous 6-h cycle (e.g., to initial-
ize a HWRF forecast at 12 UTC, the forecasts from 06 UTC run of GDAS are used). This
differentiation is related to the data assimilation procedures (Chapter 6). First of all, data
assimilation in HWRF is only conducted in the inner 6- and 2-km domains. A forecast from
the GDAS initialized 6-h before the HWRF analysis provides a better first guess than the
GDAS analyses at the same initialization time as HWRF, in which observations have already
been included as part of the global data assimilation procedures. Second, the HDAS ingests
observations in a 3-h time window centered in the HWRF analysis time. This requires the
availability of three first-guess files, one at the HWRF analysis time, one before and one af-
ter. By using the GDAS forecast initialized 6-h before the HWRF analysis, HWRF can make
use of the GDAS 3-, 6-, and 9-h forecast lead times, which are valid at 3 h before the HWRF
initialization, at the time of the HWRF initialization, and 3 h after the HWRF initialization,
respectively. This procedure is termed FGAT, or First Guess at Appropriate Time.

HWRF employs the WRF model to downscale the GDAS forecasts to the 6- and 2-km
grids for the vortex relocation and data assimilation procedures. This is done by using pre-

65

4. HWRF Preprocessing System

D01 D02 D03
Grid spacing (deg) 0.135

(18 km)
0.045
(6 km)

0.015
(2 km)

HWRF Forecast 288 x 576
80◦x 80◦

265 x 532
24◦x 24◦

235 x 472
7◦x 7◦

Analysis run 288 x 576
80◦x 80◦

265 x 532
24◦x 24◦

235 x 472
7◦x 7◦

Ghost run 288 x 576
80◦x 80◦

280 x 546
28◦x 28◦

529 x 998
15◦x 15◦

3X domain 748 x 1504
30◦x 30◦

Table 4.1: Resolution (first row), number of grid points (top number in cell), and size (bottom
number in cell) of the HWRF atmospheric grids.

processing utilities to interpolate the GDAS datasets to the HWRF 18-km domain, and then
running two uncoupled 90-s WRF runs with three domains. These runs output "analysis"
files, which are WRF restart files at t=0 (analysis time), and are referred to as the WRF
Analysis run and the WRF Ghost run.

In HWRF operations at the National Weather Service, it is important that safeguards are
put in place to prevent model failure. To account for the possibility that the GDAS dataset
may be unavailable, WRF Ghost and WRF Analysis runs using the GFS dataset as initial
conditions are also performed and can be used as a backup. In general, GDAS data is
available, and the WRF Ghost and WRF Analysis runs initialized from the GFS are not
ultimately used in the forecast process.

The WRF Analysis run has the main purpose of downscaling the global information to
the HWRF high-resolution grids for use in the vortex relocation procedure discussed in
further detail in Chapter 5. The WRF Ghost run downscales the global information to
high-resolution grids that are slightly larger than their WRF forecast domain counterparts
to provide first-guesses for the data assimilation procedure discussed further in Chapter 6.
Depending on the domain, the WRF Ghost run is referred to as Ghost domain 2 (ghost_d02,
the d02 counterpart) or Ghost domain 3 (ghost_d03, the d03 counterpart). Table 4.1 de-
scribes the grid spacing and size of the domains used in the HWRF main forecast run, the
WRF Analysis, and the WRF Ghost runs. These domains are shown in Figure 4.1.

The HWRF includes two preprocessing packages to generate input files for WRF, the WRF
Preprocessing System (WPS) and prep_hybrid. WPS consists of three programs to process
input: geogrid interpolates static geographical data to the three HWRF domains; ungrib
extracts meteorological fields from GRIB-formatted files and writes the fields to intermediate
files; and metgrid horizontally interpolates the meteorological fields extracted by ungrib to
the parent HWRF grid. The prep_hybrid utility horizontally interpolates the atmospheric
fields represented as spectral coefficients in the global model files in binary format and native
sigma vertical levels to the parent HWRF grid. The output of prep_hybrid and metgrid are
utilized by the program real_nmm to vertically interpolate meteorological information to
the HWRF vertical levels, resulting in a full set of 3D initial conditions that constitute the
required WRF input. Both prep_hybrid and WPS are required because prep_hybrid only

66

4. HWRF Preprocessing System

Figure 4.1: Example of the domains used by HWRF in the AL. The blue region is the outer
18-km domain. The purple solid boxes show the sizes of the vortex-following
6-km and 2-km domains, while the black dashed lines are the ghost domains for
d02 and d03. The red box is the unified Atlantic MPIPOM-TC domain.

67

4. HWRF Preprocessing System

processes atmospheric data, so WPS is also used to supply the initial conditions for soil
temperature and moisture, as well as to supply the WRF model with the static information
(topography, vegetation, etc.).

For general information about working with WPS, see the WRF-NMM documentation at:

http://www.dtcenter.org/HurrWRF/users/docs/index.php

As part of the vortex initialization procedure described in Chapter 5, the vortex from the
processed global model analysis is removed and substituted with an improved vortex. To
locate the vortex in the global model, the GFDL Vortex Tracker is run at the analysis time
on the postprocessed 90-s output from the WRF Analysis run.

This chapter explains how to run the initialization procedure, including the launcher,
WPS, prep_hybrid, real_nmm, WRF Analysis, and WRF Ghost to create the HWRF prelimi-
nary initial conditions.

4.2 Scripts

Four wrapper scripts are used to preprocess data for the atmospheric component of HWRF:

launcher_wrapper
init_gdas_wrapper
init_gfs_wrapper
init_bdy_wrapper

The launcher wrapper calls scripts/exhwrf_launch.py to read the configuration files,
set the output directory structures, and determine the location of the outer 18-km domain.
The "init" wrapper scripts call the Python script scripts/exhwrf_init.py. For process-
ing the GFS initial and boundary data, exhwrf_init.py is called once, and then three
more times for processing GDAS data – once at each FGAT hour (3, 6, 9). Figures 4.2, 4.3,
and 4.4 show the simplified outline of the processes that occur at each FGAT hour for both
the GFS and GDAS initialization. The script exhwrf_init.py runs the three stages of
WPS (geogrid, ungrib, and metgrid), prep_hybrid, real_nmm (to create initial and boundary
conditions for the WRF Ghost and WRF Analysis runs), wrfghost, wrfanalysis, post, gribber,
tracker, and realfcst (to create LBCs for the main forecast run). All these steps are needed for
WRF initialization, and some of these are used again at later stages of the run (for example,
post and tracker).

68

http://www.dtcenter.org/HurrWRF/users/docs/index.php

4. HWRF Preprocessing System

hwrfbcs_1

real

GDAS 6h
previous

3-h forecast

ungrib

met_nmm_d01

GDAS 6h
previous

3-h forecast

prep_hybrid

hwrfinit_0

metgrid

wrfbdy_d01wrfinput_d01

WRF analysis

wrfanl_d03wrfanl_d02

WRF ghost

wrfghost_d03

vortex adjustment

ghost_d02 wrfinput_d01

wrfghost_d02

ghost_d03

FORTRAN Binary

GRIB

NetCDF

Color coding for file formats

hwrfbcs_0

exhwrf_init.py for GDAS FGAT=3

HWRF Initialization - 3 h Prior

Figure 4.2: Simplified initialization procedures for the FGAT=3 valid 3 hours prior to HWRF
initialization. All processes in the black box are run by calling exhwrf_init.py
for GDAS at FGAT=3. Boxes with dashed outlines indicate modules and resulting
files that are discussed in Chapter 5. Files that are outlined in heavy purple
(dashed lines) are used by subsequent processes described by Figure 6.1.

69

4. HWRF Preprocessing System

wrfanl_d03

hwrfbcs_1

real

GDAS 6h
previous

6-h forecast

ungrib

met_nmm_d01

GDAS 6h
previous

6-h forecast

prep_hybrid

hwrfinit_0

metgrid

wrfbdy_d01wrfinput_d01

WRF analysis

wrfanl_d02

WRF ghost

wrfghost_d02

vortex adjustment

ghost_d02 wrfinput_d01

prep_hybridprep_hybrid

hwrfnit_0 hwrfbcs_1…N

real

wrfbdy_d01

GFS Current
Analysis

GFS current
N-h forecast

wrfinput_d01

wrfghost_d03

ghost_d03

HWRF Initialization - Analysis Time

FORTRAN Binary

GRIB

NetCDF

Color coding for file formats

hwrfbcs_0

GFS Current
Analysis

ungrib

met_nmm_d01

metgrid

exhwrf_init.py for GDAS FGAT=6 exhwrf_init.py for GFS FHR=0

Figure 4.3: Simplified initialization procedures for the HWRF analysis time. All processes
in the black box on the left are run by calling exhwrf_init.py for GDAS
at FGAT=6, while the right black box are procedures from running exh-
wrf_init.py for GFS at analysis time. Boxes with dashed outlines indicate
modules and resulting files that are discussed in Chapter 5. Files that are outlined
in heavy purple (dashed or solid) are used by subsequent processes described by
Figure 6.1.

70

4. HWRF Preprocessing System

FORTRAN Binary

GRIB

NetCDF

Color coding for file formats

hwrfbcs_1

real

GDAS 6h
previous

9-h forecast

ungrib

met_nmm_d01

GDAS 6h
previous

9-h forecast

prep_hybrid

hwrfinit_0

metgrid

wrfbdy_d01wrfinput_d01

WRF analysis

wrfanl_d03wrfanl_d02

WRF ghost

wrfghost_d03

vortex adjustment

ghost_d02 wrfinput_d01

wrfghost_d02

ghost_d03

hwrfbcs_0

HWRF Initialization - 3 h After Analysis
exhwrf_init.py for GDAS FGAT= 9

Figure 4.4: Simplified initialization procedures for the FGAT=9 valid 3 hours after HWRF
initialization. All processes in the black box are run by calling exhwrf_init.py
for GDAS at FGAT=9. Boxes with dashed outlines indicate modules and resulting
files that are discussed in Chapter 5. Files that are outlined in heavy purple
(dashed or solid) are used by subsequent processes described by Figure 6.1.

4.2.1 Overview of exhwrf_launch.py

1. Read in configure files from parm/ directory
2. Set the paths to the directories containing HWRF source code and to the Python

scripts ($HOMEhwrf and $USHhwrf, respectively)
3. Set the storm ID
4. Initialize the directory structure for the HWRF workflow
5. Locate and extract TC Vitals for the current storm and cycle, then write information

to $WORKhwrf
6. Using TC Vitals, determine the domain center and write output to file

storminfo.hwrf_domain_center

71

4. HWRF Preprocessing System

7. Parse the configuration files and write configure and holdvars files to com/
8. Write a startfile to the launch directory (i.e., wrappers/)

Output files:

$startfile Name is defined in global_vars.sh. Contains
environment variables for the storm ID and paths
to output data

storm1.conf Located in com/ directory. Contains configuration
information compiled from all configure files

storm1.holdvars.txt Located in com/ directory. Only used in opera-
tional implementation of HWRF

SID.YYYYMMDDHH.domain.center Coordinates of the domain center. SID is the storm
ID, i.e., 14L for Matthew (2016), and YYYYMMDDHH
is the analysis time

Status check:

The file $startfile defined in global_vars.sh has been written in the wrappers/
directory.

Usage:

To run exhwrf_launch.py, several arguments are required. Several arguments are pro-
vided within the wrapper, but it does not constitute an exhaustive list of options. Many
additional arguments may be included with the submission of exhwrf_launch.py by edit-
ing the launcher_wrapper. The launcher_wrapper included with HWRF v3.9a submits
exhwrf_launch.py with the following arguments:

${HOMEhwrf}/scripts/exhwrf_launch.py YYYYMMDDHH STID HISTORY \
${HOMEhwrf}/parm config.EXPT=EXPT config.startfile=STARTFILE \
config.HOMEhwrf=${HOMEhwrf} config.case_root=HISTORY \
${HOMEhwrf}/parm/hwrf_v3.9a_release.conf

In the previous command, YYYYMMDDHH should be replaced by the date to run, STID
represents the storm ID, i.e., 14L for Matthew (2016), and STARTFILE is the launcher output
file. The wrapper passes many of the values through environment variables, but values can
be directly passed without the use of variables.

It is important to note that variables found in the configure files can also be passed in the
command line, and do not need to be changed in the configure files. Yet another option is
to use the configure files in the parm/ directory as a template by which to create your own
configuration, and pass the new file as an argument to the launch script by appending the
following argument:

${HOMEhwrf}/parm/my_hwrf_config.conf

Note that only those options meant to be changed need to be included in user-specific
configuration files. The entire file should not be copied over.

72

4. HWRF Preprocessing System

4.2.2 Overview of the Init Scripts: exhwrf_init.py and Wrappers

In the following list, the top-level numbered items describe calls from the wrapper, either
init_gdas_wrapper or init_gfs_wrapper, the alphabetic level represents calls from
the script exhwrf_init.py, and the lowest level are calls to modules from within init.py.

1. Initialize the objects used to run all components of HWRF by calling
hwrf_expt.init_module()

2. Call exhwrf_init.py to process the global input files using INIT_PARTS=ALL five
times: once for GFS at analysis time from init_gfs_wrapper, once for GFS at
boundary times from init_bdy_wrapper, then once for each FGAT hour for GDAS
from init_gdas_wrapper

a) Run initialization steps leading up to the WRF Analysis (run_through_anl()):
i. geogrid
ii. ungrib
iii. metgrid
iv. realinit
v. prep_hybrid

vi. runwrfanl
b) Run additional initialization steps needed for data assimilation

(run_init_after_anl()):
i. ghost
ii. post
iii. gribber
iv. tracker

c) Run steps necessary to generate the LBCs for the main forecast (run_real_bdy()):
i. ungrib
ii. metgrid
iii. realfcst

4.2.3 Overview of Initialization Modules

Geogrid

The run module for a Geogrid object resides in ush/hwrf/wps.py. The module performs
the following tasks:

1. Link the GEOGRID.TBL and geog_data/ fixed files
2. Create the namelist
3. Run geogrid.exe

Output files:

73

4. HWRF Preprocessing System

geo_nmm.d01.nc Static geographical data for the parent domain,
with grid spacing of 0.135 degrees.

geo_nmm_nest.l01.nc Static geographical data that covers the parent do-
main, with grid spacing of 0.045 degrees.

geo_nmm_nest.l02.nc Static geographical data that covers the parent do-
main, with grid spacing of 0.015 degrees.

Status Check:

In the standard out file of either initialization task, you will find the line "INFO: WPS
Geogrid completed.", once for gfsinit and once for each fgat hour of gdasinit.

Executables:

geogrid.exe

FUNCTION: Interpolates static geographical data to the parent and nest grids

INPUT: Fix files from ${GEOG_DATA_PATH}
GEOGRID.TBL – defines parameters of input data sets
namelist.wps – WPS namelist

OUTPUT: geo_nmm.d01.nc
geo_nmm_nest.l01.nc
geo_nmm_nest.l02.nc

USAGE: geogrid.exe

PrepHybrid

The run module for the PrepHybrid object is located in ush/hwrf/prep.py. The module
preforms the following tasks:

1. Copy the input files
2. Run hwrf_prep.exe
3. Link the output files

Output files for ICs:

hwrfinit_0 Global model spectral data preprocessed by
hwrf_prep.exe and ready to be used by
real_nmm to generate preliminary HWRF ICs and
BCs.

Output files in for LBCs:

74

4. HWRF Preprocessing System

hwrfbcs00_${bc_index} Global model spectral data preprocessed by
hwrf_prep.exe and ready to be used by
real_nmm to generate preliminary HWRF LBCs.
The variable bc_index=0,1 corresponds to the fore-
cast files that need to be preprocessed to create the
LBCs for the HWRF forecast.

Status Check:

In the standard output file of each initialization task, you will find the line "INFO: -
exit status 0" for the task "prep_hybrid", once for gfsinit and once for each fgat
hour in gdasinit.

Executables:

hwrf_prep.exe

FUNCTION: Preprocesses the GDAS or GFS spectral data on vertical sigma
levels in binary format for use the by real_nmm

INPUT: geogrid.out – link to geo_nmm.d01.nc
prep_hybrid.nl – prep_hybrid namelist
fort.11 – link to gfsbc${bc_index}
fort.44 – link to itime file contains $bc_index
fort.45 – link to domain.center file
gfsbc${bc_index} – link to the global spectral file
[gdas1|gfs].${BKG_START_TIME}.sf${BKG_FCST_TIME}
where $BKG_START_TIME is the GDAS or GFS initialization time
and $BKG_FCST_TIME is time the GDAS or GFS forecast lead
time. For example to create the 12-h LBCs for the HWRF forecast
initialized at 2012102806, the GFS initialized at the HWRF anal-
ysis time is used, and these variables would be set to the following.

BKG_START_TIME = 2012102806
BKG_FCST_TIME = 012

OUTPUT: hwrfinit_0
hwrfbcs00_${bc_index}

USAGE: $PREP_EXE $NX1 $NY1 $VERT_LEV $DXX $DYY
where $NX1, $NY1, and $VERT_LEV are the output file grid di-
mensions in the meridional, zonal and vertical directions, and
$DXX and $DYY are the horizontal grid spacing.

Ungrib

The run module for an Ungrib object resides in ush/hwrf/wps.py. The module performs
the following tasks:

75

4. HWRF Preprocessing System

1. Create the namelist
2. Link the Vtable and input GRIB files
3. Run ungrib.exe

Output files:

The intermediate files written by ungrib.exe will have names of the form FILE:YYYY-
MM-DD_HH (unless the prefix variable in hwrf.conf was set to a prefix other than "FILE").

Status Check:

In the standard out file of each initialization task, you will find the line "INFO: WPS
Ungrib completed.", once for gfsinit and once for each fgat hour of gdasinit.

Executables:

ungrib.exe

FUNCTION: Extracts meteorological fields from GRIB formatted files and
writes the fields to intermediate files

INPUT: GRIB files
Vtable – codes to interpret GRIB files
namelist.wps –WPS namelist

OUTPUT: FILE:YYYY-MM-DD_HH

USAGE: ungrib.exe

Metgrid

The run module for a Metgrid object resides in ush/hwrf/wps.py. The module performs
the following tasks:

1. Create the namelist
2. Link the metgrid table
3. Copy in the output from geogrid and ungrib
4. Run metgrid.exe

Output files:

met_nmm.d01.YYYY-MM-DD_HH:MM:SS.nc YYYY- MM-DD_HH:MM:SS refers to
the valid date of the interpolated
data in each file and ready to be used
by real_nmm to generate preliminary
HWRF ICs.

76

4. HWRF Preprocessing System

Status Check:

In the standard out file of each initialization task, you will find the line "INFO: WPS
Metgrid completed.", once for gfsinit and once for each fgat hour of gdasinit.

Executables:

metgrid.exe

FUNCTION: Horizontally interpolates the meteorological fields extracted by
ungrib to the model parent grid

INPUT: METGRID.TBL – parameters for interpolating each field
geo_nmm.d01.nc – output of geogrid
namelist.wps – WPS namelist
FILE:YYYY-MM-DD_HH – output of ungrib

OUTPUT: met_nmm.d01.YYYY-MM-DD_HH:MM:SS.nc

USAGE: metgrid.exe

Realinit

Realinit is a WRFTask object and its run module resides in ush/hwrf/wps.py. The module
performs the following tasks:

1. Link the input and fixed files
2. Run hwrf_swcorner_dynamic.exe to calculate the istart and jstart values for a nest
3. Generate the namelist
4. Run real_nmm.exe to generate initial and boundary conditions. A high-resolution

sea-mask data file (fort.65) for the entire outer domain is also generated. It is later
used by the coupler.

Output files:

wrfinput_d01 ICs created from GDAS
wrfbdy_d01 LBCs created from GFS for the ghost and analysis runs
fort.65 High-resolution sea mask data

Status Check:

In the standard output file for gfsinit, you will find the line "INFO: gfsinit/realinit:
completed". Similarly for gdasinit standard output, you will find the line "INFO:
fgat.tYYYYMMDDHH/realinit: completed" where YYYYMMMDDHH is the date string
for each fgat hour valid time.

77

4. HWRF Preprocessing System

Executables:

real_nmm.exe

FUNCTION: Generates the initial and boundary conditions

INPUT: Fixed files†

hwrfbcs_1 – BC output of prep_hybrid
hwrfinit_0 – IC output of prep_hybrid
geo_nmm.d01.nc – d01 output from geogrid
geo_nmm.l01.nc – d02 output from geogrid
geo_nmm.l02.nc – d03 output from geogrid
met_nmm.d01.YYYY-MM-DD_HH:00:00.nc – d01 output from
metgrid

OUTPUT: fort.65
wrfbdy_d01
wrfinput_d01

USAGE: real_nmm.exe

hwrf_swcorner_dynamic.exe

FUNCTION: Calculates the lower-left corner of a nest as (i_parent_start,
j_parent_start)

INPUT: storm.center – storm center location
domain.center – domain center location
fort.12 (namelist_main.input)

OUTPUT: set_nest, which contains the i_parent_start and
j_parent_start. For example the following set_nest file
specifies that the middle nest domain lower-left corner location is
at (99,225) on the parent domain grid.

istart=00099
jstart=00225

USAGE: hwrf_swcorner_dynamic.exe

Realfcst

The process for realfcst is the same as realinit, except that realfcst runs for the
length of the HWRF forecast, instead of only at the analysis time.

78

4. HWRF Preprocessing System

Runwrfanl

Runwrfanl is a WRFAnl4Trak object whose run module resides in ush/hwrf/fcsttask.py.
The module performs the following tasks:

1. Link the input and fixed files
2. Run hwrf_swcorner_dynamic.exe to calculate the istart and jstart values for a nest
3. Generate the namelist.input for grids identical to the HWRF forecast grids
4. Run wrf.exe to make a 90-s run of WRF and generate two analysis output files

Output files:

trackin_d01 – storm location in the parent domain
wrfanl_d02_YYYY-MM-DD_HH_00_00 – "analysis" file for 9-km nest
wrfanl_d03_YYYY-MM-DD_HH_00_00 – "analysis" file for 3-km nest

Status Check:

In the standard output file, you will find the line "INFO: gfsinit/wrfanl: com-
pleted".

Executables:

wrf.exe

FUNCTION: Atmospheric model component of HWRF

INPUT: Fixed files†

geo_nmm.d01.nc – d01 output from geogrid
geo_nmm.l01.nc – d02 output from geogrid
geo_nmm.l02.nc – d03 output from geogrid
wrfinput_d01 – ICs for parent domain from realinit
wrfbdy_d01 – LBCs for parent domain from realinit
namelist.input – WRF namelist

OUTPUT: trackin_d01
wrfanl_d02_YYYY-MM-DD_HH_00_00
wrfanl_d03_YYYY-MM-DD_HH_00_00

USAGE: wrf.exe

Runghost

Runghost is a WRFGhost object whose run module resides in ush/hwrf/fcsttask.py.
The module performs the following tasks:

1. Link the input and fixed files

79

4. HWRF Preprocessing System

2. Run hwrf_swcorner_dynamic.exe to calculate the istart and jstart values for a nest
3. Generate the namelist.input for the ghost domains
4. Run wrf.exe to make a 90-s run of WRF and generate two analysis output files

Output files:

wrfanl_d02_YYYY-MM-DD_HH_00_00 – "ghost" analysis file for 9-km nest
wrfanl_d03_YYYY-MM-DD_HH_00_00 – "ghost" analysis file for 3-km nest

Status Check:

In the standard output file of gfsinit, you will find the line "INFO: gf-
sinit/ghost: completed". Similarly for gdasinit, you will fine the line "INFO:
fgat.tYYYYMMHHDD/ghost:", where YYYYMMDDHH is the date string of the FGAT hour
valid time.

Executables

wrf.exe

FUNCTION: Atmospheric model component of HWRF

INPUT: Fixed files†

geo_nmm.d01.nc – d01 output from geogrid
geo_nmm.l01.nc – d02 output from geogrid
geo_nmm.l02.nc – d03 output from geogrid
wrfinput_d01 – ICs for parent domain from realinit
wrfbdy_d01 – LBCs for parent domain from realinit
namelist.input – WRF namelist

OUTPUT: wrfanl_d02_YYYY-MM-DD_HH_00_00
wrfanl_d03_YYYY-MM-DD_HH_00_00

USAGE: wrf.exe

†Fixed files:

aerosol.formatted
aerosol_lat.formatted
aerosol_lon.formatted
aerosol_plev.formatted
bulkdens.asc_s_0_03_0_9
bulkascii.asc_s_0_03_0_9
CAM_ABS_DATA
CAM_AEROPT_DATA
CAMtr_volume_mixing_ratio.A1B
CAMtr_volume_mixing_ratio.A2
CAMtr_volume_mixing_ratio.RCP4.5
CAMtr_volume_mixing_ratio.RCP6

CAMtr_volume_mixing_ratio.RCP8.5
capacity.asc
CCN_ACTIVATE.BIN
CLM_ALB_ICE_DFS_DATA
CLM_ALB_ICE_DRC_DATA
CLM_ASM_ICE_DFS_DATA
CLM_ASM_ICE_DRC_DATA
CLM_DRDSDT0_DATA
CLM_EXT_ICE_DFS_DATA
CLM_EXT_ICE_DRC_DATA
CLM_KAPPA_DATA
CLM_TAU_DATA

80

4. HWRF Preprocessing System

coeff_p.asc
coeff_q.asc
constants.asc
eta_micro_lookup.dat
hwrf_track
co2_trans
ETAMPNEW_DATA
ETAMPNEW_DATA_DBL
ETAMPNEW_DATA.expanded_rain
ETAMPNEW_DATA.expanded_rain_DBL
GENPARM.TBL
grib2map.tbl
gribmap.txt
kernels.asc_s_0_03_0_9
kernels_z.asc
LANDUSE.TBL
MPTABLE.TBL
masses.asc
ozone.formatted

ozone_lat.formatted
ozone_plev.formatted
RRTM_DATA
RRTM_DATA_DBL
RRTMG_LW_DATA
RRTMG_LW_DATA_DBL
RRTMG_SW_DATA
RRTMG_SW_DATA_DBL
SOILPARM.TBL
termvels.asc
tr49t67
tr49t85
tr67t85
URBPARM.TBL
URBPARM_UZE.TBL
VEGPARM.TBL
wind-turbine-1.tbl

Post

Post is a PostOneWRF object whose run module resides in ush/hwrf/post.py. This
instance of the module runs unipost.exe on the output of the 90-s WRF Analysis run.
The purpose of this step is to destagger the HWRF native output, interpolate it vertically to
pressure levels, compute derived variables, and output the result in GRIB format. Further
details about the post objects, modules, and executables can be found in Chapter 10.

Output:

In the intercom/fgat.tYYYYMMDDHH/post/fgat.tYYYYMMDDHH/post directory,
you will find the following file:

fgat.tYYYYMMDDHH_post-moad.egrb

Also, in the intercom/gfsinit/post/gfsinit/post directory, you will find the fol-
lowing file:

gfsinit_post-moad.egrb

Status check:

The line "INFO: state=COMPLETED" can be found in the standard output files for
gdasinit and gfsinit for the "post" task. Performing a search for both of quoted strings
should return one line for each FGAT hour for GDAS, and once for GFS.

81

4. HWRF Preprocessing System

Gribber

Gribber is a GRIBTask object and serves to regrib the output of post, interpolating the 18-km
parent domain GRIB file to a 20◦x 20◦grid. This file is used as input to the GFDL Vortex
Tracker. See Chapter 11 for more details about GRIBTask objects, modules, and executables.

Output:

In the intercom/fgat.tYYYYMMDDHH/regribber directory, you will find the files be-
low, where stormname and sid are the name of the storm and the SID in lower case (e.g.,
matthew 14l for Hurricane Matthew):

quarter_degree.grb
{stormname}{sid}.YYYYMMDDHH.hwrftrk.grbf[-3,00,03]
{stormname}{sid}.YYYYMMDDHH.hwrftrk.grbf[-3,00,03].grbindex
subset.grb

From the gfsinit task, in the intercom/gfsinit/regribber directory, you will find the
files:

quarter_degree.grb
{stormname}{sid}.YYYYMMDDHH.hwrftrk.grbf00
{stormname}{sid}.YYYYMMDDHH.hwrftrk.grbf00.grbindex
subset.grb

Status check:

In the standard output files for gdasinit and gfsinit, you will find the following string on the
same line as "regribber" for each FGAT hour: "WARNING: No subtasks incomplete.
I think I am done running. Will exit regribber now."

Tracker

The GFDL Vortex Tracker is run on the GRIB file resulting from the gribber step above.
The tracker object resides in ush/hwrf/tracker.py. More information about the tracker
can be found in section 11.

Output:

In the intercom/fgat.tYYYYMMDDHHHH directory, you will find the file:

gfs.track0.atcfunix – contains the storm center at initial time in the WRF anal-
ysis run output

Status Check:

In the standard output files for gdasinit and gfsinit, you should find the line "INFO:
Successful return status from gettrk.", once for gfsinit and once for each FGAT

82

4. HWRF Preprocessing System

hour in gdasinit.

83

5
Vortex Relocation

5.1 Introduction

The atmospheric component of HWRF, WRF-NMM, needs ICs and LBCs to produce fore-
casts. The GFS and GDAS fields are used to create the preliminary atmospheric fields,
which are further improved through the vortex adjustment procedures and data assimilation
to provide the final IC to WRF.

The vortex adjustment procedures are necessary because the initial vortex is often not
realistically represented in the preliminary ICs since it originates from a low-resolution
global data source, such as GDAS. Therefore, HWRF employs a sophisticated algorithm to
adjust the vortex to match the observed storm intensity, location, and structure.

Initial conditions for HWRF d02 and d03 are created by ingesting GDAS fields onto
the HWRF vortex initialization procedure. To prepare the fields for input in the vortex
initialization, two 90-s atmosphere-only forecasts are conducted. These runs are referred to
as the WRF Analysis and WRF Ghost runs, and their configuration is detailed in Chapter 4.
Within the vortex relocation code, the fields are interpolated to the 3X domain, a temporary
domain with 0.015◦ grid spacing. For historical reasons, some file names and executables
use 4X when referring to the 3X domain.

The HWRF vortex relocation process has three possible stages, which are determined
based on the intensity of the observed storm and on the availability of the 6-h forecast of
the previous HWRF run. Figure 5.1 describes Stages 1 and 2, and Figure 5.2 describes Stage
3. If the previous cycle HWRF forecast exists, and if the observed storm intensity is at least
14 ms−1, HWRF is run in cycled mode. In cycled mode, the the 6-h forecast vortex from
the previous HWRF cycle, adjusted according to the TC Vitals, is used for initializing the

84

5. Vortex Relocation

current cycle. If those conditions are not met, the HWRF initialization is a "cold start".

For a cold start of storms with observed intensity less than 20 ms−1, the GDAS vortex is
adjusted and then used. Conversely, for storms with observed intensity greater than or equal
to 20 ms−1, a bogus vortex is used. A cycled run will go through all the three stages, while
a "cold start" run will go through Stages 2 and 3 only.

Stage 1: The previous cycle 6-h HWRF forecast is separated into environment fields and a
storm vortex. This step is run only for cycled cases.
Stage 2: The preliminary IC generated by real_nmm and the WRF ghost and analysis runs
is separated into environment fields and a storm vortex.
Stage 3: The storm vortex from the 6-h forecast from the previous cycle (for cycled runs),
from the GDAS, or from the bogus vortex is adjusted to match the observed location,
intensity, and structure provided by the NHC for the current time. Then the vortex and
environment fields are combined.

85

5. Vortex Relocation

diffwrf_3dvar.exe (3 times)
(convert previous HWRF wrfout d01, d02,

d03 files to binary)

hwrf_merge_nest_4x_step12_3n.exe
 (merge wrfouts from d01, d02 and d03
onto 3X domain to produce data_4x_hwrf)

hwrf_split1.exe
(separate data_4x onto environment and

storm)

hwrf_create_trak
_guess.exe

(process
previous HWRF

track)

hwrf_pert_ct1.exe
(adjust the HWRF vortex)

diffwrf_3dvar.exe (5 times)
(wrfinput,_d01, wrfanl_d02, wrfanl_d03,

ghost_d02, and ghost_d03 to binary)

hwrf_merge_nest_4x_step12_3n.exe
 (info from d01,

d02 and d03 onto 3X domain to produce
data_4x_gfs and roughness2)

hwrf_split1.exe
(separate data_4x onto environment and

storm)

hwrf_create_trak
_fnl.exe

(process GFS
track)

Stage I is used to split the previous HWRF
forecast into storm and environment so that

the vortex can be adjusted and relocated. This
is not done when the storm is very weak, as it

is best to use the GFS vortex in that case.

For obs intensity > 10, the information of
location of HWRF vortex comes from the last

cycles combine domain. However, for obs
intensity <=10, the least cycle's parent domain

track is used.

Stage II is used to split the global forecast to
get the environment

Stage I - Runs if previous HWRF available
and obs intensity >=14 m/s

Stage II - Always runs

Figure 5.1: Simplified flow diagram of Stages 1 and 2 of the vortex relocation process.

86

5. Vortex Relocation

hwrf_anl_bogus_10m

hwrf_pert_ct1.exe
(adjust the global vortex)

hwrf_anl_4x_step2
(adjust the storm vortex obtained in Stage 2
and add it to the environment flow; produce

new_data_4x)

hwrf_anl_cs_10m
(only if hwrf_anl_4x_step2 produced flag_file)

(further adjust the vortex when vortex+env
flow is weaker than obs)

hwrf_inter_4to6.exe and
hwrf_inter_2to2.exe (2 times) interpolate to

d01, d02, and d03, respectively.

diffwrf_3dvar.exe
(convert to NetCDF)

hwrf_anl_4x_step2
(adjust the storm vortex obtained in Stage 1
and add it to the environment flow; produce

new_data_4x)

Cold and observed intensity < 20 m/s
Cycled and observed intensity < 14 m/s Cycled and observed intensity >= 14 m/s

Cold and observed intensity >= 20 m/s

Stage III
• For cold starts, bogus strong storms, but

use global vortex for weak ones.
• For cycled starts, use HWRF vortex for

strong storms but cycle global vortex for
weak ones.

diffwrf_3dvar.exe
(convert to NetCDF)

hwrf_inter_4to6.exe and
hwrf_inter_2to2.exe (2 times) interpolate to

d01, d02, and d03, respectively.

diffwrf_3dvar.exe
(convert to NetCDF)

hwrf_inter_4to6.exe and
hwrf_inter_2to2.exe (2 times) interpolate to

d01, d02, and d03, respectively.

hwrf_anl_cs_10m
(only if hwrf_anl_4x_step2 produced flag_file)

(further adjust the vortex when vortex+env
flow is weaker than obs)

Figure 5.2: Simplified flow diagram of Stage 3 of the vortex relocation process.

87

5. Vortex Relocation

5.2 Scripts

The vortex improvement procedure is entirely driven by the wrapper script relo-
cate_wrapper, which calls 4 instances of scripts/exhwrf_relocate.py. The first
instance runs relocate on the 90-s WRF Analysis run initialized from the GFS analysis. The
other three instances run relocate on the 90-s WRF Analysis runs created at each FGAT
time for the domains initialized by the GDAS forecasts. If the relocation procedure using
the GDAS-derived input files is successful, the relocate results from GFS-derived fields are
discarded.

5.2.1 Overview of exhwrf_relocate.py

The numbered items in the following list indicate calls made from the exh-
wrf_relocate.py script, while the lower level list items are calls made within the Python
modules.

1. Initialize the objects used to run all components of HWRF by calling
hwrf_expt.init_module().

2. If GFS: run relocate at analysis time
a) Stage 1
b) Stage 2
c) Stage 3

3. If GDAS: run relocate for each FGAT time
a) Stage 1
b) Stage 2
c) Stage 3

5.2.2 Overview of the Relocate Modules

Stage 1

1. Copy the fixed files and input files to the working directory.
2. Check if the HWRF forecast from the previous cycle exists, and if the storm intensity

is greater than 14 ms−1; if not, continue to Stage 2.
3. Run diffwrf_3dvar.exe to convert the previous cycle forecast output

wrfout_d0[1-3] into unformatted data files old_hwrf_d0[1-3] respectively.
4. Run hwrf_merge_nest_4x_step12_3n.exe to merge old_hwrf_d0[1-3] onto

3X domain and produce a file containing the merged data: data_4x_hwrf.
5. Run hwrf_create_trak_guess.exe to produce a guess track (0,3,6,9 hour) file,

trak.fnl.all, for the current forecast using previous cycle forecast track.
6. Run hwrf_split1.exe to separate data_4x_hwrf into two parts, an environ-

ment field (wrf_env) and a storm vortex (storm_pert). A storm radius data file

88

5. Vortex Relocation

(storm_radius) is also generated.
7. Run hwrf_pert_ct1.exe to do adjustments to storm_pert. The new storm vortex

data (storm_pert_new) as well as two files containing the storm size information
(storm_size_p) and the symmetric part of the vortex (storm_sym) are generated.

Output files:

storm_size_p Storm size information
storm_pert_new New storm vortex after adjustments by hwrf_pert_ct1.exe
storm_sym Symmetric part of the vortex
storm_radius Storm radius information
wrf_env Environment field

Status Check:

If the line "INFO: Stage 1 completed" is found in the standard output, Stage 1 was
successful.

Executables:

diffwrf_3dvar.exe

This executable serves two functions, denoted by 1 or 2 below.

FUNCTION: 1. Converts netCDF input to unformatted file (when first argument is
"storm_relocate")
2. Updates existing netCDF file with new unformatted file (when first argu-
ment is "3dvar_update")

INPUT: 1. netCDF format input files or previous cycle 6-h forecast
2. Unformatted file containing new vortex fields

OUTPUT: 1. Unformatted data file
2. Updated netCDF file

USAGE: 1. diffwrf_3dvar.exe storm_relocate input_file flnm3 \

output_file
The command above writes the WRF file input_file into an unformatted
file, output_file, which will be used in the vortex relocation procedures.
2. diffwrf_3dvar.exe 3dvar_update input_file output_file
The command above updates input_file with unformatted file out-
put_file, which contains new vortex fields.

hwrf_merge_nest_4x_step12_3n.exe

FUNCTION: Merges inner and outer domains onto a 3X domain

89

5. Vortex Relocation

INPUT: $gesfhr (=6) – last digit of the input/output fort file, i.e., fort.26
$st_int – storm intensity, the 68-69 characters in tcvital.as
$ibgs (=0) – stage 1 always set to (ibgs=0)
$dom_center_lat – the domain center lat, domlat in storm1.conf file
$dom_center_lon – the domain center lon, domlon in storm1.conf file
tcvitals.as (fort.11) – observed storm center
old_hwrf_d01 (fort.26)
old_hwrf_d02 (fort.36)
old_hwrf_d03 (fort.46)

OUTPUT: data_4x_hwrf (fort.56) – merged data from inner and outer do-
mains
roughness1 or roughness2 (fort.66) – sea-mask (1=sea, 0=land)
and ZNT (roughness length) merged onto the 3X domain.
30_degree_data (fort.61): partially merged data from inner and
outer domains (not used later)

USAGE: echo $gesfhr $st_int $ibgs $dom_center_lat
$dom_center_lon | hwrf_merge_nest_4x_step12_3n.exe

hwrf_create_trak_guess.exe

FUNCTION: Guesses storm center from previous 6-h forecast position

INPUT: $storm_id – storm ID
$ih – model initial hour
tcvitals.as (fort.11) – observed storm center
hdas_atcfunix (fort.12) – track file from previous cycle 6-h fore-
cast.

OUTPUT: trak.fnl.all (fort.30) – storm center guess (at 0, 3, 6, 9 h)

USAGE: echo $storm_id $ih | hwrf_create_trak_guess.exe

hwrf_split1.exe

FUNCTION: Splits the vortex from the background (environmental) field

90

5. Vortex Relocation

INPUT: $gesfhr (=6) – last digit of the input/output fort file, i.e., fort.26
$ibgs (=0) – stage 1 always set to (ibgs=0)
$st_int – storm intensity, the 68-69 characters in tcvital.as
$BASIN – the storm basin e.g. AL
$iflag_cold – trigger used in fortran relocation programs, cycled start
(=0) or a cold run (=1)
$crfactor (=1) – no ensda relocate
tcvitals.as (fort.11) – storm center obs
data_4x_hwrf (fort.26) – merged data, on 3X domain, from inner
and outer domains
trak.fnl.all (fort.30) – storm center guess
old_hwrf_d01 (fort.46) – outer domain data

OUTPUT: wrf_env (fort.56) – environmental flow
storm_pert (fort.71) – separated 3D vortex field
storm_radius (fort.85) – average of model and observed storm ra-
dius
rel_inform.$cdate (fort.52) – diagnostics file (obs-previous 6-h
forecast)
vital_syn.$cdate (fort.55) – information for generating bogus if
storm not found in previous 6-h forecast

USAGE: echo $gesfhr $ibgs $st_int $BASIN $iflag_cold $crfactor
| hwrf_split.exe

hwrf_pert_ct1.exe

FUNCTION: Adjusts storm vortex (storm_pert)

INPUT: $gesfhr (=6) – last digit of the input/output fort file, i.e., fort.26
$BASIN – the storm basin e.g. AL
$initopt (=0) – 0 since no ensda relocate, 0 smooths uv
tcvitals.as (fort.11) – storm center obs
wrf_env (fort.26) – environmental flow (from hwrf_split1.exe)
roughness1 (fort.46) – sea-mask (1=sea, 0=land) and ZNT (rough-
ness length) merged onto the 3X domain.
storm_radius (fort.65) – storm radius
storm_pert (fort.71) – separated 3D vortex field (from
hwrf_split1.exe)

OUTPUT: storm_pert_new (fort.58) – adjusted storm perturbation
storm_size_p (fort.14) – storm size information
storm_sym (fort.23) – storm symmetry information

USAGE: echo $gesfhr $BASIN $initopt | hwrf_pert_ct1.exe

91

5. Vortex Relocation

Stage 2

1. Copy the fix files and namelist.
2. Run diffwrf_3dvar.exe to convert wrfinput_d0[1-3] and wrfghost_d0[2-3]

to binary files new_gfs_d0[1-3] and new_ght_d0[2-3], respectively.
3. Run hwrf_create_trak_fnl.exe to create trak.fnl.all_gfs, a guess track file

from atcfunix.
4. Run hwrf_merge_nest_4x_step12_3n.exe to merge all three HWRF domains

(new_gfs_d0[1-3]) onto the 3X domain. This will generate the file containing the
merged data on the 3X domain (data_4x_gfs) and a file containing sea-mask and
roughness length data (roughness2).

5. Run hwrf_split1.exe to separate the data_4x_gfs into environment data
(gfs_env) and storm vortex (storm_pert_gfs). A file containing the storm radius
information will be generated, too (storm_radius_gfs).

Status Check:

In the standard output file, the line "INFO: Stage 2 completed" should exist.

Output files:

gfs_env environment fields from GFS data
roughness2 sea-mask and roughness length from GFS data
storm_pert_gfs storm vortex from GFS data
storm_radius_gfs storm radius information from GFS data

Executables:

diffwrf_3dvar.exe
Refer to Stage 1 in section 5.2.2.

hwrf_create_trak_fnl.exe

FUNCTION: Guesses storm center from forecast position

INPUT: $storm_id – storm ID
$sy – simulationl start year YYYY
$BASIN – the storm basin e.g. AL
tcvitals.as (fort.11) – observed storm center
atcfunix (fort.12) – a guess track file

OUTPUT: trak.fnl.all_gfs (fort.30) – storm center guess (at 0, 3, 6, 9 h)

USAGE: echo $storm_id $sy $BASIN | hwrf_create_trak_guess.exe

92

5. Vortex Relocation

hwrf_merge_nest_4x_step12_3n.exe

FUNCTION: Merges inner and outer domains onto a 3X domain

INPUT: $gesfhr (=6) – last digit of the input/output fort file, i.e., fort.26
$st_int (=0) – stage 2 storm intensity always set to (st_int=0)
$ibgs (=1) – stage 2 always set to (ibgs=1)
$dom_center_lat – the domain center lat, domlat in storm1.conf file
$dom_center_lon – the domain center lon, domlon in storm1.conf file
$BASIN – the storm basin e.g. AL
tcvitals.as (fort.11) – observed storm center
old_hwrf_d01 (fort.26)
old_hwrf_d02 (fort.36)
old_hwrf_d03 (fort.46)

OUTPUT: data_4x_hwrf (fort.56) – merged data from inner and outer do-
mains
roughness1 or roughness2 (fort.66) – sea-mask (1=sea, 0=land)
and ZNT (roughness length) merged onto the 3X domain.
30_degree_data (fort.61): partially merged data from inner and
outer domains (not used later)

USAGE: echo $gesfhr $st_int $ibgs $dom_center_lat
$dom_center_lon $BASIN | hwrf_merge_nest_4x_step12_3n.exe

hwrf_split1.exe

FUNCTION: Splits the vortex from the background (environmental) field

INPUT: $gesfhr (=6) – last digit of the input/output fort file, i.e., fort.26
$ibgs – for stage 2, if storm_pert_new exists, cycled, (ibgs=1) else cold
(ibgs=2)
$st_int – storm intensity, the 68-69 characters in tcvital.as
$BASIN – the storm basin e.g. AL
$iflag_cold – trigger used in fortran relocation programs, cycled start
(=0) or a cold run (=1)
$crfactor (=1) – 1 indicates no ensda relocate
tcvitals.as (fort.11) – storm center obs
data_4x_hwrf (fort.26) – merged data, on 3X domain, from inner
and outer domains
trak.fnl.all (fort.30) – storm center guess
old_hwrf_d01 (fort.46) – outer domain data

93

5. Vortex Relocation

OUTPUT: wrf_env (fort.56) – environmental flow
storm_pert (fort.71) – separated 3D vortex field
storm_radius (fort.85) – average of model and observed storm ra-
dius
rel_inform.$cdate (fort.52) – diagnostics file (obs-previous 6-h
forecast)
vital_syn.$cdate (fort.55) – information for generating bogus if
storm not found in previous 6-h forecast

USAGE: echo $gesfhr $ibgs $st_int $BASIN $iflag_cold $crfactor
| hwrf_split.exe

Stage 3

For a cold start or cycled start of a weak storm: The vortex and environment are obtained
from the global data.

1. Link the input and fixed files.
2. Run hwrf_pert_ct1.exe to adjust the GDAS (or GFS) vortex (storm_pert_gfs

from Stage 2).
3. Run hwrf_anl_4x_step2.exe to adjust the storm vortex (storm_pert_gfs1) and

add the new storm vortex to the environment flow (gfs_env) on the 3X domain grid.
This will produce a new file (new_data_4x) containing the combined environment
flow and the adjusted storm vortex.

4. When the combined vortex and environment flow is weaker than observations, discard
the new file (new_data_4x), and run hwrf_anl_cs_10m.exe to further adjust the
analysis. This produces a new version of new_data_4x containing the combined
environment flow and adjusted vortex.

5. Run hwrf_inter_2to2.exe to interpolate the new_data_4x from the 3X domain
onto the ghost_d02 grid. This will produce the new data_merge_g02.

6. Run hwrf_inter_2to2.exe to interpolate the new_data_4x from the 3X domain
onto the ghost_d03 grid. This will produce the new data_merge_g03.

7. Run hwrf_inter_4to6.exe to interpolate the new_data_4x from the 3X domain
onto the outermost HWRF grid. This will produce the new data_merge_d01. Input
file for storm radius is storm_radius_gfs.

8. Run diffwrf_3dvar.exe to convert the merged data files (data_merge_d01 and
data_merge_g0[2-3]) to NetCDF files (wrfinput_d01 and wrfghost_d0[2-3]).

For a cycled start of a strong storm: Performs all steps from cold/cycled weak storm
except for Step 2. For a strong cycled storm, hwrf_pert_ct1.exe runs in Stage 1 and the
vortex is taken from the previous HWRF forecast.

For a cold start of a strong storm: The vortex is an adjusted bogus vortex.

1. Link the input and fixed files.
2. Run hwrf_anl_bogus_10m.exe to create a bogus vortex and add it to the environ-

ment.

94

5. Vortex Relocation

3. Perform Steps 5-8 of the weak storm procedure.

Status Check:

The line "INFO: Stage 3 completed" exists in the standard output.

Executables:

hwrf_pert_ct1.exe

FUNCTION: Adjusts storm vortex (storm_pert)

INPUT: $gesfhr (=6) – last digit of the input/output fort file, i.e., fort.26
$BASIN – the storm basin e.g. AL
$initopt (=0) – 0 smooths uv
tcvitals.as (fort.11) – storm center obs
atcfunix (fort.12) – storm track file
gfs_env (fort.26) – environmental flow (from hwrf_split1.exe)
roughness1 (fort.46) – sea-mask (1=sea, 0=land) and ZNT (rough-
ness length) merged onto the 3X domain.
storm_radius (fort.65) – storm radius
storm_pert (fort.71) – separated 3D vortex field (from
hwrf_split1.exe)

OUTPUT: Cycled start of a weak storm
storm_pert_new (fort.58) – adjusted storm perturbation
storm_sym (fort.23) – storm symmetry information

OUTPUT: Cold start of a weak storm
storm_pert_new (fort.58) – adjusted storm perturbation
storm_sym (fort.23) – storm symmetry information
storm_size_p (fort.14) – storm size information

USAGE: echo $gesfhr $BASIN $initopt | hwrf_pert_ct1.exe

hwrf_anl_4x_step2.exe

FUNCTION: Adjusts the storm vortex and adds the new storm vortex to the environ-
ment flow on the 3X domain grid

95

5. Vortex Relocation

INPUT: $gesfhr (=6) – last digit of the input/output fort file, i.e., fort.26
$BASIN – the storm basin e.g. AL
$gfs_flag – 0 or 1
$initopt – initopt = 0, full vortex initialization; 1, relocation only
tcvitals.as (fort.11) – storm center obs
hdas_atcfunix (fort.12) – input track file from previous 6-h fore-
cast
storm_size_p (fort.14) – from hwrf_pert_ct1.exe
storm_sym (fort.23) – symmetric part of storm
gfs_env (fort.26) – GFS environmental flow
roughness1 (fort.46) – roughness output from Stage 2 executable
merge_nest_4x_step2.exe
storm_pert_new (fort.71) – adjusted storm perturbation from
hwrf_pert_ct1.exe
Uses fort.30 input if cycled weak run trak.fnl.all (fort.30) –
storm center guess
trak.fnl.all_gfs_cen (fort.30) – Uses this gfs_cen if trak.fnl.all
is empty.

OUTPUT: wrf_env_new (fort.36) – new environmental flow
new_data_4x (fort.56) – adjusted vortex plue environment on 3X
domain

USAGE: echo $gesfhr $BASIN $gfs_flag $initopt |
hwrf_anl_4x_step2.exe

hwrf_anl_cs_10m.exe

FUNCTION: Further adjusts the storm vortex when combined vortex plus environmen-
tal flow is less than the observed maximum wind speed

INPUT: $gesfhr (=6) – last digit of the input/output fort file, i.e., fort.26
$BASIN – the storm basin e.g. AL
$iflag_cold – trigger used in fortran relocation programs, cycled start
(=0) or a cold run (=1)
tcvitals.as (fort.11) – observed storm center
storm_sym (fort.23) – symmetric part of storm (from
hwrf_pert_ct1.exe)
wrf_env_new (fort.26) – new environmental flow (from
hwrf_anl_4x_step2.exe)
roughness (fort.46) – roughness info for boundary layer calculation
(from hwrf_merge_nest_4x_step2.exe)
storm_radius (fort.85) – from wrf_split.exe
hwrf_storm_cyn_axisy_47 (fort.71,72,73,74,78) input static
vortex data
hwrf_60_storm_30 (fort.75,76,77) – input static vortex data

96

5. Vortex Relocation

OUTPUT: new_data_4x (fort.56) – adjusted field on 3X domain when com-
bined vortex + environmental flow is less than the observed maximum
wind speed (replaces previous file)

USAGE: echo $gesfhr $BASIN $iflag_cold | hwrf_anl_cs_10m.exe

hwrf_inter_4to6.exe

FUNCTION: Interpolates from 3X domain onto outer domain

INPUT: $gesfhr (=6) – last digit of the input/output fort file, i.e., fort.26
$BASIN – the storm basin e.g. AL
tcvitals.as (fort.11) – observed storm center
new_gfs_d01 (fort.26) – outer domain adjusted GFS data
new_data_4x (fort.36) – adjusted storm
new_gfs_d01 (fort.46) – outer domain adjusted GFS data
storm_radius_gfs (fort.85)

OUTPUT: data_merge_d01 (fort.56) – merged data on outer domain

USAGE: echo $gesfhr $BASIN | hwrf_inter_4to6.exe

hwrf_inter_2to2.exe

FUNCTION: Interpolates from 3X domain to ghost_d02 or ghost_d03

INPUT: $gesfhr (=6) – last digit of the input/output fort file, i.e., fort.26
$iflag (=1) – stage 3 always set to (iflag=1)
tcvitals.as (fort.11) – observed storm center
new_data_4x (fort.26) – adjusted vortex + environment
new_ght_d0[2-3] (fort.36) – input ghost file in binary format from
either d02 or d03
new_gfs_d01 (fort.46) – outer domain adjusted GFS data

OUTPUT: data_merge_g0[2-3] (fort.56) – merged data on respective do-
main

USAGE: echo $gesfhr $iflag | hwrf_inter_2to2.exe

diffwrf_3dvar.exe
Refer to Stage 1 in section 5.2.2.
e.g. diffwrf_3dvar.exe 3dvar_update wrfinput_d01 data_merge_d01

hwrf_anl_bogus_10m.exe

97

5. Vortex Relocation

FUNCTION: Creates a bogus storm and adds it to the environmental flow

INPUT: $gesfhr (=6) – last digit of the input/output fort file, i.e., fort.26
$BASIN – the storm basin e.g. AL
tcvitals.as (fort.11) – observed storm center
gfs_env (fort.26) – GFS environmental flow
data_4x_gfs (fort.36) – merged GFS inner/outer domain data
roughness2 (fort.46) – roughness info for boundary layer calcula-
tion
storm_pert_gfs (fort.61) – separated GFS 3D vortex field
storm_radius_gfs (fort.85)
hwrf_storm_cyn_axisy_47 (fort.71,72,73,74,78) input static
vortex data
hwrf_60_storm_30 (fort.75,76,77) input static vortex data

OUTPUT: new_data_4x: combined environment flow and bogus field on the 3X
domain

USAGE: echo $gesfhr $BASIN | hwrf_anl_bogus_10m.exe

98

6
Data Assimilation

6.1 Introduction

The preliminary initial conditions created by downscaling the global model data and per-
forming the vortex relocation procedures are further modified with data assimilation using
GSI on the 6- and 2-km WRF Ghost domains. No data assimilation is done in the 18-km
parent domain. The term HDAS, or HWRF Data Assimilation System, refers to the process
of running GSI for data assimilation in HWRF.

The data assimilation in HWRF is performed using the hybrid ensemble-variational method.
This indicates that the background error covariance information is a combination of two
sources, a static, pregenerated matrix from the global model, and a flow-dependent matrix
derived from an ensemble of 6-h forecasts. Because HWRF uses an ensemble, but does not
feedback into it, this procedure is termed "one-way hybrid". The 2017 HWRF operational
implementation uses a self-cycled HWRF ensemble hybrid data assimilation system. This
two-way coupled system updates each of the 40 HWRF ensemble members through EnKF
analysis. The new system is utilized for the North Atlantic and Eastern Pacific domains
for high priority storms, for example, when inner-core data from NOAA’s P3 TDR are
available. However, this procedure is not supported in the HWRF v3.9a public release.
Users can still use the GFS ensemble for hybrid ensemble-variational data assimilation. For
more information on the ensemble-variational method, refer to the HWRF v3.9a Scientific
Documentation available from the DTC website (www.dtcenter.org/HurrWRF/users).

The datasets assimilated in operations in the 6-km (d02) and 2-km (d03) domains are de-
scribed in the HWRF Scientific Documentation. HWRF has the capability of assimilating
tropical cyclone inner-core data such as the NOAA’s P3 TDR observation. To collect inner-
core observations, an aircraft has to penetrate the target TC multiple times to finish one

99

www.dtcenter.org/HurrWRF/users

6. Data Assimilation

mission, which may take several hours; therefore the observations in one TDR data set are
collected at different times. In order for GSI to calculate the innovation, defined as the
difference between the first guess and the analysis, it needs to have the first guess and the
observations valid at the same time. To accomplish this for observations that span a range of
times, the First Guess at Appropriate Time (FGAT) procedure is used. In FGAT, first-guess
fields valid at various times are supplied to GSI, which then interpolates the data to the
time in which each observation was taken. For HWRF, first-guess fields are created at three
time levels: 3 h before the HWRF initial time (Figure 4.2); at the HWRF initial time (Figure
4.3); and 3 h after the HWRF initial time (Figure 4.4). To create the three first-guesses,
the real_nmm, short WRF forecasts, and vortex adjustment procedures are performed three
times. This produces all of the ghost d03 and ghost d02 output files that are used by GSI in
its FGAT operation (Figure 6.1).

After the data is assimilated in the ghost d02 and ghost d03 domains, the preliminary
analysis for the parent domain, the middle and inner domain output from the WRF Analysis,
and the ghost d02 and ghost d03 GSI analysis (which used FGAT) are merged to produce
the final atmospheric IC for the 5-day forecast. To perform the data assimilation in the ghost
domain, users should run GSI and then merge. For more details about GSI, please consult
the GSI Users’ Guide available from the DTC at http://www.dtcenter.org/com-GSI/
users/docs/users_guide/GSIUserGuide_v3.6.pdf.

GSI d02

gsi_out_storm1ghost_parent

merge

wrfinput_d01 wrfanl_d03wrfanl_d02

WRF

GSI d03

gsi_out_storm1ghost

wrfghost_d02
analysis time

wrfghost_d02
- 3h

wrfghost_d02
+ 3h

wrfanl_d03wrfanl_d02

wrfbdy_d01

wrfghost_d03
analysis time

wrfghost_d03
- 3h

wrfghost_d03
+ 3h

wrfinput_d01

Figure 6.1: Simplified GSI and merge procedures. Purple outlined boxes correspond to the
purple outlined boxes of the Figures in section 4.2. Blue boxes are NetCDF files.

6.2 Scripts

The HWRF data assimilation component begins by running a data preparation script, bufr-
prep_wrapper, which calls scripts/exhwrf_bufrprep.py. Next two wrapper scripts,
gsi_d02_wrapper and gsi_d03_wrapper are run. These wrappers are responsible for
calling their respective instances of scripts/exhwrf_gsi.py.

100

http://www.dtcenter.org/com-GSI/users/docs/users_guide/GSIUserGuide_v3.6.pdf
http://www.dtcenter.org/com-GSI/users/docs/users_guide/GSIUserGuide_v3.6.pdf

6. Data Assimilation

6.2.1 Overview of exhwrf_bufrprep.py

1. Initialize the objects used to run all components of HWRF by calling
hwrf_expt.init_module().

2. If GSI is enabled, run the bufr data preparation script.

6.2.2 Overview of the Bufrprep Module

The run module for the bufr data preparation step (an FGATGSI class object) is located in
ush/hwrf/bufrprep.py, and is responsible for the following tasks:

1. Copy the prepbufr files
2. Link the specified observations files
3. Run a prepbufr processing algorithm based on the choice of bufr-

prep.prepbufrprep flag in hwrf.conf.
• Case 0: Make no change. Do not run a program.
• Case 1: Remove some inner-core data by running
hwrf_rem_prepbufr_typ_in_circle.

• Case 2: Change the flag for mass and dropsonde u, v data by running
hwrf_change_prepbufr_qm_in_circle.

• Case 3: Unflag HS3 dropsonde data by running
hwrf_change_prepbufr_qm_typ. (Default value)

Output files:

gsi_status.{STORMNAME}{SID}.YYYYMMDDHH GSI status file
gfs.tHHz.prepbufr.nr prepbufr data

Status Check:

In the standard output file, you will find: INFO: - exit status 0.

Executables:

hwrf_rem_prepbufr_typ_in_circle.exe

FUNCTION: Removes some inner core data

INPUT: prepbufr.ALL (fort.21) – prepbufr file containing original observa-
tions
$RLATC – environment parameter for storm latitude
$RLONC – environment parameter for storm longitude
$RRADC – environment parameter for the radius of a circle centered at
TC center

OUTPUT: prepbufr (fort.51) – edited prepbufr file

101

6. Data Assimilation

USAGE: hwrf_rem_prepbufr_typ_in_circle.exe

hwrf_rem_prepbufr_qm_in_circle.exe

FUNCTION: Flags or unflags observations of mass and dropsonde u, v data

INPUT: prepbufr.ALL (fort.21) – prepbufr file containing original observa-
tions
$RRADC – environment parameter for half the side length of a square cen-
tered at TC center
$RRADC – environment parameter for the radius of a circle centered at
TC center

OUTPUT: prepbufr (fort.51) – edited prepbufr file

USAGE: hwrf_rem_prepbufr_qm_in_circle.exe

hwrf_change_prepbufr_qm_typ.exe

FUNCTION: Unflags HS3 dropsonde data

INPUT: prepbufr.ALL (fort.21) – prepbufr file containing original observa-
tions

OUTPUT: prepbufr (fort.51) – edited prepbufr file

USAGE: hwrf_change_prepbufr_qm_typ.exe

6.2.3 Overview of exhwrf_gsi.py

1. Initialize the objects used to run all components of HWRF by calling
hwrf_expt.init_module().

2. Run GSI for the appropriate domain.

6.2.4 Overview of the GSI Module

The run module for GSI (an FGATGSI class object) is located in ush/hwrf/gsi.py, and is
responsible for the following tasks:

1. Link the fixed files
2. Link the GFS ensemble files
3. Link the observation files
4. Link the bias correction files

102

6. Data Assimilation

5. Create a namelist for the GSI analysis
6. Copy the background file (wrfinout) from the corresponding WRF Ghost run
7. Run gsi.exe

Output files:

stdout The standard text output file. It is the file most often used to check
the GSI analysis processes as it contains basic and important information
about the analyses.

wrf_inout Analysis results; format is same as the input background file

Status Check:

In the standard output file, you will find the line "INFO: GSI succeeded" followed by the
domain for which the assimilation was run (storm1ghost_parent is the intermediate nest and
storm1ghost is the innermost nest).

Executables:

gsi.exe

FUNCTION: Performs the GSI 3D hybrid ensemble-variational data assimilation anal-
ysis

INPUT: gsiparm.anl – GSI namelist, created by the script by modifying tem-
plate /parm/hwrf_gsi.nml
filelist – ASCII file with 80 lines, each one containing a file name for
a GFS ensemble member (used for ensemble-based background covari-
ance).
satbias_in – file containing input coefficients of bias correction for
satellite radiance observations, from dataset directory
satbias_pc – file containing input coefficients of bias correction for pas-
sive satellite radiance observations, from dataset directory
wrf_inout – background file, copied from WRF Ghost output
Various observations in BUFR and prepBUFR format

OUTPUT: wrf_inout – analysis results if GSI completes successfully. The format
is the same as the background file.

satbias_out – Newly computed satellite bias correction coefficients

USAGE: gsi.exe < gsiparm.anl

103

7
Merge

7.1 Introduction

Once the HWRF atmospheric initialization has been completed with the use of the vortex
relocation and data assimilation, the adjusted ICs on all grids must be merged to provide
the final ICs for the HWRF 5-day forecast. The origin of the files going into the merge
procedure is shown in Figure 6.1. The merge is run by the wrapper script merge_wrapper.
A description of the domains used in HWRF is included in section 4.1.

7.2 Scripts

Merge is run by submitting the merge_wrapper, which sets necessary environment vari-
ables before running Python script exhwrf_merge.py.

7.2.1 Overview of exhwrf_merge.py

1. Initialize the objects used to run all components of HWRF by calling
hwrf_expt.init_module().

2. Run the gdas_merge Python module.

104

7. Merge

7.2.2 Overview of Merge Module

Merge is a RelocationTask object whose run module lives in ush/hwrf/relocate.py and
is responsible for the following tasks:

1. Copy the input files.
2. Check to see whether storm_radius file exists from relocate process and contains

information.
3. Run diffwrf_3dvar.exe to convert the netCDF format wrfinput_d0[1-3] and

wrfghost_d0[2-3] to unformatted data files new_hdas_d01, new_gfs_d0[2-
3], and new_ght_d0[2-3].

4. Run hwrf_inter_2to1.exe to interpolate the data in file new_ght_d03 and
new_gfs_d03 to the inner-nest domain grid. This will produce the merged data
on the inner-nest grid (data_merge_d03).

5. Run hwrf_inter_2to1.exe to interpolate the data in file new_ght_d02 and
new_gfs_d02 to the inner-nest domain grid. This will produce the merged data
on the inner-nest grid (data_merge_d02).

6. Run hwrf_inter_2to6.exe to interpolate the files new_hdas_d01,
new_gfs_d02, and new_ght_d02 to the outer domain grid. This will produce
the merged data on the outer domain grid (data_merge_d01).

7. Run diffwrf_3dvar.exe to convert the unformated files data_merge_d0[1-3] to
the netCDF format files wrfinput_d0[1-3].

8. Deliver the products.

Output files:
wrfinput_d01 IC for the outer domain containing the new vortex
wrfinput_d02 IC for the middle-nest domain containing the new vortex
wrfinput_d03 IC for the inner-nest domain containing the new vortex

Status Check:

Check that output files exist in the intercom/gdas_merge directory for the current
cycle. The line "INFO: exhwrf_merge has completed" will also appear near the end
of the standard output file.

Executables:

diffwrf_3dvar.exe
Refer to Stage 1 in section 5.2.2.

105

7. Merge

hwrf_inter_2to1.exe

FUNCTION: Interpolates from ghost domains to nest domains (DOMAIN is "02" or "03")

INPUT: $gesfhr (=6) – last digit of the input/output fort file, i.e. fort.26
new_ght_d{DOMAIN} (fort.26) – data on ghost domain
new_gfs_d{DOMAIN} (fort.36) – data on nest domain

OUTPUT: data_merge_d{DOMAIN} (fort.56) – interpolated data on inner do-
main

USAGE: echo $gesfhr $BASIN | hwrf_inter_2to1.exe

hwrf_inter_2to6.exe

FUNCTION: Interpolates data from ghost domain to outer domain.

INPUT: $gesfhr (=6) – last digit of the input/output fort file, i.e. fort.26
new_gfs_d02 (fort.26) – data on HWRF middle nest grid
new_ght_d02 (fort.36) – data on ghost d03 grid
new_hdas_d01 (fort.46) – data on outer domain grid
storm_radius (fort.85) – storm radius obtained from wrf_split1.exe
in either Stage 1 (cycled run) or Stage 2 (cold start)

OUTPUT: data_merge_d01 (fort.56) – interpolated data on outer domain

USAGE: echo $gesfhr $BASIN | hwrf_inter_2to6.exe

106

8
Ocean Initialization for

MPIPOM-TC

8.1 Introduction

This chapter explains how to run the initialization of the MPIPOM-TC component of the
HWRF model, available from the DTC. Users are also encouraged to read the HWRF v3.9a
Scientific Documentation.

8.2 Scripts

The initialization of the HWRF ocean model, MPIPOM-TC, is accomplished by running the
init_ocean_wrapper, which is responsible for linking the ocean executables to the exec/
directory and running exhwrf_ocean_init.py to generate updated initial conditions for
the ocean forecast component of HWRF.

8.2.1 Overview of exhwrf_ocean_init.py

1. Initialize the objects used to run all components of HWRF by calling
hwrf_expt.init_module().

107

8. Ocean Initialization for MPIPOM-TC

2. Run pominit. If successful, write a status file to indicate that the forecast will be
coupled, otherwise indicate that the forecast will be uncoupled.

8.2.2 Overview of Ocean Init Modules

1. Determine the region for which the ocean model will be run. Currently supported op-
tions are Transatlantic, East Pacific, West Pacific, North Indian, South Indian, South-
west Pacific, and Southeast Pacific domains, as described in the HWRF Scientific
Documentation.

2. Determine the ocean initial condition module to be used. Currently supported op-
tions, which are consistent with the 2017 operational configuration of HWRF, include
the Generalized Digital Environmental Model (GDEM) temperature and salinity cli-
matology with feature-based modifications for the transatlantic domain, NCEP global
eddy resolving 1/12 degree operational RTOFS temperature and salinity data for the
East Pacific and Central Pacific domains and the unmodified GDEMv3 climatology for
all other domains.

3. Link the input and fix files.
4. Run gfdl_getsst.exe to obtain the sea surface temperature and land/sea mask

from the GFS analysis.
5. Run gfdl_sharp_mcs_rf_l2m_rmy5.exe (in transatlantic domain only) to assimi-

late ocean features, including major fronts and eddies, and sharpen the frontal gradi-
ents.

6. Run transatl06prep.xc (in transatlantic domain only) to blend the sharpened
GDEM and the unsharpened GDEM along 50 W longitude.

7. Prepare ocean initial conditions for MPIPOM-TC Phase 1. By default, pom-
prep_fbtr.xc is used for the transatlantic domain, pomprep_rtof.xc is used for
the East Pacific domain, and pomprep_gdm3.xc is used for all other domains. Also,
by default, executables are set to assimilate the GFS SST analysis into the upper ocean
mixed layer, creating an ocean initial condition at the sea surface that is identical to
the atmospheric initial condition at the sea surface.

8. Run hwrf_ocean_init.exe for Phase 1 to spin up the ocean currents. The SST is
held constant during Phase 1. Historically, Phase 1 has also been known as Phase 3, so
the terms Phase 1 and Phase 3 are sometimes used interchangeably.

9. Run hwrf_ocean_init.exe for Phase 2 to generate the cold wake at the sea surface
prior to the start of the coupled model forecast. Historically, Phase 2 has also been
known as Phase 4, so the terms Phase 2 and Phase 4 are sometimes used interchange-
ably.

Executables:

gfdl_getsst.exe

FUNCTION: Extract SST, land/sea mask, and lon/lat data from the GFS spectral files.

INPUT: fort.11 (gfs.YYYYMMDDHH.tHHz.sfcanl)

108

8. Ocean Initialization for MPIPOM-TC

OUTPUT: fort.21 (sst.gfs.dat)
fort.22 (mask.gfs.dat)
fort.23 (lonlat.gfs)
getsst.out

USAGE: gfdl_getsst.exe > getsst.out

gfdl_sharp_mcs_rf_l2m_rmy5.exe

FUNCTION: Run the feature-based sharpening program, which takes the GDEM T/S
climatology, horizontally interpolates it onto the old POM-TC grid for
the United domain, and employs the diagnostic, feature-based modeling
procedure, as described in the HWRF Scientific Documentation. This
executable is called for the transatlantic domain only.

INPUT: input_sharp
fort.66 (gfdl_ocean_topo_and_mask.REGION)
fort.8 (gfdl_gdem.MM.ascii)
fort.90 (gfdl_gdem.MM±1.ascii)
fort.24 (gfdl_ocean_readu.dat.MM)
fort.82 (gfdl_ocean_spinup_gdem3.dat.MM)
fort.50 (gfdl_ocean_spinup_gspath.MM)
fort.55 (gfdl_ocean_spinup.BAYuf)
fort.65 (gfdl_ocean_spinup.FSgsuf)
fort.75 (gfdl_ocean_spinup.SGYREuf)
fort.91 (mmdd.dat)
fort.31 (hwrf_gfdl_loop_current_rmy5.dat.YYYYMMDD)
fort.32 (hwrf_gfdl_loop_current_wc_ring_rmy5.dat.YYYYMMDD)

OUTPUT: fort.13 (gfdl_initdata.transatl.MM)
sharp_mcs_r_l2b.out

USAGE: gfdl_sharp_mcs_rf_l2m_rmy5.exe < input_sharp >
sharp_mcs_r_l2b.out

transatl06prep.xc

FUNCTION: Blend T/S between sharpened GDEM and unsharpened GDEM along
50W. This executable is called for the transatlantic domain only.

INPUT: fort.8 (gfdl_gdem.MM.ascii)
fort.90 (gfdl_gdem.MM±1.ascii)
fort.91 (mmdd.dat)
fort.13 (gfdl_initdata.transatl.MM)

109

8. Ocean Initialization for MPIPOM-TC

OUTPUT: fort.113 (gfdl_initdata.REGION.MM)
transatl06prep.out

USAGE: transatl06prep.xc > transatl06prep.out

pomprep_fbtr.xc

FUNCTION: Read sharpened and blended GDEM climatology, horizontally interpolate
it onto the high-resolution MPIPOM-TC grid, incorporate the bathymetry
and a land-sea mask, assimilate the GFS SST, and prepare the ICs for
MPIPOM-TC. This executable is called for the transatlantic domain only.

INPUT: input
fort.13 (gfdl_initdata.transatl.MM)
fort.66 (gfdl_ocean_topo_and_mask.REGION.lores)
fort.21 (sst.gfs.dat)
fort.22 (mask.gfs.dat)
fort.23 (lonlat.gfs)

OUTPUT: STORM.el_initial.nc
STORM.grid.nc
STORM.ts_clim.nc
STORM.ts_initial.nc
STORM.uv_initial.nc
ocean_pomprep.out

USAGE: pomprep_fbtr.xc < input > ocean_pomprep.out

pomprep_rtof.xc

FUNCTION: Read RTOFS data, horizontally interpolate it onto the high resolution
MPIPOM-TC grid, incorporate the bathymetry and a land/sea mask, as-
similate the GFS SST, and prepare the ICs for MPIPOM-TC. This exe-
cutable is currently operational for the East and Central Pacific domains
only.

110

8. Ocean Initialization for MPIPOM-TC

INPUT: input
regional.depth.a
regional.depth.b
regional.grid.a
regional.grid.b
rtofs_glo.t00z.f12.archv.a
rtofs_glo.t00z.f12.archv.b
fort.21 (sst.gfs.dat)
fort.22 (mask.gfs.dat)
fort.23 (lonlat.gfs)

OUTPUT: STORM.el_initial.nc
STORM.grid.nc
STORM.ts_clim.nc
STORM.ts_initial.nc
STORM.uv_initial.nc
ocean_pomprep.out

USAGE: pomprep_rtof.xc < input > ocean_pomprep.out

pomprep_gdm3.xc

FUNCTION: Read GDEMv3 climatology, horizontally interpolate it onto the high res-
olution MPIPOM-TC grid, incorporate the bathymetry and a land/sea
mask, assimilate the GFS SST, and prepare the ICs for MPIPOM-TC. This
executable was operational for the Central and Western Pacific basins
and the North Indian Ocean in 2016. Starting with the 2017 operational
HWRF, the Western Pacific basin and North Indian Ocean use HYCOM,
which is not supported in HWRFv3.9a. This executable may still be used
worldwide.

INPUT: input
tin.nc (tgdemv3sMM.nc)
sin.nc (sgdemv3sMM.nc)
fort.66 (gfdl_ocean_topo_and_mask.REGION.lores)
fort.21 (sst.gfs.dat)
fort.22 (mask.gfs.dat)
fort.23 (lonlat.gfs)

OUTPUT: STORM.el_initial.nc
STORM.grid.nc
STORM.ts_clim.nc
STORM.ts_initial.nc
STORM.uv_initial.nc
ocean_pomprep.out

111

8. Ocean Initialization for MPIPOM-TC

USAGE: pomprep_gdm3.xc < input > ocean_pomprep.out

hwrf_ocean_init.exe

FUNCTION: Run MPIPOM-TC ocean Phase 1 or Phase 2 (also known historically as
ocean Phase 3 and Phase 4, respectively, as in the model code).

INPUT: For Phase 1
pom.nml
STORM.el_initial.nc
STORM.grid.nc
STORM.ts_clim.nc
STORM.ts_initial.nc
STORM.uv_initial.nc
For Phase 2
pom.nml
STORM.el_initial.nc
STORM.grid.nc
STORM.ts_clim.nc
STORM.ts_initial.nc
STORM.uv_initial.nc
restart.phase1.nc
track.full

OUTPUT: For Phase 1
STORM.00[01-08].nc
sstuvhflux.00[00-32].nc
ocean_init.out
For Phase 2
STORM.00[01-08].nc
sstuvhflux.00[00-48].nc
ocean_init.out

USAGE: hwrf_ocean_init.exe > ocean_init.out

8.3 MPIPOM-TC Diagnostics

MATLAB-based diagnostic tools are now available to plot the SST, subsurface temperature,
and ocean current vectors at various times throughout the forecast and at various zoom
levels. A README file in pomtc/ocean_diag/matlab explains how to use the mature
tools. Additional community-based plotting tools are also provided for the creation of plots
such as vertical cross sections.

112

8. Ocean Initialization for MPIPOM-TC

8.4 User-provided Datasets for MPIPOM-TC Initialization

To initialize MPIPOM-TC with user-provided datasets, it is necessary to make a few small
modifications to master.py.

Users must turn off SST assimilation (SSTASIM). Additionally, the user-provided datasets
should be in the same format as the Navy Coupled Ocean Data Assimilation (NCODA)
datasets. Once the data is in this format, MPIPOM can be run with this data by selecting
the NCODA option in master.py script.

Please contact hwrf-help@ucar.edu with questions regarding modifications to master.py.

113

9
Forecast Model

9.1 Introduction

The operational HWRF, which runs in all basins, is an atmosphere-ocean-coupled fore-
cast system, which includes an atmospheric component (WRF-NMM), an ocean compo-
nent (MPIPOM-TC or HYCOM, depending on the ocean basin), and the NCEP Coupler.
Therefore, HWRF is a Multiple-Program Multiple-Data (MPMD) system that consists of four
executables: WRF, MPIPOM-TC, HYCOM, and the Coupler. In the North Atlantic, east-
ern North Pacific, and central North Pacific ocean basins, HWRF is run operationally with
MPIPOM-TC. In the western North Pacific and North Indian oceans, the operational HWRF
uses the HYCOM ocean model. Finally, the operational model is run uncoupled in the South
Indian and South Pacific oceans. In this public release, forecasts in any ocean basin can be
either run uncoupled or coupled with MPIPOM-TC. Running coupled with HYCOM is not
supported. After the ocean and atmosphere initializations are successfully completed, the
coupled HWRF forecast can be submitted.

9.2 Scripts

The wrapper script forecast_wrapper is responsible for calling the Python script ex-
hwrf_forecast.py in the scripts/ directory. The wrapper script sets the number of
tasks for the parallel forecast job. In operations, 505 tasks are used: 492 for the WRF
forecast, nine for MPIPOM-TC, and four for the NCEP Coupler. While this configuration is
recommended, you may change the total number of tasks to reflect the following relationship,

114

9. Forecast Model

TOTAL_TASKS = np+ 9 + 4, (9.1)

where np is an integer multiple of 4. The total number of processors used should match
TOTAL_TASKS.

For uncoupled runs, you should change the variable TOTAL_TASKS in fore-
cast_wrapper to reflect the reduction of tasks (i.e., subtract 13 for MPIPOM-TC and the
Coupler). The number of processors chosen should also be consistent with the product of
the WRF namelist variables runwrf.nproc_x and runwrf.nproc_y that are originally set
in system.conf and can be changed by passing arguments to exhwrf_launch.py inside
the launcher_wrapper.

9.2.1 Overview of exhwrf_forecast.py

1. Initialize all of the objects used to run HWRF
2. Run the HWRF main forecast, coupled or uncoupled (runwrf.run)

9.2.2 Overview of the Forecast Module

For coupled forecasts, runwrf is an object of the WRFCoupledPOM subclass of fcst-
task.WRFAtmos. The run module is responsible for the following tasks:

1. Link the input files required by WRF (fix files, initial and boundary condition files, and
geographical data files).

2. Make the Coupler namelist.
3. Make the POM namelist.
4. Copy POM inputs.
5. Run hwrf_swcorner_dynamic.exe to calculate the location of the middle nest.
6. Make the WRF namelist.
7. Submit the MPI forecast run (three executables: wrf.exe, hwrf_ocean_fcst.exe,

hwrf_wm3c.exe).

Output files:

Primary output files, containing a large number of forecast variables, are produced every
hour for the first nine hours, then every three hours.

wrfout_d01_yyyy-mm-dd_hh_mm_ss
wrfout_d02_yyyy-mm-dd_hh_mm_ss
wrfout_d03_yyyy-mm-dd_hh_mm_ss

Auxiliary output files containing accumulated precipitation and 10-m winds, with hourly
output in a single file for each domain.

115

9. Forecast Model

wrfdiag_d01
wrfdiag_d02
wrfdiag_d03

Text file with time series of storm properties.

hifreq_d03.htcf

File hifreq_d03.htcf has nine columns containing the following items:

1. Forecast lead time (s)
2. Minimum Sea Level Pressure (MSLP) in the inner nest (hPa)
3. Latitude of grid point with minimum sea level pressure
4. Longitude of grid point with minimum sea level pressure
5. Maximum wind in the inner nest at the lowest model level (kt)
6. Latitude of grid point with the maximum wind
7. Longitude of grid point with the maximum wind
8. Latitude of the location of the center of the inner nest
9. Longitude of the location of the center of the inner nest

The ocean model will produce diagnostic output files with the following naming conven-
tion:

STORMNAME.00DD.nc Ocean forecast output for each day (DD) in NetCDF format
flux.00DD Forecast ocean flux for each day
sst.00DD Forecast sea surface temperature for each day
sstuvhflux.00HH Additional fields used for diagnostics, per hour

Status Check:

To check whether the run was successful, look for "SUCCESS COMPLETE WRF" at the
end of the log file (e.g., rsl.out.0000). This check is also done in the code,
and can be found in the standard output file.

Executables:

hwrf_swcorner_dynamic.exe
Refer to section 4.2.3.

wrf.exe

FUNCTION: Atmospheric component of HWRF

116

9. Forecast Model

INPUT: geo_nmm.d01.nc – Geogrid static files for d01
geo_nmm_nest.l01.nc – Geogrid static files for d02
geo_nmm_nest.l02.nc – Geogrid static files for d03
wrfbdy_d01 – LBCs for d01
wrfinput_d01 – ICs for d01
wrfanl_d02_YYYY-MM-DD_HH_00_00 – ICs for d02
wrfanl_d03_YYYY-MM-DD_HH_00_00 – ICs for d03
namelist.input – Example in Appendix C
fort.65
WRF Fix files (Refer to section 3.3)

OUTPUT: wrfout_d01_YYYY-MM-DD_HH_00_00
wrfout_d02_YYYY-MM-DD_HH_00_00
wrfout_d03_YYYY-MM-DD_HH_00_00
wrfdiag_d01
wrfdiag_d02
wrfdiag_d03
hifreq_d03.htcf

USAGE: For a coupled HWRF forecast, wrf.exe must be submitted with the cou-
pler and the ocean model. Refer to the MPI Explanation below.
For an uncoupled run, you only need to issue the executable wrf.exe.

hwrf_ocean_fcst.exe

FUNCTION: MPIPOM-TC ocean model for HWRF

INPUT: STORM.el_initial.nc
STORM.grid.nc
STORM.ts_clim.nc
STORM.ts_initial.nc
STORM.uv_initial.nc
restart.phase2.nc

OUTPUT: STORM.0000.nc
STORM.0001.nc
STORM.0002.nc
STORM.0003.nc
STORM.0004.nc
STORM.0005.nc

USAGE: For a coupled HWRF forecast, the ocean model hwrf_ocean_fcst.exe
must be submitted to the computers with the atmosphere model wrf.exe
and the coupler hwrf_wm3c.exe. Refer to the MPI explanation below.

hwrf_wm3c.exe

117

9. Forecast Model

FUNCTION: Coupler that links the atmospheric component and oceanic component

INPUT: cpl.nml – coupler namelist

OUTPUT: none

USAGE: Refer to the MPI explanation below

Explanation of the MPI command for the forecast model

As mentioned in section 9.1, HWRF can be run as either a coupled or uncoupled model
of the atmosphere and ocean. The operational HWRF runs are coupled in all basins ex-
cept the South Indian and South Pacific oceans. By default, the scripting system submits
coupled runs in the AL, EP, CP, WP, and NIO basins when config.run_ocean=yes in
hwrf_basic.conf and uncoupled runs in the SIO and SP (config.run_ocean=no). If
an uncoupled run in one of the other basins is desired, refer to section 3.8.1 for configuration
details.

• Coupled
With LSF, using the command mpirun.lsf

mpirun.lsf -cmdfile cmdfile
where cmdfile is a file containing the list of executables. For example,
the cmdfile file below indicates that the coupled run will be submitted to
505 processors, four for the coupler (hwrf_wm3c.exe), nine for the ocean
domain (hwrf_ocean_fcst.exe) and 492 for wrf.exe.
hwrf_wm3c.exe
hwrf_ocean_fcst.exe
wrf.exe
wrf.exe
wrf.exe
wrf.exe

With MOAB/Torque, using the command mpiexec
mpiexec -np 4 ./hwrf_wm3c.exe : -np 9 \
./hwrf_ocean_fcst.exe : -np 492 ./wrf.exe
For example, the previous command will run the coupled model using 505
processors, four for the coupler (hwrf_wm3c.exe), nine for the ocean do-
main (hwrf_ocean_fcst.exe), and 492 for wrf.exe

• Uncoupled
– With LSF, using the command mpirun.lsf

mpirun.lsf -procs 492 ${WRF_ROOT}/main/wrf.exe
– With MOAB/Torque, using the command mpiexec

mpiexec -np 492 ${WRF_ROOT}/main/wrf.exe

118

10
HWRF Post-Processor

10.1 Introduction

The NCEP UPP is used to destagger the HWRF parent- and nest-domain output, compute
diagnostic variables, and interpolate the output from the native WRF grids to NWS standard
levels (pressure, height etc.) and standard output grids (latitude/longitude, Lambert Confor-
mal, polar-stereographic, Advanced Weather Interactive Processing System grids, etc.). The
UPP outputs files in GRIB format. This package also merges the parent- and nest-domains
forecasts onto one combined domain grid. Information on how to acquire and build the UPP
code is available in section 2. Please refer to the UPP Users’ Guide (http://www.dtcenter.
org/upp/users/docs/user_guide/V3/upp_users_guide.pdf) for more details.

There are two main executables in UPP, unipost.exe and copygb.exe. This chapter
covers only the module that calls unipost.exe. The use of copygb.exe is covered in
Chapter 11.

10.2 Scripts

The postprocessing using UPP is run using two wrappers, unpost_wrapper and
post_wrapper. These wrappers call the exhwrf_unpost.py and exhwrf_post.py
scripts, respectively.

119

http://www.dtcenter.org/upp/users/docs/user_guide/V3/upp_users_guide.pdf
http://www.dtcenter.org/upp/users/docs/user_guide/V3/upp_users_guide.pdf

10. HWRF Post-Processor

10.2.1 Overview of exhwrf_unpost.py

The purpose of this script is to delete output from any previous attempt to run the same
cycle.

1. Initialize the objects used to run all components of HWRF by calling
hwrf_expt.init_module().

2. Run the unrun modules for the following tasks:
• runwrf
• wrfcopier
• satpost
• nonsatpost
• gribber

10.2.2 Overview of exhwrf_post.py

The Python script contains a loop that continually checks the status of the forecast, and
postprocesses any output files that are available. As long as there are tasks remaining, it
runs copies of wrfcopier, nonsatpost, and satpost. Note that satpost refers to the
postprocessing to produce synthetic satellite brightness temperatures, while nonsatpost
refers to the postprocessing of all other variables (temperature, winds, etc.).

10.2.3 Overview of UPP Python Modules

Wrfcopier

Wrfcopier is a WRFCopyTask class object that lives in ush/hwrf/copywrf.py. It serves
the primary purpose of delivering files from the WRF run directory to the com/ directory.

Nonsatpost and Satpost

Nonsatpost and satpost are PostManyWRF class objects that run the UPP on the WRF
output files. They are used to produce general forecast products and synthetic satellite
images, respectively. The run module for these tasks performs the following duties:

1. Link the input file (wrfout forecast or analysis file)
2. Make a control file that corresponds to the input file
3. Write itag file which contains the following four lines to be read by unipost.exe.

• Name of the WRF output file to be postprocessed
• Format of the WRF output (NetCDF or binary; choose NetCDF for HWRF)
• Forecast valid time (not model start time) in WRF format

120

10. HWRF Post-Processor

• Model name (NMM or NCAR; choose NMM for HWRF)
4. Run unipost.exe

Output files:

In the intercom/ directory, there are directories for each forecast hour containing the
satpost and nonsatpost output. The following list describes the naming convention for these
directories and files. The forecast hour, hh, by default is hourly for the first nine hours, and
three hourly after that for nonsatpost output and six-hourly for satpost output.

satpost-fhh00m/satpost-fhh00m/
satpost-fhhh00m-moad.egrb
satpost-fhhh00m-storm1inner.egrb
satpost-fhhh00m-storm1outer.egrb

nonsatpost-fhh00m/nonsatpost-fhh00m/
nonsatpost-fhhh00m-moad.egrb
nonsatpost-fhhh00m-storm1inner.egrb
nonsatpost-fhhh00m-storm1outer.egrb

Status check:

The string "INFO: completed post" will appear in the standard output file.

Executables:

unipost.exe

FUNCTION: Destaggers the HWRF native output, interpolates it vertically to pressure
levels, computes derived variables, and outputs results in GRIB format.

INPUT: hwrf_eta_micro_lookup.dat
wrfout_d01, wrfout_d02 or wrfout_d03 – HWRF native output
itag – namelist
unipost control file:

for nonsatpost: hwrf_cntrl.nonsat; and,
for satpost:hwrf_cntrl.sat${BASIN}, where BASIN can be A,
B, L, E, C, P, Q, S, or W for Arabian Sea (Indian Ocean), Bay of
Bengal (Indian Ocean), N. Atlantic, E. N. Pacific, Central N. Pacific,
S. Indian Ocean, S. Atlantic, S. Pacific, or W. N. Pacific, respectively.

OUTPUT: HWRF postprocessed output in GRIB format

USAGE: unipost.exe < itag

121

11
Forecast Products

11.1 Introduction

HWRF v3.9a will produce several types of forecast products, including processed GRIB1 and
GRIB2 files (projected to lat-lon grids), track files, rainfall swath data, and wind products
containing information about the tropical cyclone. The processed GRIB2 files are pro-
duced on several different grids outlined in Figure 11.1 for the general atmospheric fields and
satellite-derived products. Those GRIB1 files are used as input to the GFDL Vortex Tracker.
Any of the GRIB output can also be used to create images with visualization packages such
as GrADS, NCL, etc. Image generation is not covered in this Users’ Guide. Additionally,
several files produced in the previous steps of a HWRF run (such as data assimilation and
vortex relocation) are copied to the com directory to compose a full set of HWRF products.

The GFDL vortex tracker is a program that ingests model forecasts in GRIB/NetCDF
format, objectively analyzes the data to provide an estimate of the vortex center position
(latitude and longitude), and tracks the storm for the duration of the forecast. Additionally,
it reports metrics of the forecast storm, such as intensity (maximum 10-m winds and MSLP)
and structure (wind radii for 34-, 50-, and 64-knot thresholds in each quadrant of the
storm) at each output time. The GFDL vortex tracker requires the forecast grids to be on a
cylindrical equidistant, latitude-longitude (lat/lon) grid. For HWRF, UPP is used to process
the raw model output and create the GRIB files for the tracker.

The vortex tracker creates two output files containing the vortex position, intensity, and
structure information: one in Automated Tropical Cyclone Forecast (ATCF) format; and
another in a modified ATCF format. See section 11.2.1 for the HWRF-specific naming con-
ventions of these files.

122

11. Forecast Products

storm.0p02
0.125

25 x 25

wrf_d02
18 km
25 x 25

wrf_d03
18 km

8.3 x 8.3

wrf_d01
18 km
80 x 80

core.0p02
0.125

10 x 10

global.0p25
0.25

180 x 360

synoptic.0p125
0.125

90 x 110

Native WRF Grid

Output Grid

Figure 11.1: Naming convention, resolution, and size for the output grids that contain con-
ventional and satellite-derived atmospheric data. Blue boxes indicate the grids
from the wrfout files. Green boxes are the grids in the final GRIB files.

The GFDL vortex tracker locates the hurricane vortex center positions by searching for
the average of the maximum or minimum of several parameters in the vicinity of an input
first-guess position of the targeted vortex. The tracking parameters are relative vorticity
at 10 m, 850 hPa and 700 hPa, MSLP, and geopotential height at 850 and 700 hPa, wind
circulation at 10 m, 850 hPa, and 700 hPa are used. Also, geopotential thickness between
500 and 850 hPa, 200 and 500 hPa, and between 200 and 850 hPa.

Besides the forecast file in GRIB format, the vortex tracker also ingests a GRIB index file,
which is generated by running the program grbindex. The utility wgrib is also used for
preparing data for the tracker. Both grbindex and wgrib were developed by NCEP and are
distributed by the DTC as part of the HWRF Utilities.

The tracker also contains added capabilities of tracking cyclogenesis and identifying cy-
clone thermodynamic phases. The identification of cyclone thermodynamic phases requires
that the input data contain temperature every 50 hPa from 300 to 500 hPa (for the Vitart
scheme) or the geopotential height every 50 hPa from 300 to 900 hPa (for the Cyclone Phase
Space scheme).

123

11. Forecast Products

11.2 Scripts

The forecasts products are obtained by running the products_wrapper, which calls
scripts/exhwrf_products.py after setting a few environment variables to redirect the
standard output and standard error files. These files can be placed anywhere by changing
the environment variables REGRIBBER_LOGS and TRACKER_LOGS to the desired path.

The GFDL Vortex Tracker is driven by the wrapper script products_wrapper, which
calls scripts/exhwrf_products.py and then tracker.py. The Python script runs the
tracker on the processed GRIB forecast files.

11.2.1 Overview of exhwrf_products.py

1. Initialize the objects used to run all components of HWRF by calling
hwrf_expt.init_module()

2. Launch the four parallel tasks. The parent process launches products, while the
subprocesses run copies of gribber and tracker. Each of these continually check
the availability of files before running.

3. Deliver products to com/ directory as they become available from the products,
gribber, tracker and other processes.

Files delivered to com/YYYYMMDDHH/STORMID directory:

The following examples are for Hurricane Matthew (2016), which was AL storm number
14. The string "matthew14" would be replaced by the name and number of the storm in
the given experiment. SID is the storm ID (i.e., 14L for Matthew). The "l" or "L" following
"matthew14" is a product of an operational naming convention requiring some files to have
identical counterparts, but different capitalization. In this case, the letter "L" denotes that
the files are being delivered for a storm in the AL. Upper case YYYYMMDDHH denotes analysis
time, while lower case yyyymmddhh denotes forecast time.

14l.YYYYMMDDHH.domain.center ASCII file containing the coordinates of the
domain center

14l.trak.hwrf.atcfunix.YYYYMMDDHH.combine 12 h Forecast track
14l.wrfout_d[01-03]_yyyy-mm-dd_hh:00:00 WRF fcst output for the first 9 hrs in 3-hr

increments
aal142016_HWRF_hPYHW_YYYYMMDDHH.dat Tracker output
matthew14l.YYYYMMDDHH.afos Track and intensity guidance for NHC
matthew14l.YYYYMMDDHH.fort.65 Land-sea mask for the coupler
matthew14l.YYYYMMDDHH.gsi_cvs2.biascr GSI output satellite bias
matthew14L.YYYYMMDDHH.gsi_d02.diag
[instrument][satellite]_anl.gz

GSI diagnostic outputs from D02 domain

matthew14L.YYYYMMDDHH.gsi_d02.diag
[instrument][satellite]_ges.gz

GSI diagnostic outputs from D02 domain

matthew14L.YYYYMMDDHH.gsi_d02.stdout.anl GSI std out from D02 domain
matthew14L.YYYYMMDDHH.gsi_d02.diag_conv
_anl.gz

GSI diagnostics from D02 domain

matthew14L.YYYYMMDDHH.gsi_d02.diag_conv
_ges.gz

GSI diagnostics from D02 domain

124

11. Forecast Products

matthew14L.YYYYMMDDHH.gsi_d02.stdout.anl GSI std out from D02 domain
matthew14L.YYYYMMDDHH.gsi_d03.diag_conv
_anl.gz

GSI diagnostics from D03 domain

matthew14L.YYYYMMDDHH.gsi_d03.diag_conv
_ges.gz

GSI diagnostics from D03 domain

matthew14L.YYYYMMDDHH.gsi_d03.stdout.anl GSI std out from D03 domain
matthew14l.YYYYMMDDHH.hwrfanl_i.grb2f00 GSI analysis file from D02 domain
matthew14l.YYYYMMDDHH.hwrfanl_n.grb2f00 GSI analysis file from D03 domain
matthew14l.YYYYMMDDHH.hwrf_d03.htcf Storm info from d03 every 5 mins
MATTHEW14l.YYYYMMDDHH.hwrf_d03.htcf Storm info from d03 every 5 mins
matthew14l.YYYYMMDDHH.hwrfges_i.grb2f00 GSI first-guess file from D02 domain
matthew14l.YYYYMMDDHH.hwrfges_n.grb2f00 GSI first-guess file from D02 domain
matthew14l.YYYYMMDDHH.hwrfprs.core.0p02.
f[000-126].grb2

Non-satellite vars from D03 domain onto
0.125◦ 10◦x 10◦sized grid

matthew14l.YYYYMMDDHH.hwrfprs.global.0p25.
f[000-126].grb2

Non-satellite vars from D02 domain onto
0.25◦ 180◦x 360◦sized grid

matthew14l.YYYYMMDDHH.hwrfprs.storm.0p02.
f[000-126].grb2

Non-satellite vars from all domains merged
onto 0.125◦ 25◦x 25◦grid

matthew14l.YYYYMMDDHH.hwrfprs.synoptic.
0p125.f[000-126].grb2

Non-satellite vars from D01 domain onto
0.125◦ 90◦x 110◦sized grid

matthew14l.YYYYMMDDHH.hwrfsat.core.0p02.
f[000-126].grb2

Satellite vars from D03 domain onto 0.125◦

10◦x 10◦sized grid
matthew14l.YYYYMMDDHH.hwrfsat.global.0p25.
f[000-126].grb2

Satellite vars from D02 domain onto 0.25◦

180◦x 360◦sized grid
matthew14l.YYYYMMDDHH.hwrfsat.storm.0p02.
f[000-126].grb2

Satellite vars from all domains merged onto
0.125◦ 25◦x 25◦grid

matthew14l.YYYYMMDDHH.hwrfsat.synoptic.
0p125.f[000-126].grb2

Satellite vars from D01 domain onto 0.125◦

90◦x 110◦sized grid
matthew14l.YYYYMMDDHH.hwrftrk.
grb[000-126]

Tracker vars merged from all domains on a
0.02◦ grid, 25◦x 25◦sized grid

matthew14l.YYYYMMDDHH.hwrftrk.
grbf[000-126].grbindex

Index file for hwrftrk files

matthew14l.YYYYMMDDHH.kpp.nml POM KPP(Vert mixing) namelist
matthew14l.YYYYMMDDHH.namelist.input WRF namelist
matthew14l.YYYYMMDDHH.pom.
[0000-0020].nc

POM output file

matthew14l.YYYYMMDDHH.pom.
el_initial.nc

POM initial condition file

matthew14l.YYYYMMDDHH.pom.
grid.nc

POM grid file

matthew14l.YYYYMMDDHH.pom.
nml

POM namelist file

matthew14l.YYYYMMDDHH.pom.
restart.phse2.nc

POM restart file

matthew14l.YYYYMMDDHH.pom.
ts_clim.nc

POM T, S file

matthew14l.YYYYMMDDHH.pom.
ts_initial.nc

POM initial T, S file

matthew14l.YYYYMMDDHH.pom.
uv_initial.nc

POM initial U, V file

matthew14l.YYYYMMDDHH.rainfall.ascii Rainfall
matthew14l.YYYYMMDDHH.resolution Text file containing info about nest motion
MATTHEW14L.YYYYMMDDHH.resolution Same as above
matthew14l.YYYYMMDDHH.stats.short Storm info at each forecast hour
matthew14l.YYYYMMDDHH.stats.tpc Storm info at each forecast hour for delivery

to NHC
MATTHEW14L.YYYYMMDDHH.stats.tpc Same as above

125

11. Forecast Products

matthew14l.YYYYMMDDHH.storm_vit Storm info at each forecast hour for delivery
to NHC

matthew14l.YYYYMMDDHH.swath.ctl GrADS control file for swath
matthew14l.YYYYMMDDHH.swath.dat Along-track wind and rain information
matthew14l.YYYYMMDDHH.swath.grb2 Along-track wind and rain info-GRIB2
matthew14l.YYYYMMDDHH.swath.grb2.idx Along-track wind and rain info-GRIB2 in-

dex
matthew14l.YYYYMMDDHH.track_d03.patcf Tracker info from d03
matthew14l.YYYYMMDDHH.trak.hwrf.3hourly Tracker output in ATCF format
matthew14l.YYYYMMDDHH.trak.hwrf.atcfunix Same as above
matthew14l.YYYYMMDDHH.trak.hwrf.raw Same as above
matthew14l.YYYYMMDDHH.trak.hwrf.short6hr Same as above
matthew14l.YYYYMMDDHH.wind10hrly.ascii Hourly maximum 10-m wind
matthew14l.YYYYMMDDHH.wind10m.ascii 10-m wind ascii
matthew14l.YYYYMMDDHH.suswind10m.ascii Sustained 10-m wind ascii
matthew14l.YYYYMMDDHH.wrfanl_d02 Input analysis for d02
matthew14l.YYYYMMDDHH.wrfanl_d03 Input analysis for d03
matthew14l.YYYYMMDDHH.wrfbdy_d01 Boundary conditions for all forecast times
matthew14l.YYYYMMDDHH.wrfdiag_d01 WRF diagnostics file from D01 for all fore-

cast times
matthew14l.YYYYMMDDHH.wrfdiag_d02 WRF diagnostics file from D02 for all fore-

cast times
matthew14l.YYYYMMDDHH.wrfdiag_d03 WRF diagnostics file from D03 for all fore-

cast times
matthew14l.YYYYMMDDHH.wrfges_d02 First Guess from D02 domain
matthew14l.YYYYMMDDHH.wrfges_d03 First Guess from D03 domain
matthew14l.YYYYMMDDHH.wrfinput_d01 Input analysis for d01
matthew14l.YYYYMMDDHH.wrforg_d01 WRF original file from D01 domain
matthew14l.YYYYMMDDHH.wrforg_d02 WRF original file from D02 domain
matthew14l.YYYYMMDDHH.wrforg_d03 WRF original file from D03 domain
gsi_status.MATTHEW14l.YYYYMMDDHH Defines whether to run gsi on d02/d03
ocean_status.MATTHEW14l.YYYYMMDDHH Defines whether coupled or not
storm1.conf Configuration settings for a run
storm1.done Cycle completion info
storm1.gsi_status Defines whether to run gsi on d02/d03
storm1.holdvars.txt Environment variables
storm1.ocean_status Defines whether coupled or not
storm1.run_ensda Defines whether running ENSDA or not

Products

Products is a module that calls an NHCProducts object, whose run module lives in ush/h-
wrf/nhc_products.py, and is responsible for the following tasks:

1. Make namelist products.nml
2. Link the input files
3. Run nhc_products.exe
4. Deliver output

Executables:
nhc_products.exe This executable performs several functions.

126

11. Forecast Products

INPUT
1. wrfdiag_d0* files
2. Products namelist
3. Tcvitals
4. WRF hifreq output
5. ATCF file

OUTPUT
1. Swath file
2. Modified track file for TPC
3. Ascii wind and rainfall
4. Modified hifreq output from d03
5. File for NHC showing track position, heading and storm speed

Output files:

An example for Hurricane Matthew (2016):

matthew14l.YYYYMMDDHH.wind10hrly.ascii
matthew14l.YYYYMMDDHH.rainfall.ascii
matthew14l.YYYYMMDDHH.suswind10m.ascii
matthew14l.YYYYMMDDHH.wind10m.ascii
matthew14l.YYYYMMDDHH.afos
MATTHEW14L.YYYYMMDDHH.afos
MATTHEW14L.YYYYMMDDHH.stats.tpc
MATTHEW14L.YYYYMMDDHH.hwrf_d03.htcf

Status Check:

The string "WARNING: No subtasks incomplete. I think I am done run-
ning. Will exit regribber now." will appear in each of the products standard out
files.

Gribber

The Gribber is a GRIBTask object whose run module resides in ush/hwrf/gribtask.py.
Its primary function is to run copygb.exe to horizontally interpolate the native UPP output
files to a variety of regular lat/lon grids.

Output files:

The following sets of files get delivered to the intercom/regribber:

hwrftrk.YYYYMMDD.HH0000
hwrftrk.YYYYMMDD.HH0000.grbindex
p123_storm_grib1.YYYYMMDD.HH0000

127

11. Forecast Products

trkin123.YYYYMMDD.HH0000

Status Check:

The string "INFO: storm1: completed regribbing job for" will appear in
each of the POST standard output files, which will be set by the environment variable
REGRIBBER_LOGS in the products_wrapper.

Executables:

copygb.exe

This executable performs two functions. The functions are separated in the explanation
by their respective numeric items.

FUNCTION:
1. Interpolates a GRIB file to a user-specified grid
2. Combines two GRIB files

INPUT:
1. ${hr_grid} – User-specified grid

One grib file, for example
2. ${hr_grid} – User-specified grid

Two GRIB files, for example

OUTPUT: GRIB file on grid ${hr_grid}

USAGE:
1. copygb.exe -xg "${hr_grid}" input_GRIB_file \

out_GRIB_file
2. When an "-M" option is used and the argument following it is a

GRIB file, the GRIB file will be interpreted as a merge file. This
option can be used to combine two GRIB files.
The following command will combine two GRIB files onto a a third
one named out_GRIB_file. All three files must use a grid speci-
fied by ${hr_grid}.
copygb.exe -g "${hr_grid}" -xM input_GRIB_file_1 \
input_GRIB_file_2 out_GRIB_file

Tracker

The TrackerTask is responsible for running the GFDL Vortex Tracker. The tracker reads
the HWRF postprocessed files in the combined domain. It produces a 3-hourly track and a
6-hourly track for the entire forecast length, as well as another track for the 12-hr forecast
(stripped down version of matthew14l.YYYYMMDDHH.trak.hwrf.atcfunix file), using a

128

11. Forecast Products

merged grid from all three domains with 0.02◦ resolution. The track for the 12-hr forecast is
used in the vortex relocation procedure for the following cycle. The tracker module resides
in ush/hwrf/tracker.py and performs the following actions:

1. Link the input GRIB files
2. Make the tracker namelist
3. Run hwrf_gettrk.exe
4. Deliver files

Output files:

The following output files are an example for Hurricane Matthew (2016).

matthew14l.YYYYMMDDHH.trak.hwrf.raw
matthew14l.YYYYMMDDHH.trak.hwrf.atcfunix
matthew14l.YYYYMMDDHH.trak.hwrf.3hourly
matthew14l.YYYYMMDDHH.trak.hwrf.short6hr

Status Check:

The standard output file will contain the string "CRITICAL: Successful return
status from gettrk."

Executables:

hwrf_gettrk.exe

FUNCTION: Runs the GFDL Vortex Tracker

INPUT: fort.11 – GRIB file containing the postprocessed HWRF forecast
fort.12 – TC Vitals file containing the first guess location of the forecast
vortex
fort.14 – TC Vitals file used for tropical cyclogenesis tracking. This file
is not used in HWRF’s operational configuration. File fort.14, which can
be blank, should exist in the directory where the tracker is run, otherwise
the tracker will stop.
fort.15 – Forecast lead times (in minutes) the tracker will process
fort.31 – a GRIB index file generated by the program grbindex
input.namelist – namelist

OUTPUT: fort.69 – Modified ATCF file
fort.64 – Modified ATCF file
fort.66 – Modified ATCF file produced only in "cyclgenesis mode"
fort.74 – Modified ATCF file produced when IKEFLAY=Y

USAGE: hwrf_gettrk.exe <namelist

Refer to Appendix D for a sample namelist and an explanation of contents of output files.

129

11. Forecast Products

11.2.2 Additional Tracking Utilities

In addition to the actual tracking capability of the GFDL Vortex Tracker, the HWRF wrapper
and Phython scripts also automatically generate phase space diagnostics. Just for reference,
the section below explains the steps to compute phase space diagnostics.

Phase-Space Diagnostics

1. In the GFDL vortex tracker namelist set the items listed below:
phaseflag=y
phasescheme=both or cps or vtt
wcore_depth=1.0

2. If phasescheme is set to cps, run hwrf_vint.exe to vertically interpolate the
geopotential from 300 to 900 hPa at a 50-hPa interval. Then append these geopoten-
tial variables to the tracker’s GRIB format input file.

3. If phasescheme is set to vtt , run hwrf_vint.exe to vertically interpolate the
temperature from 300 to 500 hPa at a 50-hPa interval. Then run hwrf_tave.exe to
obtain the average temperature between 300 and 500 hPa. This average temperature
field is appended to the tracker’s GRIB format input file.

4. If phasescheme is set to both, then both steps 2) and 3) are needed.
5. When the phase-space diagnostics is performed, the output will be generated in

fort.64 as fields 37-41.

Executables:

hwrf_vint.exe

FUNCTION: Interpolates from various pressure levels onto a regularly spaced grid,
with 50-hPa vertical level intervals. Each run only processes one lead
time. Therefore, it is necessary to use this executable separately for all
lead times.

INPUT: fort.11 – GRIB file containing the postprocessed HWRF output with
temperature at least at 300 and 500 hPa.
fort.16 – text file containing the number of input pressure levels.
fort.31 – index file of fort.11
namelist – generated by echo "&timein ifcsthour=$fhour
iparm=$gparm/" > namelist where $fhour is the forecast lead time
and $gparm is the variable to be processed. For phase space diagnos-
tics, geopotential height (when phasescheme=cps, $gparm=7) or tem-
perature (when phasescheme=vtt, $gparm=11) or both (when phas-
escheme=both) need to be processed.

OUTPUT: fort.51 – GRIB file that contains the temperature data on vertical levels
300, 350, 400, 450, and 500 hPa

130

11. Forecast Products

USAGE: hwrf_vint.exe < namelist

hwrf_tave.exe

FUNCTION: Vertically averages temperature in the 500-300 hPa layer

INPUT: fort.11 – GRIB file containing the temperature at least at levels
300, 350, 400, 450, and 500 hPa. This file can be generated by
hwrf_vint.exe
fort.16 – text file containing the number of input pressure levels.
fort.31 – index file of fort.11
namelist – generated by the command echo "&timein ifc-
sthour=$fhour, iparm=11/" > namelist

OUTPUT: fort.51 – GRIB file containing the mean temperature in the 300-500
hPa layer.

USAGE: hwrf_tave.exe < namelist

Obtaining Phase-Space Diagnostics when Running in Tracker Mode

1. In the GFDL vortex tracker namelist set the items listed below:
phaseflag=y
phasescheme=both or cps or vtt
wcore_depth=1.0

2. If phasescheme is set to cps, run hwrf_vint.exe to vertically interpolate the
geopotential from 300 to 900 hPa at a 50-hPa interval. Then append these geopoten-
tial variables to the tracker’s GRIB format input file.

3. If phasescheme is set to vtt , run hwrf_vint.exe to vertically interpolate the
temperature from 300 to 500 hPa at a 50-hPa interval. Then run hwrf_tave.exe to
obtain the average temperature between 300 and 500 hPa. This average temperature
field is appended to the tracker’s GRIB format input file.

4. If phasescheme is set to both, then both steps 2) and 3) are needed.
5. When the phase space diagnostics is performed, the output will be generated in

fort.64 as fields 37-41 (see Appendix D).

11.3 How to Plot the Tracker Output Using ATCF_PLOT

The GFDL Vortex Tracker comes with atcf_plot, a set of GrADS scripts that can be used
to plot hurricane track files in ATCF format. These scripts can be found in the directory:
sorc/gfdl-vortextracker/trk_plot/plottrak.

131

11. Forecast Products

To use atcf_plot to plot the storm’s track, perform the following steps:

• Enter the directory sorc/gfdl-vortextracker/trk_plot/plottrak.
• The users need to insert or append their vortex tracker output, fort.64, into the file
aBASIN|SID|YYYY.dat. The following two commands are an example of how to do
this for Hurricane Matthew a-deck files:
sed -i ’s/HWRF/HCOM/g’ $CDSCRUB/YYYYMMDDHH/14L/tracker/fort.64

cat $CDSCRUB/YYYYMMDDHH/14L/tracker/fort.64 » aal142016.dat

• After setting up the paths to the correct locations in your system, run the script using
the following command:
atcfplot.sh YYYY BASIN

This will start a GUI window and read in ATCF format track files
a${BASIN}${SID}${YYYY}.dat in $rundir.

For example, the user can use the command atcfplot.sh 2016 al to plot the track
files aal${SID}2016.dat in $rundir.

When the GUI window appears, from the drop down menu, select a storm, start date,
and a model name ("atcfname" in the GFDL vortex tracker namelist), then click the "Plot"
button to plot the track. The plots can be exported to image files by using the "Main" and
then "Print" menu options. The default tracker namelist is set to use the ATCF model name
"HCOM". If the user changes this name in the tracker namelist, the ATCF_PLOT GUI will
not recognize the new name. In this case, the user needs to replace an unused atcfname
with the new atcfname. The atcfnames in the GUI can be found by searching in function
"modnames" in atcfplot.gs. Note all three instances of the unused atcfname need to be
replaced in atcfplot.gs.

For example, if "USER" was employed as the ATCF model name in the users’ GFDL Vor-
tex Tracker output fort.64, atcfplot.gs needs to be modified to have the ATCF_PLOT
program GUI interface show a button for the atcfname "USER". To do that, open atcf-
plot.gs, go to function "modnames", find an atcfname that will not be used, for example
"HCOM", and manually replace the string "HCOM" with "USER".

132

12
HWRF Idealized Tropical

Cyclone Simulation

12.1 Introduction

Initial conditions for the HWRF Idealized Tropical Cyclone case are specified using an
idealized vortex superposed on a base-state quiescent sounding. The default initial vortex
has an intensity of 20 ms−1 and a radius of maximum winds of 90 km. To initialize the
idealized vortex, a nonlinear balance equation in pressure-based sigma coordinates is solved
within the rotated latitude-longitude E-grid framework.

The default initial ambient base state assumes an f-plane at the latitude of 12.5◦. The
sea surface temperature is time-invariant and horizontally homogeneous, with the default
set to 302 K. By default, no land is used in the simulation domain. The mvland=T option
provides an optional moving land surface to permit simulation of landfalling storms. This is
described more fully in the following section.

The lateral boundary conditions used in the HWRF idealized simulation are the same
as used in real data cases. This inevitably leads to some reflection when gravity waves
emanating from the vortex reach the outer domain lateral boundaries.

The idealized simulation uses the operational HWRF triple-nested domain configura-
tion with grid spacing at 18, 6, and 2 km. All the operational atmospheric physics, as
well as the supported experimental physics options in HWRF, can be used in the ide-

133

12. HWRF Idealized Tropical Cyclone Simulation

alized HWRF framework. The UPP (see Chapter 10) can be used to postprocess the
idealized HWRF simulation output. The HWRF Python scripts are not suitable to run
the idealized simulation. Therefore, the user should refer to the DTC UPP website at
http://www.dtcenter.org/upp/users and to the UPP User’s Guide at http://www.
dtcenter.org/upp/users/docs/user_guide/V3/upp_users_guide.pdf for more infor-
mation on how to run UPP for the idealized HWRF simulation.

The setup of the idealized simulation requires the use of WPS to localize the domain
(geogrid.exe) and to process GFS data for initial and boundary conditions (ungrib.exe
and metgrid.exe). The initialization using WPS just provides a framework for the initial
conditions, which are actually specified in ideal.exe to be composed of a quiescent envi-
ronment with a prescribed vortex. The boundary conditions generated with WPS are also
overwritten by ideal.exe to be consistent with the quiescent environment.

The initial base-state temperature and humidity profile is prescribed in file sor-
c/WRFV3/test/nmm_tropical_cyclone/sound.d, while the vortex properties are spec-
ified in sorc/WRFV3/test/nmm_tropical_cyclone/input.d. The latter file is also
used to specify options for f-plane and β-plane.

12.2 How to Use HWRF for Idealized Tropical Cyclone Simulations

12.2.1 Source Code

This section describes the process to implement HWRF v3.9a in the idealized setting. Only
the WPS and WRFV3 components are required for the idealized tropical cyclone simulations.
The UPP can be used for postprocessing. The other HWRF components do not need to be
compiled. Please see Chapter 2 for instructions to compile the WPS, WRF, and, if desired,
UPP. Note that the executable file wrf.exe needed for the idealized simulation is not the
same as the one needed for the simulation for real data. Therefore, users should follow the
instructions specific for building the idealized wrf.exe. In this Users’ Guide, we assume
that the user will install HWRF in directory ${SCRATCH}/hwrfrun.

12.2.2 Input Files and Datasets

Two GFS GRIB files are needed to provide a template for creating the initial and lateral
boundary conditions. One of the GFS GRIB files should be the analysis valid at the same
time of the desired HWRF initialization. The other GRIB file should be a forecast, with lead
time equal to or greater than the desired HWRF simulation. The meteorological data in
these files will not be used to initialize the simulation – these files are for template purposes
only.

As an example, files gfs.t12z.pgrb2.0p25.f000 and
gfs.t12z.pgrb2.0p25.f120, are included in the tar file http://www.dtcenter.

134

http://www.dtcenter.org/upp/users
http://www.dtcenter.org/upp/users/docs/user_guide/V3/upp_users_guide.pdf
http://www.dtcenter.org/upp/users/docs/user_guide/V3/upp_users_guide.pdf
http://www.dtcenter.org/HurrWRF/users/downloads/datasets/Idealized_2017/hwrfv3.9a_idealized.tar.gz
http://www.dtcenter.org/HurrWRF/users/downloads/datasets/Idealized_2017/hwrfv3.9a_idealized.tar.gz

12. HWRF Idealized Tropical Cyclone Simulation

org/HurrWRF/users/downloads/datasets/Idealized_2017/hwrfv3.9a_idealized.
tar.gz.

Next the user must ensure that all the input files below exist in
${SCRATCH}/hwrfrun/sorc/WRFV3/test/nmm_tropical_cyclone.

namelist.wps Namelist file for WPS; Note that geog_data_path should be
modified to point to the actual path of the geog data files.

namelist.input Namelist file for WRF
input.d Vortex description file
sound.d Sounding data; four sounding files

(sound.d, sound_gfdl.d, sound_jordan.d,
and sound_wet.d) are provided in
${SCRATCH}/hwrfrun/sorc/WRFV3/test/\
nmm_tropical_cyclone, however, only the one named
sound.d will be used. To use a different sounding, rename
it to sound.d.

storm.center Vortex center file
sigma.d Sigma file
land.nml Namelist file containing land descriptions

12.2.3 General Instructions for Running the Executables

To perform the idealized simulation the following executables need to be
run: geogrid.exe, ungrib.exe, mod_levels.exe, metgrid.exe, ideal.exe,
and wrf.exe. Since the executables are compiled with distributed memory capability, many
computing platforms require they be run on compute nodes. Instructions for running jobs
on compute nodes can be found in section 3.5.1.

The wrappers and Python scripts described in previous chapters for running HWRF using
real data are not used for the idealized simulation. Since the workflow of the idealized
simulation is fairly simple, the commands can be run manually.

12.2.4 Running WPS to Create the ICs and LBCs

The steps below outline the procedure to preprocess the data for the creation of initial and
boundary conditions for the idealized simulation. It assumes that the run will be conducted
in a working directory named $WORKDIR/wpsprd.

1. Create and change into directory for running WPS:
mkdir $WORKDIR/wpsprd
cd $WORKDIR/wpsprd

2. Run geogrid
a) Copy the WPS namelist.

cp ${SCRATCH}/hwrfrun/sorc/WRFV3/test/\

135

http://www.dtcenter.org/HurrWRF/users/downloads/datasets/Idealized_2017/hwrfv3.9a_idealized.tar.gz
http://www.dtcenter.org/HurrWRF/users/downloads/datasets/Idealized_2017/hwrfv3.9a_idealized.tar.gz
http://www.dtcenter.org/HurrWRF/users/downloads/datasets/Idealized_2017/hwrfv3.9a_idealized.tar.gz

12. HWRF Idealized Tropical Cyclone Simulation

nmm_tropical_cyclone/namelist.wps .
b) Edit namelist.wps to make sure geog_data_path points to the location of

the WPS geographical data files, which are included in the fix tarball in the
fix/hwrf_wps_geo.

c) Link the geogrid table.
ln -fs ${SCRATCH}/hwrfrun/sorc/WPSV3/geogrid/\
GEOGRID.TBL.NMM ./GEOGRID.TBL

d) Run executable geogrid.exe on the command line or submit it to a compute
node or batch system.

${SCRATCH}/hwrfrun/sorc/WPSV3/geogrid.exe
e) Verify that the output files were created.

ls -l geo_nmm_nest.l0[12].nc geo_nmm.d01.nc
3. Run ungrib

a) Link the ungrib table.
ln -fs ${SCRATCH}/hwrfrun/sorc/WPSV3/ungrib/\
Variable_Tables/Vtable.GFS ./Vtable

b) Extract the two input GFS files.
Download tarfile with GFS input data http://www.dtcenter.org/
HurrWRF/users/downloads/datasets/Idealized_2016/hwrfv3.8a_
idealized.tar.gz.
tar -xzvf hwrfv3.8a_idealized.tar.gz
gunzip gfs.t12z.pgrb2.0p25.f000.gz
gunzip gfs.t12z.pgrb2.0p25.f120.gz
ls -l gfs.t12z.pgrb2.0p25.f000 gfs.t12z.pgrb2.0p25.f120

c) Link the GFS files to the names expected by ungrib.
${SCRATCH}/hwrfrun/sorc/WPSV3/link_grib.csh \
gfs.t12z.pgrb2.0p25.f000 gfs.t12z.pgrb2.0p25.f120

d) Run executable ungrib.exe on the command line or submit it to a compute
node or batch system.

${SCRATCH}/hwrfrun/sorc/WPSV3/ungrib.exe
e) Verify that the output files were created.

ls -l GFS:2012-10-26_12 GFS:2012-10-31_12
4. Run metgrid

a) Link the metgrid table.
ln -fs ${SCRATCH}/hwrfrun/sorc/WPSV3/metgrid/\
METGRID.TBL.NMM ./METGRID.TBL

b) Run executable mod_levels.exe twice on the command line or submit it to
a compute node or batch system. This program is used to reduce the number
of vertical levels in the GFS file. Only the levels listed in variable press_pa in
namelist.wps will be retained.

${SCRATCH}/hwrfrun/sorc/WPSV3/util/mod_levs.exe \
GFS:2012-10-26_12 new_GFS:2012-10-26_12
${SCRATCH}/hwrfrun/sorc/WPSV3/util/mod_levs.exe \
GFS:2012-10-31_12 new_GFS:2012-10-31_12

c) Verify that the output files were created.
ls -l new_GFS:2012-10-26_12 new_GFS:2012-10-31_12

d) Run executable metgrid.exe on the command line or submit it to a compute
node or batch system.

136

http://www.dtcenter.org/HurrWRF/users/downloads/datasets/Idealized_2016/hwrfv3.8a_idealized.tar.gz
http://www.dtcenter.org/HurrWRF/users/downloads/datasets/Idealized_2016/hwrfv3.8a_idealized.tar.gz
http://www.dtcenter.org/HurrWRF/users/downloads/datasets/Idealized_2016/hwrfv3.8a_idealized.tar.gz

12. HWRF Idealized Tropical Cyclone Simulation

${SCRATCH}/hwrfrun/sorc/WPSV3/metgrid.exe
e) Verify that the output files were created.

ls -l met_nmm.d01.2012-10-26_12_00_00.nc \
met_nmm.d01.2012-10-31_12_00_00.nc

12.2.5 Running ideal.exe and wrf.exe

The steps below outline the procedure to create initial and boundary conditions for the
idealized simulation. It assumes that the run will be conducted in a working directory
named $WORKDIR/wrfprd.

1. Create and change into directory for running ideal and real.
mkdir $WORKDIR/wrfprd
cd $WORKDIR/wrfprd

2. Run ideal
a) Link WRF input files.

ln -fs ${SCRATCH}/hwrfrun/sorc/WRFV3/run/ETAMPNEW_DATA .
ln -fs ${SCRATCH}/hwrfrun/sorc/WRFV3/run/ETAMPNEW_DATA.expanded_rain
.
ln -fs ${SCRATCH}/hwrfrun/sorc/WRFV3/run/GENPARM.TBL .
ln -fs ${SCRATCH}/hwrfrun/sorc/WRFV3/run/LANDUSE.TBL .
ln -fs ${SCRATCH}/hwrfrun/sorc/WRFV3/run/SOILPARM.TBL .
ln -fs ${SCRATCH}/hwrfrun/sorc/WRFV3/run/VEGPARM.TBL .
ln -fs ${SCRATCH}/hwrfrun/sorc/WRFV3/run/tr49t67 .
ln -fs ${SCRATCH}/hwrfrun/sorc/WRFV3/run/tr49t85 .
ln -fs ${SCRATCH}/hwrfrun/sorc/WRFV3/run/tr67t85 .
ln -fs ${SCRATCH}/hwrfrun/sorc/WRFV3/run/ozone.formatted .
ln -fs ${SCRATCH}/hwrfrun/sorc/WRFV3/run/ozone_lat.formatted .
ln -fs ${SCRATCH}/hwrfrun/sorc/WRFV3/run/ozone_plev.formatted
.
ln -fs ${SCRATCH}/hwrfrun/sorc/WRFV3/run/RRTM_DATA .
ln -fs ${SCRATCH}/hwrfrun/sorc/WRFV3/run/RRTMG_LW_DATA .
ln -fs ${SCRATCH}/hwrfrun/sorc/WRFV3/run/RRTMG_SW_DATA .

b) Link the WPS files.
ln -fs $WORKDIR/wpsprd/met_nmm* .
ln -fs $WORKDIR/wpsprd/geo_nmm* .

c) Copy the idealized simulation input files.
cp ${SCRATCH}/hwrfrun/sorc/WRFV3/test/\
nmm_tropical_cyclone/input.d .
cp ${SCRATCH}/hwrfrun/sorc/WRFV3/test/\
nmm_tropical_cyclone/sigma.d .
cp ${SCRATCH}/hwrfrun/sorc/WRFV3/test/\
nmm_tropical_cyclone/sound.d .
cp ${SCRATCH}/hwrfrun/sorc/WRFV3/test/\
nmm_tropical_cyclone/storm.center .
cp ${SCRATCH}/hwrfrun/sorc/WRFV3/test/\

137

12. HWRF Idealized Tropical Cyclone Simulation

nmm_tropical_cyclone/land.nml .
d) Copy namelist input.

cp ${SCRATCH}/hwrfrun/sorc/WRFV3/test/\
nmm_tropical_cyclone/namelist.input .

e) Edit and modify files input.d, sound.d, namelist.input and
land.nml, if desired.

• The sounding files provided have 30 vertical levels. To use a sounding
with different number of levels, it is necessary to modify the source code
in ${SCRATCH}/hwrfrun/sorc/WRFV3/dyn_nmm/\
module_initialize_tropical_cyclone.F. In subroutine tem, parameter
nv should be modified from 30 to the number of levels in the sounding.

• File storm.center should not be altered to make sure the storm is located
in the center of the inner nest.

• File land.nml should be altered to select experiments with landfall. To dis-
able the landfall option, set mvland=.false.. imin, imax, jmin and
jmax sets the land strip that will be moved underneath the storm. Under the
section param_land, DIRN sets the direction in which the land will move. 1
denotes West to East and 2 denotes East to West. logic_temp and s_temp
sets the surface temperature. logic_temp=.true. is used to apply the first
level air temperature to the surface and, s_temp is used to apply the spec-
ified temperature as surface temperature if logic_temp=.false. Other
land surface parameter can be chosen according to the user experiemental
setup.

• File namelist.input should be altered if landfalling option is used. The
landfalling option is currently supported only for GFDL Slab land surface
model sf_surface_physics=88.

• File sigma.d should not be modified as it does not pertain to the vertical
levels of the sounding or of the simulation. Rather, it defines the vertical
levels used to create the initial vortex.

f) Run executable ideal.exe on the command line or submit it to a compute node
or batch system.

${SCRATCH}/hwrfrun/sorc/WRFV3/main/ideal.exe
g) Verify that the output files were created.

ls -l wrfinput_d01 wrfbdy_d01 fort.65
3. Run WRF

a) Run executable wrf.exe on the command line or submit it to a compute node
or batch system.

${SCRATCH}/hwrfrun/sorc/WRFV3/main/wrf.exe
Note that executable wrf.exe must have been created using the instructions
for idealized simulations described in Chapter 2. The executable created
for regular HWRF simulations that ingest real data should not be used to
conduct idealized simulations.

b) Verify that the output files were created.
ls -l wrfout_d01* wrfout_d02* wrfout_d03*

138

A
Example of Computational

Resources for NOAA’s

Supercomputer Jet

Table A.1 gives an example of the resources required to run HWRF compiled with Intel in
operations on the NOAA Research Supercomputer Jet and should be used as a guideline for
scaling to the resources at the individual user’s disposal. In the example below, the available
resources include access to 5440 cores with 16 2.6 GHz cores per node. Each node has 32
GB (2 GB per core). With peak performance capable of 113.2 TF, and end-to-end run of
HWRF would take about four hours.

139

A. Example of Computational Resources for NOAA’s Supercomputer Jet

Wall clock time Total
Cores

Core Layout Virtual
Memory

launcher_wrapper 15:00 1 n/a n/a
init_gdas_wrapper 1:39:00 96 n/a n/a
init_gfs_wrapper 1:39:00 96 n/a 30 GB
init_bdy_wrapper 1:39:00 24 n/a 30 GB
init_ocean_wrapper 0:59:00 9 n/a 30 GB
bufrprep_wrapper 0:19:00 1 n/a 30 GB
relocate_wrapper 3:29:00 n/a nodes=1:ppn=2 20 GB
gsi_d02_wrapper 1:49:00 240 nodes=30:ppn=8 25 GB
gsi_d03_wrapper 1:49:00 240 nodes=30:ppn=8 25 GB
merge_wrapper 1:39:00 1 nodes=1:ppn=2 n/a
unpost_wrapper 0:10:00 1 n/a n/a
forecast_wrapper 4:59:00 505 see Table A.2 n/a
post_wrapper 5:59:00 24 n/a 25 GB
products_wrapper 5:59:00 11 n/a 30 GB

Table A.1: Example of resources required to run a 5-day HWRF forecast at near operational
capability.

Configuration Total
Cores

Core Layout nproc_x nproc_y

2km Coupled
(default)

505 1:ppn=13+20:ppn=24+1:ppn=12 16 30

2km Uncoupled 492 30:ppn=16+1:ppn=8+1:ppn=4 16 30

Table A.2: Example of forecast_wrapper required resources.

140

B
Example of Computational

Resources and Notes for

NCAR-Cheyenne

Table B.1 gives an example of the resources required to run HWRF compiled with Intel on
the NCAR Supercomputer Cheyenne and should be used as a guideline for scaling to the
resources at the individual user’s disposal. The cheyenne HPC system has 36 processors per
node, and 45GB usable memory per node.

• For NCAR’s cheyenne compute nodes, please use ncpus=24:mpiprocs=24 for the
init_gdas_wrapper, init_gfs_wrapper and both gsi_wrapper tasks.

• Please load the following modules for cheyenne prior to compiling HWRF. This list
includes the IMPI package, and does not use the default SGIMPT. The coupled forecast
requires IMPI on cheyenne.

1. ncarenv/1.2
2. intel/16.0.3
3. ncarcompilers/0.4.1
4. netcdf/4.4.1.1
5. impi/5.1.3.210
6. pnetcdf/1.8.0
7. mkl/11.3.3

141

B. Example of Computational Resources and Notes for NCAR-Cheyenne

Wall clock
time

Total
Cores

Core Layout Virtual
Memory

launcher_wrapper 15:00 1 n/a n/a
init_gdas_wrapper 1:20:00 48 n/a n/a
init_gfs_wrapper 1:20:00 48 n/a n/a
init_bdy_wrapper 1:00:00 24 n/a 30 GB
init_ocean_wrapper0:59:00 9 n/a 30 GB
bufrwrapper 0:19:00 1 n/a 30 GB
relocate_wrapper 2:19:00 n/a nodes=1 20 GB
gsi_d02_wrapper 1:49:00 60 nodes=10:ppn=6 25 GB
gsi_d03_wrapper 1:49:00 240 nodes=30:ppn=8 25 GB
merge_wrapper 1:39:00 1 n/a n/a
unpost_wrapper 0:05:00 1 n/a n/a
forecast_wrapper 4:59:00 505 see Table B.2 n/a
post_wrapper 5:59:00 24 n/a 25 GB
products_wrapper 5:59:00 15 n/a 30 GB

Table B.1: Example of resources required to run a 5-day HWRF forecast at near operational
capability.

Configuration Total
Cores

Core Layout nproc_x nproc_y

2km Coupled
(default)

505 select=1:ncpus=13:mpiprocs=13
+20:ncpus=24:mpiprocs=24

+1:ncpus=12:mpiprocs=12

16 30

2km Uncoupled 492 select=20:ncpus=24:mpiprocs=24
+1:ncpus=8:mpiprocs=8

+1:ncpus=4:mpiprocs=4

16 30

Table B.2: Example of forecast_wrapper required resources.

• To select node and task layout options for cheyenne, use the following syntax in your
job submit script:
#PBS -l select=1:ncpus=13:mpiprocs=13+20:ncpus=24:mpiprocs=24+1:ncpus=12:mpiprocs=12

142

C
Example HWRF Namelist

The HWRF namelist used for the release case, Hurricane Matthew (2016), is listed below.
Note: the namelist is generated by the HWRF scripts based on the settings in the configura-
tion files of the parm directory.

&time_control
start_year = 2016, 2016, 2016,
start_month = 10, 10, 10,
start_day = 4, 4, 4,
start_hour = 0, 0, 0,
start_minute = 0, 0, 0,
start_second = 0, 0, 0,
end_year = 2016, 2016, 2016,
end_month = 10, 10, 10,
end_day = 9, 9, 9,
end_hour = 6, 6, 6,
end_minute = 0, 0, 0,
end_second = 0, 0, 0,
interval_seconds = 21600,
history_interval = 180, 180, 180,
auxhist1_interval = 60, 60, 60,
auxhist2_interval = 60, 60, 60,
auxhist3_interval = 180, 180, 180,
history_end = 540, 540, 540,
auxhist2_end = 540, 540, 540,
auxhist1_outname = "wrfdiag_d<domain>",
auxhist2_outname = "wrfout_d<domain>_<date>",
auxhist3_outname = "wrfout_d<domain>_<date>",
frames_per_outfile = 1, 1, 1,
frames_per_auxhist1 = 999, 999, 999,
frames_per_auxhist2 = 1, 1, 1,
frames_per_auxhist3 = 1, 1, 1,
analysis = F, T, T,

143

C. Example HWRF Namelist

restart = F,
restart_interval = 36000,
reset_simulation_start = F,
io_form_input = 11,
io_form_history = 11,
io_form_restart = 11,
io_form_boundary = 11,
io_form_auxinput1 = 2,
io_form_auxhist1 = 202,
io_form_auxhist2 = 11,
io_form_auxhist3 = 11,
auxinput1_inname = "met_nmm.d<domain>.<date>",
debug_level = 1,
tg_reset_stream = 1,
override_restart_timers = T,
io_form_auxhist4 = 11,
io_form_auxhist5 = 11,
io_form_auxhist6 = 11,
io_form_auxinput2 = 2,
nocolons = T,
/
&fdda
/
&domains
time_step = 30,
time_step_fract_num = 0,
time_step_fract_den = 1,
max_dom = 3,
s_we = 1, 1, 1,
e_we = 288, 265, 235,
s_sn = 1, 1, 1,
e_sn = 576, 532, 472,
s_vert = 1, 1, 1,
e_vert = 75, 75, 75,
dx = 0.135, 0.045, 0.015,
dy = 0.135, 0.045, 0.015,
grid_id = 1, 2, 3,
tile_sz_x = 0,
tile_sz_y = 0,
numtiles = 1,
nproc_x = 16,
nproc_y = 30,
parent_id = 0, 1, 2,
parent_grid_ratio = 1, 3, 3,
parent_time_step_ratio = 1, 3, 3,
i_parent_start = 0, 107, 93,
j_parent_start = 0, 131, 187,
feedback = 1,
num_moves = -99,
num_metgrid_levels = 4,
p_top_requested = 1000.0,
ptsgm = 15000.0,

144

C. Example HWRF Namelist

eta_levels = 1.0, 0.997622, 0.995078, 0.99224, 0.989036,
0.98544, 0.981451, 0.977061, 0.972249, 0.966994,
0.96128, 0.955106, 0.948462, 0.941306, 0.933562,
0.925134, 0.915937, 0.90589, 0.894913, 0.882926,
0.869842, 0.855646, 0.840183, 0.823383,
0.805217, 0.785767, 0.7651, 0.7432, 0.720133,
0.695967, 0.670867, 0.645033, 0.6187, 0.592067,
0.565333, 0.538733, 0.5125, 0.4868, 0.461767,
0.437533, 0.4142, 0.391767, 0.370233, 0.3496,
0.329867, 0.310967, 0.292867, 0.275533,
0.258933, 0.243, 0.2277, 0.213, 0.198867,
0.1853, 0.172267, 0.159733, 0.147633, 0.135967,
0.124767, 0.114033, 0.103733, 0.093867, 0.0844,
0.075333, 0.0666, 0.058267, 0.050333, 0.042833,
0.035733, 0.029, 0.0226, 0.0165, 0.010733,
0.005267, 0.0,

use_prep_hybrid = T,
num_metgrid_soil_levels = 4,
coral_x = 6, 9, 9,
coral_y = 18, 18, 18,
smooth_option = 0,
/
&physics
num_soil_layers = 4,
mp_physics = 5, 5, 5,
ra_lw_physics = 4, 4, 4,
ra_sw_physics = 4, 4, 4,
sf_sfclay_physics = 88, 88, 88,
sf_surface_physics = 2, 2, 2,
bl_pbl_physics = 3, 3, 3,
cu_physics = 4, 4, 4,
mommix = 1.0, 1.0, 1.0,
var_ric = 1.0,
coef_ric_l = 0.16,
coef_ric_s = 0.25,
h_diff = 1.0, 1.0, 1.0,
gwd_opt = 2, 0, 0,
sfenth = 0.0, 0.0, 0.0,
nrads = 30, 90, 270,
nradl = 30, 90, 270,
nphs = 2, 6, 6,
ncnvc = 2, 6, 6,
ntrack = 6, 6, 18,
gfs_alpha = -1.0, -1.0, -1.0,
sas_pgcon = 0.55, 0.2, 0.2,
sas_mass_flux = 0.5, 0.5, 0.5,
co2tf = 1,
vortex_tracker = 2, 2, 7,
nomove_freq = 0, 6, 6,
tg_option = 1,
ntornado = 2, 6, 18,
ens_cdamp = 0.2,
ens_pblamp = 0.2,
ens_random_seed = 99,
ens_sasamp = 50.0,
icloud = 3,
icoef_sf = 6, 6, 6,
iwavecpl = 0, 0, 0,

145

C. Example HWRF Namelist

lcurr_sf = F, F, F,
pert_cd = F,
pert_pbl = F,
pert_sas = F,
/
&dynamics
non_hydrostatic = T, T, T,
euler_adv = F,
wp = 0, 0, 0,
coac = 0.75, 1.0, 1.2,
codamp = 6.4, 6.4, 6.4,
terrain_smoothing = 2,
dwdt_damping_lev = 2000.0, 2000.0, 2000.0,
/
&bdy_control
spec_bdy_width = 1,
specified = T,
/
&namelist_quilt
poll_servers = T,
nio_tasks_per_group = 4, 4, 4,
nio_groups = 1,
/
&logging
compute_tasks_silent = T,
io_servers_silent = T,
stderr_logging = 0,
/

146

D
Additional GFDL Tracker

Information

Sample namelist

inp%bcc First two digits of the year for the initial time of the forecast (e.g.,
the "20" in "2012").

inp%byy Last two digits of the year for the initial time of the forecast (e.g.,
the "12" in "2012").

inp%bmm Two-digit month (01, 02, etc) for the initial time of the forecast.
inp%bdd Two-digit day for the initial time of the forecast.
inp%bhh Two-digit hour for the initial time of the forecast.

147

D. Additional GFDL Tracker Information

inp%model Model ID number as defined by the user in the script. This
is used in subroutine getdata to define what the GRIB IDs
are for surface wind levels. Create a unique number in the
script for your model and make sure you have the corre-
sponding IDs set up for it in subroutine getdata. For HWRF
use 17. The Model ID numbers for other models are listed below:

(1) GFS, (2) MRF, (3) UKMET, (4) ECMWF,
(5) NGM, (6) NAM, (7) NOGAPS, (8) GDAS,
(10) NCEP Ensemble, (11) ECMWF Ensemble,
(13) SREF Ensemble, (14) NCEP Ensemble, (15) CMC,
(16) CMC Ensemble, (18) HWRF Ensemble,
(19) HDAS,
(20) Ensemble RELOCATION (21) UKMET hi-res (NHC)
(23) FNMOC Ensemble

inp%modtyp Type of the model. Either "global" or "regional". For HWRF,
choose "regional".

inp%lt_units "hours" or "minutes", this defines the lead time unit used by the
PDS in your GRIB header.

inp%file_seq "onebig" or "multi", this specifies if the tracker will process one
big input file or multiple files for each individual lead times.
"onebig" is used as the default method in the community HWRF
scripts.

inp%nesttyp Type of the nest grid. Either "moveable" or "fixed". For HWRF,
choose "moveable".

atcfnum Obsolete; can be set to any integer.
atcfname Character model ID that will appear in the ATCF output (e.g.,

GFSO, HWRF, AHW, HCOM etc).
atcfymdh 10-digit yyyymmddhh date that will be used in output text track

files.
atcffreq Frequency (in centahours) of output for atcfunix.Default value is

600 (six hourly).
trkrinfo%type trkrinfo%type defines the type of tracking to do. A "tracker" run

functions as the standard TC tracker and tracks only storms from
the TC Vitals. "tcgen" and "midlat" run in genesis mode and will
look for new storms in addition to tracking from TC Vitals. "tc-
gen" will look for all parameters at the various vertical levels,
while "midlat" will only look for MSLP and no checks are per-
formed to differentiate tropical from non-tropical cyclones.For
HWRF, choose "tracker".

trkrinfo%mslpthresh Threshold for the minimum MSLP gradient (units hPa/km) that
must be met to continue tracking.

trkrinfo%use_backup_
mslp_grad_check

Checking MSLP was read in or not.

trkrinfo%v850thresh Threshold for the minimum azimuthally-average 850 hPa cy-
clonic tangential wind speed (m/s) that must be exceeded in or-
der to keep tracking.

trkrinfo%use_backup_
850_vt_check

Flag to check 850 mb u- and v- component will be read in.

148

D. Additional GFDL Tracker Information

trkrinfo%enable_timing Flag to do timing calls and print out results. 0 will turn off timing
calls, any other number will print it.

trkrinfo%gridtype "global" or "regional", this defines the type of domain grid. For
HWRF or other limited area models, choose "regional".

trkrinfo%contint This specifies the interval (in Pa) used by subroutine
check_closed_contour to check for a closed contour in the
mslp field when running in genesis mode. Note that
check_closed_contour is also called from the routine that checks
for a warm core, but the contour interval is hard-wired in the
executable as 1.0 degree K for that usage.

trkrinfo%want_oci Flag to check whether OCI will be computed.
trkrinfo%out_vit This is only set to "y" if the tracker is running in genesis mode,

and it tells the tracker to write out a "TC Vitals" record for any
storms that it finds at the model initialization time. For HWRF,
choose "n".

trkrinfo%land_mask Flag to check whether land mask will be used for tcgen.
trkrinfo%inp_data_type Data type used (GRIB or NetCDF).
trkrinfo%gribver If GRIB, what version.
trkrinfo%g2_jpdtn This is set to zero if trying to read deterministic model data, and

1 if trying to read ensemble model data.
trkrinfo%westbd For genesis runs, the western boundary for searching for new

storms. Does not need to match the boundaries of your grid, it
can be smaller.

trkrinfo%eastbd For genesis runs, the eastern boundary for searching for new
storms. Does not need to match the boundaries of your grid, it
can be smaller than your grid.

trkrinfo%northbd For genesis runs, the northern boundary for searching for new
storms. Does not need to match the boundaries of your grid, it
can be smaller than your grid.

trkrinfo%southbd For genesis runs, the southern boundary for searching for new
storms. Does not need to match the boundaries of your grid, it
can be smaller than your grid.

phaseflag "y" or "n", tells the program whether or not to determine the
cyclone thermodynamic phase.

phasescheme "cps", "vtt", "both", tells the program which scheme to use for
checking the cyclone phase. "cps" is Hart’s cyclone phase space,
"vtt" is a simple 300-500-hPa warm core check based on Vitart,
and "both" tells the program to use both schemes. Not used if
phaseflag="n".

wcore_depth The contour interval (in deg K) used in determining if a closed
contour exists in the 300-500-hPa temperature data, for use with
the vtt scheme.

structflag "y" or "n", tells the program whether or not to determine the
cyclone thermodynamic structure.

ikeflag "y" or "n", tells the program whether or not to calculate the Inte-
grated Kinetic Energy (IKE) and Storm Surge Damage Potential
(SDP).

gmodname Defines the model name in the input files, e.g., "hwrf". Only
when inp%file_seq="multi".

rundescr Describes the model runs in the input files, e.g., "combined".
Only when inp%file_seq= "multi".

149

D. Additional GFDL Tracker Information

atcfdescr Describe the storm information in the input files, e.g., "irene09l".
Only when inp%file_seq="multi".

verb Level of detail printed to terminal. Choose from 0 (no output),1
(error messages only), 2 (more messages), 3 (all messages).

use_waitfor "y" or "n", for waiting for input files. Use "n" unless for real-time
operational runs.

Contents of the output files

A sample of the vortex tracker output fort.69 is listed below:
AL, 08, 2014101412, 03, HWRF, 00000, 197N, 649W, 97, 973, XX, 34, NEQ, 0120, 0086, 0036, 0117, 0, 0, 25
AL, 08, 2014101412, 03, HWRF, 00000, 197N, 649W, 97, 973, XX, 50, NEQ, 0062, 0034, 0014, 0059, 0, 0, 25
AL, 08, 2014101412, 03, HWRF, 00000, 197N, 649W, 97, 973, XX, 64, NEQ, 0043, 0021, 0002, 0040, 0, 0, 25
AL, 08, 2014101412, 03, HWRF, 00100, 198N, 650W, 84, 962, XX, 34, NEQ, 0097, 0066, 0034, 0089, 0, 0, 25
AL, 08, 2014101412, 03, HWRF, 00100, 198N, 650W, 84, 962, XX, 50, NEQ, 0047, 0033, 0014, 0042, 0, 0, 25
AL, 08, 2014101412, 03, HWRF, 00100, 198N, 650W, 84, 962, XX, 64, NEQ, 0035, 0017, 0000, 0031, 0, 0, 25
AL, 08, 2014101412, 03, HWRF, 00200, 200N, 652W, 80, 967, XX, 34, NEQ, 0104, 0073, 0051, 0092, 0, 0, 26
AL, 08, 2014101412, 03, HWRF, 00200, 200N, 652W, 80, 967, XX, 50, NEQ, 0051, 0032, 0015, 0046, 0, 0, 26
AL, 08, 2014101412, 03, HWRF, 00200, 200N, 652W, 80, 967, XX, 64, NEQ, 0037, 0000, 0007, 0034, 0, 0, 26
AL, 08, 2014101412, 03, HWRF, 00300, 203N, 653W, 77, 970, XX, 34, NEQ, 0097, 0080, 0062, 0085, 0, 0, 16
AL, 08, 2014101412, 03, HWRF, 00300, 203N, 653W, 77, 970, XX, 50, NEQ, 0044, 0031, 0024, 0036, 0, 0, 16
AL, 08, 2014101412, 03, HWRF, 00300, 203N, 653W, 77, 970, XX, 64, NEQ, 0028, 0020, 0017, 0024, 0, 0, 16
AL, 08, 2014101412, 03, HWRF, 00400, 205N, 654W, 75, 971, XX, 34, NEQ, 0093, 0080, 0065, 0087, 0, 0, 15
AL, 08, 2014101412, 03, HWRF, 00400, 205N, 654W, 75, 971, XX, 50, NEQ, 0039, 0032, 0035, 0031, 0, 0, 15
AL, 08, 2014101412, 03, HWRF, 00400, 205N, 654W, 75, 971, XX, 64, NEQ, 0024, 0022, 0020, 0022, 0, 0, 15
AL, 08, 2014101412, 03, HWRF, 00500, 206N, 655W, 78, 970, XX, 34, NEQ, 0097, 0081, 0060, 0084, 0, 0, 14
AL, 08, 2014101412, 03, HWRF, 00500, 206N, 655W, 78, 970, XX, 50, NEQ, 0039, 0035, 0041, 0034, 0, 0, 14
AL, 08, 2014101412, 03, HWRF, 00500, 206N, 655W, 78, 970, XX, 64, NEQ, 0026, 0024, 0021, 0023, 0, 0, 14
AL, 08, 2014101412, 03, HWRF, 00600, 208N, 657W, 82, 970, XX, 34, NEQ, 0110, 0083, 0061, 0088, 0, 0, 15

Column 1: basin name. "AL" represents Atlantic and "EP" northeast Pacific.
Column 2: ATCF storm ID number. Gonzalo was the 8th storm in the Atlantic Basin in

2014.
Column 3: model starting time.
Column 4: constant and 03 simply indicates that this record contains model forecast data.
Column 5: model ATCF name.
Column 6: forecast lead time in hours multiplied by 100 (e.g, 00900 represents 9.00 h).
Column 7–8: vortex center position (latitude and longitude multiplied by 10).
Column 9: vortex maximum 10-m wind (in kt).
Column 10: vortex minimum MSLP (in hPa).
Column 11: placeholder for character strings that indicate whether the storm is a depression,

tropical storm, hurricane, subtropical storm etc. Currently, that storm type char-
acter string is only used for the observed storm data in the NHC Best Track data
set.

Column 12: thresholds wind speed in knots, an identifier that indicates whether this record
contains radii for the 34-, 50- or 64-knot wind thresholds.

Column 13: "NEQ" indicates that the four radii values that follow will begin in the northeast
quadrant and progress clockwise.

Column 14–17: wind radii (in nm) for the threshold winds in each quadrant.
Column 18–19: not used.
Column 20: radius of maximum winds, in nautical miles.

A sample of the vortex tracker output fort.64 is listed below:
AL, 08, 2014101412, 03, HWRF, 000, 197N, 649W, 97, 973, XX, 34, NEQ, 0120, 0086, 0036, 0117, -99, -99, 25, 0, 0, , 0, , 0, 0, , , , , 0, 0,
0, 0, THERMO PARAMS, -9999, -9999, -9999, Y, 10, DT, -999
AL, 08, 2014101412, 03, HWRF, 000, 197N, 649W, 97, 973, XX, 50, NEQ, 0062, 0034, 0014, 0059, -99, -99, 25, 0, 0, , 0, , 0, 0, , , , , 0, 0,
0, 0, THERMO PARAMS, -9999, -9999, -9999, Y, 10, DT, -999

150

D. Additional GFDL Tracker Information

AL, 08, 2014101412, 03, HWRF, 000, 197N, 649W, 97, 973, XX, 64, NEQ, 0043, 0021, 0002, 0040, -99, -99, 25, 0, 0, , 0, , 0, 0, , , , , 0, 0,
0, 0, THERMO PARAMS, -9999, -9999, -9999, Y, 10, DT, -999
AL, 08, 2014101412, 03, HWRF, 001, 198N, 650W, 84, 962, XX, 34, NEQ, 0097, 0066, 0034, 0089, -99, -99, 25, 0, 0, , 0, , 0, 0, , , , , 0,
0, 0, 0, THERMO PARAMS, -57, 1476, 2582, Y, 10, DT, -999
AL, 08, 2014101412, 03, HWRF, 001, 198N, 650W, 84, 962, XX, 50, NEQ, 0047, 0033, 0014, 0042, -99, -99, 25, 0, 0, , 0, , 0, 0, , , , , 0, 0,
0, 0, THERMO PARAMS, -57, 1476, 2582, Y, 10, DT, -999
AL, 08, 2014101412, 03, HWRF, 001, 198N, 650W, 84, 962, XX, 64, NEQ, 0035, 0017, 0000, 0031, -99, -99, 25, 0, 0, , 0, , 0, 0, , , , , 0, 0,
0, 0, THERMO PARAMS, -57, 1476, 2582, Y, 10, DT, -999
AL, 08, 2014101412, 03, HWRF, 002, 200N, 652W, 80, 967, XX, 34, NEQ, 0104, 0073, 0051, 0092, -99, -99, 26, 0, 0, , 0, , 0, 0, , , , , 0, 0,
0, 0, THERMO PARAMS, -60, 1437, 2067, Y, 10, DT, -999
AL, 08, 2014101412, 03, HWRF, 002, 200N, 652W, 80, 967, XX, 50, NEQ, 0051, 0032, 0015, 0046, -99, -99, 26, 0, 0, , 0, , 0, 0, , , , , 0,
0, 0, 0, THERMO PARAMS, -60, 1437, 2067, Y, 10, DT, -999
AL, 08, 2014101412, 03, HWRF, 002, 200N, 652W, 80, 967, XX, 64, NEQ, 0037, 0000, 0007, 0034, -99, -99, 26, 0, 0, , 0, , 0, 0, , , , , 0,
0, 0, 0, THERMO PARAMS, -60, 1437, 2067, Y, 10, DT, -999
AL, 08, 2014101412, 03, HWRF, 003, 203N, 653W, 77, 970, XX, 34, NEQ, 0097, 0080, 0062, 0085, -99, -99, 16, 0, 0, , 0, , 0, 0, , , , , 0,
0, 0, 0, THERMO PARAMS, -55, 1688, 1824, Y, 10, DT, -999

Column 1–20: same as fort.69 except that column 6, the forecast lead time, instead of being
a 5-digit integer as in fort.69, is a 3-digit integer.

Column 21–35: space fillers.
Column 36: "THERMO PARAMS" indicating that thermodynamics parameters will follow.
Column 37–39: The three cyclone phase space parameters, and all values shown have been

multiplied by a factor of 10. The values are listed below:

1. Parameter B (left-right thickness asymmetry)
2. Thermal wind (warm/cold core) value for lower troposphere (900–600

hPa)
3. Thermal wind value for upper troposphere (600–300 hPa)

Column 40: Presence of a warm core. In this sample it is "Y", which means a warm core check
was performed, and a warm core has been identified. An âĂIJNâĂİ would mean
that a warm core was not identified, and âĂIJUâĂİ stands for "undetermined",
meaning the warm core check was not performed.

Column 41: Warm core strength x 10 (in degrees). It indicates the value of the contour interval
that was used in performing the check for the warm core in the 300–500 hPa
layer.

Column 42–43: Constant strings.

A sample of the vortex tracker output fort.66 is listed below:

TG, 0001, 2011082312_F000_204N_0706W_FOF, 2011082312, 03, HCOM, 000, 204N, 706W, 87, 978, XX, 34, NEQ, 0103, 0077, 0058,
0095, 1005, 56, 24, -999, -9999, -9999, U, 288, 39, 1191, 6649, 1186, 5714
TG, 0001, 2011082312_F000_204N_0706W_FOF, 2011082312, 03, HCOM, 000, 204N, 706W, 87, 978, XX, 50, NEQ, 0058, 0042, 0032,
0054, 1005, 56, 24, -999, -9999, -9999, U, 288, 39, 1191, 6649, 1186, 5714
TG, 0001, 2011082312_F000_204N_0706W_FOF, 2011082312, 03, HCOM, 000, 204N, 706W, 87, 978, XX, 64, NEQ, 0043, 0027, 0019,
0041, 1005, 56, 24, -999, -9999, -9999, U, 288, 39, 1191, 6649, 1186, 5714
TG, 0001, 2011082312_F000_204N_0706W_FOF, 2011082312, 03, HCOM, 006, 208N, 714W, 94, 965, XX, 34, NEQ, 0156, 0096, 0059,
0145, 976, 17, 21, -999, -9999, -9999, U, 292, 45, 1164, 3306, 1116, 3302
TG, 0001, 2011082312_F000_204N_0706W_FOF, 2011082312, 03, HCOM, 006, 208N, 714W, 94, 965, XX, 50, NEQ, 0065, 0056, 0037,
0058, 976, 17, 21, -999, -9999, -9999, U, 292, 45, 1164, 3306, 1116, 3302
TG, 0001, 2011082312_F000_204N_0706W_FOF, 2011082312, 03, HCOM, 006, 208N, 714W, 94, 965, XX, 64, NEQ, 0047, 0031, 0030,
0042, 976, 17, 21, -999, -9999, -9999, U, 292, 45, 1164, 3306, 1116, 3302
TG, 0001, 2011082312_F000_204N_0706W_FOF, 2011082312, 03, HCOM, 012, 209N, 722W, 93, 964, XX, 34, NEQ, 0123, 0098, 0059,
0104, 979, 21, 21, -999, -9999, -9999, U, 282, 42, 1187, 3668, 1122, 2694
TG, 0001, 2011082312_F000_204N_0706W_FOF, 2011082312, 03, HCOM, 012, 209N, 722W, 93, 964, XX, 50, NEQ, 0069, 0053, 0047,
0058, 979, 21, 21, -999, -9999, -9999, U, 282, 42, 1187, 3668, 1122, 2694
TG, 0001, 2011082312_F000_204N_0706W_FOF, 2011082312, 03, HCOM, 012, 209N, 722W, 93, 964, XX, 64, NEQ, 0044, 0033, 0033,
0044, 979, 21, 21, -999, -9999, -9999, U, 282, 42, 1187, 3668, 1122, 2694

151

D. Additional GFDL Tracker Information

Column 1: "TG", the basin id for cyclogenesis (when trkrinfo%type is set to midlat, this id is
named "ML").

Column 2: the number of cyclogenesis the tracker identified.
Column 3: the ID for the cyclogenesis, ${YYYYMMDDHH}_F${FFF}_$Lat_$Lon_FOF where

YYYYMMDDHH, FFF, Lat and Lon are the model initialization time, the forecast
lead time, the latitude and the longitude, respectively, in which the cyclogenesis
was first identified.

Column 4–18: same as Columns 3–17 in fort.64.
Column 19: pressure of last closed isobar (in hPa).
Column 20: radius of last closed isobar (nm).
Column 21: radius of maximum wind (nm).
Column 22–24: The cyclone phase space parameters, and all values shown have been multiplied

by a factor of 10. The values are listed below:

1. Parameter B (left-right thickness asymmetry)
2. Thermal wind (warm/cold core) value for lower troposphere (900–600

hPa)
3. Thermal wind value for upper troposphere (600–300 hPa)

Column 25: Presence of a warm core. In this sample it is "U", which stands for "undeter-
mined", meaning the warm core check is not performed. When the warm core
check is performed, this field will be either "Y" or "N", indicating whether the
warm core is identified or not.

Column 26: storm moving direction (in degrees).
Column 27: storm moving speed (in tenths of ms−1).
Column 28: mean 850-hPa vorticity (s−1x10e5).
Column 29: max (gridpoint) 850-hPa vorticity (s−1x10e5).
Column 30: mean 700 hPa vorticity (s−1x10e5).
Column 31: max (gridpoint) 700 hPa vorticity (s−1x10e5).

A sample of the vortex tracker output fort.74 is listed below:

AL, 09, 2011082312, 03, HCOM, 000, 204N, 706W, 87, 978, XX, 91, IKE, 0, 23, 34, 16, 5, 0, 0, 0, 2039N, 7062W
AL, 09, 2011082312, 03, HCOM, 006, 208N, 714W, 94, 965, XX, 91, IKE, 0, 28, 42, 25, 8, 0, 0, 0, 2081N, 7142W
AL, 09, 2011082312, 03, HCOM, 012, 209N, 722W, 93, 964, XX, 91, IKE, 0, 28, 44, 25, 8, 0, 0, 0, 2088N, 7220W
AL, 09, 2011082312, 03, HCOM, 018, 213N, 728W, 99, 962, XX, 91, IKE, 0, 25, 46, 19, 9, 0, 0, 0, 2131N, 7276W
AL, 09, 2011082312, 03, HCOM, 024, 218N, 733W, 92, 962, XX, 91, IKE, 0, 27, 50, 23, 8, 0, 0, 0, 2179N, 7333W
AL, 09, 2011082312, 03, HCOM, 030, 225N, 741W, 97, 959, XX, 91, IKE, 0, 28, 51, 26, 9, 0, 0, 0, 2245N, 7415W
AL, 09, 2011082312, 03, HCOM, 036, 231N, 749W, 95, 961, XX, 91, IKE, 0, 29, 51, 27, 11, 0, 0, 0, 2314N, 7488W
AL, 09, 2011082312, 03, HCOM, 042, 239N, 756W, 100, 956, XX, 91, IKE, 0, 29, 54, 28, 11, 0, 0, 0, 2387N, 7562W
AL, 09, 2011082312, 03, HCOM, 048, 248N, 762W, 107, 953, XX, 91, IKE, 0, 30, 58, 30, 14, 0, 0, 0, 2479N, 7621W
AL, 09, 2011082312, 03, HCOM, 054, 258N, 767W, 111, 949, XX, 91, IKE, 0, 32, 62, 34, 16, 0, 0, 0, 2575N, 7668W
AL, 09, 2011082312, 03, HCOM, 060, 267N, 770W, 113, 946, XX, 91, IKE, 0, 33, 65, 38, 18, 0, 0, 0, 2668N, 7696W
AL, 09, 2011082312, 03, HCOM, 066, 277N, 773W, 111, 944, XX, 91, IKE, 0, 34, 67, 40, 21, 0, 0, 0, 2769N, 7731W
AL, 09, 2011082312, 03, HCOM, 072, 286N, 774W, 114, 944, XX, 91, IKE, 0, 35, 68, 42, 23, 0, 0, 0, 2864N, 7742W
AL, 09, 2011082312, 03, HCOM, 078, 296N, 775W, 113, 941, XX, 91, IKE, 0, 35, 73, 43, 22, 0, 0, 0, 2959N, 7753W
AL, 09, 2011082312, 03, HCOM, 084, 304N, 774W, 107, 944, XX, 91, IKE, 0, 35, 74, 43, 22, 0, 0, 0, 3037N, 7742W
AL, 09, 2011082312, 03, HCOM, 090, 312N, 774W, 108, 941, XX, 91, IKE, 0, 36, 77, 46, 23, 0, 0, 0, 3119N, 7745W
AL, 09, 2011082312, 03, HCOM, 096, 320N, 773W, 107, 942, XX, 91, IKE, 0, 37, 79, 51, 26, 0, 0, 0, 3198N, 7728W
AL, 09, 2011082312, 03, HCOM, 102, 328N, 772W, 111, 938, XX, 91, IKE, 0, 38, 78, 53, 28, 0, 0, 0, 3278N, 7719W
AL, 09, 2011082312, 03, HCOM, 108, 336N, 769W, 111, 937, XX, 91, IKE, 0, 37, 76, 51, 30, 0, 0, 0, 3360N, 7690W
AL, 09, 2011082312, 03, HCOM, 114, 347N, 766W, 106, 939, XX, 91, IKE, 0, 35, 68, 43, 21, 0, 0, 0, 3473N, 7664W
AL, 09, 2011082312, 03, HCOM, 120, 361N, 764W, 90, 950, XX, 91, IKE, 0, 32, 57, 35, 10, 0, 0, 0, 3611N, 7642W
AL, 09, 2011082312, 03, HCOM, 126, 375N, 764W, 69, 957, XX, 91, IKE, 0, 27, 42, 24, 2, 0, 0, 0, 3745N, 7637W

Column 1-11: Same as fort.64.
Column 12–13: fixed fields.

152

D. Additional GFDL Tracker Information

Column 14: wind damage potential (wdp) (not computed in this version,
therefore is always zero).

Column 15: storm surge damage potential (SDP) (multiplied by 10).
Column 16–18: IKE, in terajoule, for 10 ms−1, 18 ms−1 and 33 ms−1 winds,

respectively.
Column 19–21: IKE for 25-40 ms−1, 41-54 ms−1 and 55 ms−1 winds, currently

not computed, therefore are always zero.
Column 22–23: vortex center position (latitude and longitude multiplied by 100).

153

	Preface
	1 Introduction
	1.1 HWRF System Overview
	1.2 HWRF Development and Support
	1.3 HWRF Source Code Directory Structure
	1.3.1 HWRF Utilities Programs and Scripts
	1.3.2 MPIPOM-TC Ocean Model
	1.3.3 NCEP Coupler
	1.3.4 GFDL Vortex Tracker
	1.3.5 WRFV3 – Atmospheric Model
	1.3.6 WPSV3 – WRF Preprocessor
	1.3.7 UPP – Unified Post-Processor
	1.3.8 GSI – Gridpoint Statistical Interpolation
	1.3.9 HWRF Run

	2 Software Installation
	2.1 Introduction
	2.2 Obtaining the HWRF Source Code
	2.3 Setting up HWRF
	2.4 System Requirements, Libraries, and Tools
	2.4.1 Compilers
	2.4.2 netCDF, pnetCDF, and MPI
	2.4.3 LAPACK and BLAS

	2.5 Included Libraries
	2.5.1 Component Dependencies

	2.6 Building WRF-NMM
	2.6.1 Set Environment Variables
	2.6.2 Configure and Compile WRF-NMM
	2.6.3 Configure and Compile: Idealized Tropical Cyclone WRF-NMM

	2.7 Building HWRF-utilities
	2.7.1 Set Environment Variables
	2.7.2 Configure and Compile

	2.8 Building MPIPOM-TC
	2.8.1 Set Environment Variables
	2.8.2 Configure and Compile

	2.9 Building GFDL Vortex Tracker
	2.9.1 Set Environment Variables
	2.9.2 Configure and Compile

	2.10 Building the NCEP Coupler
	2.10.1 Configure and Compile

	2.11 Building WPS
	2.11.1 Set Environment Variables
	2.11.2 Configure and Compile

	2.12 Building UPP
	2.12.1 Set Environment Variables
	2.12.2 Configure and Compile

	2.13 Building GSI
	2.13.1 Set Environment Variables
	2.13.2 Configure and Compile

	3 Running HWRF
	3.1 HWRF Scripts Overview
	3.2 Defining an Experiment
	3.2.1 Standard Configuration Files

	3.3 Input Data and Fix Directory Structure
	3.4 Production Directory Structure
	3.5 Scripts for Running HWRF
	3.5.1 Submitting a Job

	3.6 Running HWRF End-to-End
	3.6.1 Editing global_vars.sh
	3.6.2 Using Wrapper Scripts

	3.7 Operational HWRF for the Various Ocean Basins
	3.7.1 Atlantic and Eastern Pacific Basin
	3.7.2 All Other N. Hemispheric Basins
	3.7.3 Southern Hemispheric Basins

	3.8 Running HWRF in Non-operational Configurations
	3.8.1 Running Coupled/Uncoupled Forecast
	3.8.2 MPIPOM-TC Options
	3.8.3 Running with Optional GSI
	3.8.4 Running without GFS Ensemble files: 3DVAR GSI
	3.8.5 Running without Vortex Initialization
	3.8.6 Running without Spectral Files (GRIB Only)
	3.8.7 Running with 43 Vertical Levels and Coarser (27/9/3) Horizontal Resolution
	3.8.8 Running with Smaller D02 and D03 Size
	3.8.9 Running with Alternate Physics Configurations

	4 HWRF Preprocessing System
	4.1 Introduction
	4.2 Scripts
	4.2.1 Overview of exhwrf_launch.py
	4.2.2 Overview of the Init Scripts: exhwrf_init.py and Wrappers
	4.2.3 Overview of Initialization Modules

	5 Vortex Relocation
	5.1 Introduction
	5.2 Scripts
	5.2.1 Overview of exhwrf_relocate.py
	5.2.2 Overview of the Relocate Modules

	6 Data Assimilation
	6.1 Introduction
	6.2 Scripts
	6.2.1 Overview of exhwrf_bufrprep.py
	6.2.2 Overview of the Bufrprep Module
	6.2.3 Overview of exhwrf_gsi.py
	6.2.4 Overview of the GSI Module

	7 Merge
	7.1 Introduction
	7.2 Scripts
	7.2.1 Overview of exhwrf_merge.py
	7.2.2 Overview of Merge Module

	8 Ocean Initialization for MPIPOM-TC
	8.1 Introduction
	8.2 Scripts
	8.2.1 Overview of exhwrf_ocean_init.py
	8.2.2 Overview of Ocean Init Modules

	8.3 MPIPOM-TC Diagnostics
	8.4 User-provided Datasets for MPIPOM-TC Initialization

	9 Forecast Model
	9.1 Introduction
	9.2 Scripts
	9.2.1 Overview of exhwrf_forecast.py
	9.2.2 Overview of the Forecast Module

	10 HWRF Post-Processor
	10.1 Introduction
	10.2 Scripts
	10.2.1 Overview of exhwrf_unpost.py
	10.2.2 Overview of exhwrf_post.py
	10.2.3 Overview of UPP Python Modules

	11 Forecast Products
	11.1 Introduction
	11.2 Scripts
	11.2.1 Overview of exhwrf_products.py
	11.2.2 Additional Tracking Utilities

	11.3 How to Plot the Tracker Output Using ATCF_PLOT

	12 HWRF Idealized Tropical Cyclone Simulation
	12.1 Introduction
	12.2 How to Use HWRF for Idealized Tropical Cyclone Simulations
	12.2.1 Source Code
	12.2.2 Input Files and Datasets
	12.2.3 General Instructions for Running the Executables
	12.2.4 Running WPS to Create the ICs and LBCs
	12.2.5 Running ideal.exe and wrf.exe

	A Example of Computational Resources for NOAA's Supercomputer Jet
	B Example of Computational Resources and Notes for NCAR-Cheyenne
	C Example HWRF Namelist
	D Additional GFDL Tracker Information

