
A	Brief	Tutorial	on	GSI	Infrastructures	
&	Advanced	Features

Ricardo	Todling
Global	Modeling	and	Assimilation	Office

GSI	Tutorial,	DTC/NCEP,	11-13	July	2017	

This	presentation	is	a	brief	guide	to	some	of	the	basic	infrastructure	being	
added	to	GSI,	namely:

- A	view	from	the	top
- Observer	and	Guess	Interpolators
- Interfacing	to	user-specific	applications
- Introducing	MetGuess_Bundle &	Chem_Guess
- Connecting	math	&	code	

Questions	and	comments	to:	ricardo.todling@nasa.gov 1

OUTLINE
• Code	Infrastructure

– A	view	from	the	top
– Polymorphic	Observer
– Polymorphic	Guess	Interpolator	(upcoming)
– Interfacing	user-specific	components

• General	concept:	current	and	upcoming	polymorphism
• Illustration	1:	timing	routines
• Illustration	2:	4D-Var
• Illustration	3:	Hybrid	Ensemble
• Illustration	4:	Aerosols

– Basic	intrastructure:	MetGuess_Bundle &	Chem_Guess

• Connecting	Math	&	Code	

2

GSI	Infrastructure:
Split	GSI	into	sub-librariesProposed Split of GSI into Sub‐libraries

•  Schema&c view of GSI & suppor&ng libraries at GMAO

•  Issues:

  At present, GSI_solver and GSI_obsrvr cannot be separated

  At present, GSI_u&l cannot sit parallel to suppor&ng libs due to
its reliance on some of those

w3 sp crtm bufr bacio

User_stuff GSI_solver

GSI_Coupler

GSI_Appl User_stuff contains

user’s TL/AD and all sorts

of other things user needs

GSI_obsrvr

GSI_u&l

7/21/2010 4 Prepared by R. Todling

3

GSI	Infrastructure:
General	Code	Organization

Initialize
gsimain_initialize

Run
gsimain_run

Finalize
gsimain_finalize

SetServices
gsimain_initialize

4

GSI	Infrastructure:
General	Code	Organization

Read	Guess Read	Observations
(read_*)

setupRHS
(forward	models)

Define	CV	(bundle)

Set	Bc &	Be Err	Cov

Initialization

Perform	
minimization

Update		State

Linear	and	Adjoint
observation	

operators	(int_*)

Step	calculation
(stp_*)

Observer

Solver

This	is	what	
hooks	up	to	
EnSRF &	
LETKF Linear	and	Adjoint

Models	(4DVAR)	or
Ens Perts (4DEnVar)

5

GSI	Infrastructure:
General	Code	Organization

Read	Guess Read	Observations
(read_*)

setupRHS
(forward	models)

InitializationObserver

6

The	ultimate	output	of	the	observer	(forward	operators)	is	a	structure	
that	provides	hooks	to	the	observations	and	the	guess	at	observation	
locations	– to	ultimately	compose	the	observation	residuals.

Part	of	the	refactoring	of	GSI	to	modernize	and	modularize	the	code	
involves	rearrangement	of	the	“observation	structure	handler”	and	the	
access	to	the	interpolated	guess	fields.

What	follows	give	a	brief	summary	of	what	is	taking	place	to	re-
organize	these	two	components:	Observer	and	Guess	Interpolator

Observer:
Current	Procedural	Arrangement

7

Observer:
Object-Oriented	Arrangement

8

Observer:
Adding	new	observing	instruments	

9

Before	Polymorphic	Version Current	Polymorphic	Version

See	JCSDA	Newsletter,	Summer	2017,	No.	56.	

Observer:
Adding	new	observing	instruments	

10

Before	Polymorphic	Version Upcoming Polymorphic	Version

See	JCSDA	Newsletter,	Summer	2017,	No.	56.	

Guess	Interpolator:

11See	JCSDA	Newsletter,	Summer	2017,	No.	56.	

Guess	Interpolator:

12See	JCSDA	Newsletter,	Summer	2017,	No.	56.	

Interfacing	user-specific	components
• Simplest	possible	paradigm:	FORTRAN-77-like

– No	“use”	statements	allowed	at	interface	level
– No	“ifdef’s”	(preferred)
– GSI	Convention:	package	name	stub_XXX.F90
– User	Convention:	(suggested)	name	cplr_XXX.F90

• Current	available	GSI	interfaces			and		corresponding	stubs:
– timermod.F90																											stub_timermod.F90
– gsi_4dcouplermod.F90												stub_pertmod.F90
– gsi_enscouplermod.F90										stub_ensmod.F90
– set_crtm_aerosolmod.F90						stub_set_crtm_aerosol.F90
– gsi_nstmod.F90	(*)																			stub_nstmod.F90(*)

• Upcoming	versions	of	GSI	will	revise	these	interfaces:	
– Using	FORTRAN	polymorphism
– This	will	allow	for	replacement	of	the	current	method	where	the	user	must	remove	the	stub	

of	interest	from	the	library	and	load	it’s	own	version	atop.	
– The	polymorphic	interfaces	will	retain	the	library(ies)	of	GSI	unchanged;	and	the	user	can	

simply	load	its	version	of	the	coupler	together	with	the	existing	”stub”.	
– In	the	polymorphic	case,	the	compiler	picks	up	at	execution	the	path	to	follow	according	to	

the	user	specification.

(*)	Not	discussed	in	this	presentation 13

In	upcoming
Versions	of	GSI
these	interfaces	will	
be	treated	using
polymorphism.
(see	illustration)

Interfacing	user-specific	components
Illustration	I:	timermod

• More	often	than	not,	timing	routines	are	user	and	machine	specific.	
timermod allows	for	the	possibility	of	a	user	to	supply	its	own	timing	
mechanism.	
Actual	interface: timermod.F90 Stub	routines: stub_timermod.F90

Similar	for	other	two	routines,	i.e.,	they
are	empty	subroutines	that	do	nothing

This	is	a	
module;	
this	what	
routines	in	
GSI	call

This	is	a	
NOT		

module;	
ONLY	

called	by	
timermod

14

Interfacing	user-specific	components
Illustration	I:	timermod

• If	a	user	wants	to	specify	its	own	timings,	it	should	provide	a	Coupler	for	
the	timing	routines,	as	in		cplr_timermod below:

User-specific	routines: cplr_timermod.F90
These	are	user	
functions	GSI	
knows	nothing	

of

Prologues	stripped	off	for	display	only. 15

module timermod ! a module for generic timers
! interfaces supporting a generic timer use-case.
 public:: timer_ini ! turn on a named timer
 public:: timer_fnl ! turn off a named timer
 public:: timer_pri ! summarize all local timers
 interface timer_ini; subroutine timer_init_(name); ...
 interface timer_fnl; subroutine timer_final_(name); ...
 interface timer_pri; subroutine timer_pri_(lu); ...

timermod.f90

module timermod ! a module for generic timers
! interfaces supporting a generic timer use-case.
 public:: timer_ini ! turn on a named timer
 public:: timer_fnl ! turn off a named timer
 public:: timer_pri ! summarize all local timers
 interface timer_ini; subroutine timer_init_(name); ...
 interface timer_fnl; subroutine timer_final_(name); ...
 interface timer_pri; subroutine timer_pri_(lu); ...

timermod.f90

! a default do-nothing timer in implicit interfaces
subroutine timer_init_(name); ...
subroutine timer_final_(name); ...
subroutine timer_prit_(lu); ...

stub_timermod.f90

! a default do-nothing timer in implicit interfaces
subroutine timer_init_(name); ...
subroutine timer_final_(name); ...
subroutine timer_prit_(lu); ...

stub_timermod.f90

program observer_main ! a GMAO local GSI driver
 use timermod,only::timer_ini,timer_fnl,timer_pri
 ...
! Typical timermod use-case steps
 call timer_ini(“main”)
 call observer_init()
 ...
 call observer_finalize()
 call timer_fnl(“main”)
! Print a summary of all timers
 call timer_pri(stdout)
 ...

program observer_main ! a GMAO local GSI driver
 use timermod,only::timer_ini,timer_fnl,timer_pri
 ...
! Typical timermod use-case steps
 call timer_ini(“main”)
 call observer_init()
 ...
 call observer_finalize()
 call timer_fnl(“main”)
! Print a summary of all timers
 call timer_pri(stdout)
 ...

module m_zeit ! GMAO timer
 public::zeit_ci,zeit_co,zeit_flush

module m_zeit ! GMAO timer
 public::zeit_ci,zeit_co,zeit_flush

! a GMAO local timer through implicit interfaces
subroutine timer_init_(name)
 use m_zeit, only: zeit_ci; ...
 call zeit_ci(name); ...
subroutine timer_final_(name)
 use m_zeit, only: zeit_co; ...
 call zeit_co(name); ...
subroutine timer_pri_(lu)
 use m_zeit, only: zeit_flush; ...
 call zeit_flush(lu); ...

cplr_timermod.f90

! a GMAO local timer through implicit interfaces
subroutine timer_init_(name)
 use m_zeit, only: zeit_ci; ...
 call zeit_ci(name); ...
subroutine timer_final_(name)
 use m_zeit, only: zeit_co; ...
 call zeit_co(name); ...
subroutine timer_pri_(lu)
 use m_zeit, only: zeit_flush; ...
 call zeit_flush(lu); ...

cplr_timermod.f90

module observermod ! a GSI example of using timer
 use timermod, only: timer_ini, timer_fnl
 public:: observer_init, observer_finalize
contains
subroutine observer_init(); ...
 call timer_ini(“observer.init”); ...
 call timer_fnl(“observer.init”); ...
subroutine observer_final(); ...
 call timer_ini(“observer.finalize”); ...
 call timer_fnl(“observer.finalize”); ...

 observer.F90

module observermod ! a GSI example of using timer
 use timermod, only: timer_ini, timer_fnl
 public:: observer_init, observer_finalize
contains
subroutine observer_init(); ...
 call timer_ini(“observer.init”); ...
 call timer_fnl(“observer.init”); ...
subroutine observer_final(); ...
 call timer_ini(“observer.finalize”); ...
 call timer_fnl(“observer.finalize”); ...

 observer.F90

To use your cplr_x.o, stub_x.o must be
replaced by cplr_x.o at your build time.

use implicit-use

Interfacing	user-specific	components
Illustration	I:	timermod

16

Codes	
swapped
at	build
time

(replace stub_timermod.f90) m_stubTimer.f90

module m_abstractTimer ! an abstract timer
 public:: abstractTimer
 type, abstract:: abstractTimer
 contains
 procedure(on),deferred:: on
 procedure(off),deferred:: off
 end type abstractTimer
 abstract interface; subroutine on(name); ...
 abstract interface; subroutine off(name); ...
 ...

module m_abstractTimer ! an abstract timer
 public:: abstractTimer
 type, abstract:: abstractTimer
 contains
 procedure(on),deferred:: on
 procedure(off),deferred:: off
 end type abstractTimer
 abstract interface; subroutine on(name); ...
 abstract interface; subroutine off(name); ...
 ...

module m_stubTimer ! a default do-nothing timer
 use m_abstractTimer, only:: abstractTimer
 public:: stubTimer, stubTimer_mold
 type,extends(abstractTimer):: stubTimer; ...
contains
function stubTimer_mold()
 type(stubTimer),pointer::stubTimer_mold
 stubTimer_mold => ...
subroutine on(tm,name); ..! timer_init_()
subroutine off(tm,name);..! timer_final_()

module m_stubTimer ! a default do-nothing timer
 use m_abstractTimer, only:: abstractTimer
 public:: stubTimer, stubTimer_mold
 type,extends(abstractTimer):: stubTimer; ...
contains
function stubTimer_mold()
 type(stubTimer),pointer::stubTimer_mold
 stubTimer_mold => ...
subroutine on(tm,name); ..! timer_init_()
subroutine off(tm,name);..! timer_final_() use

extends

module observermod ! a GSI example of using timer
 use timermod, only: timer_ini, timer_fnl
 public:: observer_init, observer_finalize
 ...

(as is) observer.F90

module observermod ! a GSI example of using timer
 use timermod, only: timer_ini, timer_fnl
 public:: observer_init, observer_finalize
 ...

(as is) observer.F90

module timermod ! a module for generic timer extensions
 use m_abstractTimer, only: abstractTimer
! (1a) interfaces supporting an as-is use-case.
 public:: timer_ini ! turn on a named timer
 public:: timer_fnl ! turn off a named timer
 public:: timer_pri ! summarize all local timers
! (1b) additional interfaces supporting a better use-case.
 public:: timer_typedef ! type-define to a concrete timer
! timermod variables, (2a) a concrete type mold ...
 class(abstractTimer),allocatable,target,save:: typemold_
! molding (2b) the actual timer.
 class(abstractTimer),allocatable,target,save:: this_timer_
contains
! implementations bridging timermod and timer extensions
subroutine timer_typedef(mold) ! manage extensions
 class(abstractTimer),intent(in):: mold
 allocate(typemold_,mold=mold); ...
subroutine timer_ini(name)
 character(len=*),intent(in):: name; ...
 call this_timer_%on(name); ... ! was call timer_init_()

(new) timermod.f90

module timermod ! a module for generic timer extensions
 use m_abstractTimer, only: abstractTimer
! (1a) interfaces supporting an as-is use-case.
 public:: timer_ini ! turn on a named timer
 public:: timer_fnl ! turn off a named timer
 public:: timer_pri ! summarize all local timers
! (1b) additional interfaces supporting a better use-case.
 public:: timer_typedef ! type-define to a concrete timer
! timermod variables, (2a) a concrete type mold ...
 class(abstractTimer),allocatable,target,save:: typemold_
! molding (2b) the actual timer.
 class(abstractTimer),allocatable,target,save:: this_timer_
contains
! implementations bridging timermod and timer extensions
subroutine timer_typedef(mold) ! manage extensions
 class(abstractTimer),intent(in):: mold
 allocate(typemold_,mold=mold); ...
subroutine timer_ini(name)
 character(len=*),intent(in):: name; ...
 call this_timer_%on(name); ... ! was call timer_init_()

(new) timermod.f90

program observer_main ! GMAO local GSI driver
 use timermod,only::timer_ini,timer_fnl,timer_pri
 use timermod,only::timer_typedef
 use m_gmaoTimer, only: gmaoTimer_mold; ...
! Configure timermod to use your timer
 call timer_typedef(gmaoTimer_mold()); ...
! Typical timermod use-case steps
 call timer_ini(“main”); ...
 call timer_fnl(“main”)
! Print a summary of all timers
 call timer_pri(stdout)
 ...

program observer_main ! GMAO local GSI driver
 use timermod,only::timer_ini,timer_fnl,timer_pri
 use timermod,only::timer_typedef
 use m_gmaoTimer, only: gmaoTimer_mold; ...
! Configure timermod to use your timer
 call timer_typedef(gmaoTimer_mold()); ...
! Typical timermod use-case steps
 call timer_ini(“main”); ...
 call timer_fnl(“main”)
! Print a summary of all timers
 call timer_pri(stdout)
 ...

module m_gmaoTimer ! a GMAO local timer extension
 use m_abstractTimer, only:: abstractTimer
 public:: gmaoTimer, gmaoTimer_mold
 type,extends(abstractTimer):: gmaoTimer; ...
contains
function gmaoTimer_mold()
 type(gmaoTimer),pointer:: gmaoTimer_mold
 gmaoTimer_mold => ...
subroutine on(tm,name); ... ! was timer_init_
subroutine off(tm,name);... ! was timer_final_

(replace cplr_timermod.f90) m_gmaoTimer.F90

module m_gmaoTimer ! a GMAO local timer extension
 use m_abstractTimer, only:: abstractTimer
 public:: gmaoTimer, gmaoTimer_mold
 type,extends(abstractTimer):: gmaoTimer; ...
contains
function gmaoTimer_mold()
 type(gmaoTimer),pointer:: gmaoTimer_mold
 gmaoTimer_mold => ...
subroutine on(tm,name); ... ! was timer_init_
subroutine off(tm,name);... ! was timer_final_

(replace cplr_timermod.f90) m_gmaoTimer.F90

module m_zeit
module m_zeit

Interfacing	user-specific	components
Illustration	I:	timermod

17

Interfacing	user-specific	components
Illustration	I:	timermod

• The	implications	of	adding	user-specific	functions/routines	to	GSI	are	the	
following:
– The	Make	procedure	in	the	GSI	directory	can	no-longer	create	the	GSI	executable.
– The	Make	procedure	in	the	GSI	directory	must	instead	create	a	GSI	library.
– The	corresponding	dummy	stub	must	be	removed	from	the	GSI	library	before	the	

executable	is	created.	This	is	easily	accomplished	by	the	flags	of	the	archiving	
command.	For	example,	in	Linux,	to	remove	the	stub_timermod.o object	file	that	
would	be	in	the	GSI	library	(called	it	libgsi.a for	the	time	being),	one	can	simply	add	the	
following	line	to	the	Makefile that	creates	the	executable:
Ø ar –d libgsi.a stub_timermod.o

– The	Make	procedure	creating	the	executable	can	then	load	the	GSI	library,	together	
with	the	user-library	containing	the	Coupler,	that	is,	in	the	example	above	
cplr_timermod.o,	and	whatever	else	is	needed,	plus	the	main	program	from	GSI	
(gsimain.F90).

– This	means	the	gsimain.F90 should	be	placed	outside	of	GSI.	For	the	time	being,	the	
GSI	directory	could	still	keep	a	copy	of	this	program,	but	only	for	reference.

• Those	using	the	Cmake procedure	recently	added	to	GSI	will	have	the	Cmake
handle	the	replacement	of	the	modules	– however,	this	replacement	will	be	
removed	as	we	move	GSI	toward	polymorphism.

18

Interfacing	user-specific	components
Illustration	II:	gsi_4dcouplermod

• This	provides	the	coupling	mechanism	to	user-specific	TL	and	AD	models
• The	companion	stub	file	is	stub_pertmod.F90,	that,	as	with	other	stubs,	

must	be	removed	from	the	GSI	library	to	allow	the	user	to	specify	it’s	own	
coupler.	

• This	interface	is	more	complex	than	those	of	previous	illustrations.	Only	a	
sketchy	illustration	follows.

Actual	interface: gsi_4dpertmod.F90
Methods	in gsi_4dcouplermod.F90

Trajectory
initialization

Run	
ADM

19

Interfacing	user-specific	components
Illustration	II:	gsi_4dcouplermod

Actual	interface: cplr_pertmod.F90

Typically,	this	initializes	the	trajectory

In	this	case,	it	actually	runs	the	perturbation
to	generate	the	trajectory	– in	the	conventional
case,	the	trajectory	would	simply	be	read-in

Relies	on	nonlimod.F90,	a	module	driving	the	pert	model

Prologues	stripped	off	for	display	only. 20

Interfacing	user-specific	applications
Illustration	II:	gsi_4dcouplermod

Actual	interface: cplr_pertmod.F90

Prologues	stripped	off	for	display	only.

Relies	on	ncep_pertmod.F90,	a	module	driving	
the	TL/AD	pert	model

Typically,	this	runs	the	TLM

Procedure	from	ncep_pertmod.F90	that
actually	integrations	TLM	

NOTE:	ncep_permod.F90,	and
nonlinmod.F90	do	not	live	inside
GSI	– they	are	part	of	the	so-called
NCEP_Coupler library.	This	also
includes	various	other	codes
specific	to	the	perturbation	model.

21

Interfacing	user-specific	components
Illustration	II:	gsi_4dcouplermod

• Both	GMAO	and	NCEP	have	interfaced their	TLM/ADM	to	GSI.	
The	former	has	interfaced	two	different	models,	the	most	
recent	one	being	fully	ESMF-capable;	the	latter	has	interfaced	
a	perturbation	model	based	on	integrating	the	tendencies	
originally	available	in	GSI.	

• As	illustration	we	show	some	of	the	NCEP	perturbation	model	
interface.	This	is	composed	mainly	of	two	components:
– cplr_pertmod:		An	f77-like	coupler	providing	a	replacement	of	stub_pertmod
– ncep_permod:	A	f90	module	providing	the	entry	point	to	the	perturbation	

model,	and	it’s	TL	and	AD	counterparts.
– For	now,	a	specific	feature	of	the	perturbation	model	implementation	is	that	

the	observer	must	“run	the	non-linear	model”	(that	is	the	perturbation	
model).	Though	quite	unusual,	the	interface	is	general	to	easily	accommodate	
this	case.

22

Interfacing	user-specific	applications
Illustration	III:	gsi_enscouplermod

• At	the	moment	this	interface	applies	only	to	the	Global	option	in	GSI.	
In	the	future,	a	general	interface	will	accommodate	the	regional	
option	as	well.	

• The	idea	here	is	to	allow	users	to	inject	their	ensemble	members	in	to	
GSI	and	its	hybrid-ensemble	component.	For	this,	only	a	grid	
definition	and	a	reader-like	interface	are	needed.	The	bulk	of	what	
happens	in	these	can	be	fully	hidden	from	GSI;	e.g.,	the	GMAO	
interface	does	the	read	of	the	ensemble	member	through	is	ESMF-
compliant	reader.

• As	illustration	we	show	the	general	interface	and	a	little	detail	of	how	
the	GMAO-coupling	takes	place.	In	GSI,	the	interfaces	are	defined	
through:
– gsi_enscouplermod:		An	f90	interfacing	defining	available	methods	(see	next	page);	

and	providing	a	replacement	of	stub_ensmod providing	the	f77	interface	to	allow	GSI	
to	build	without	the	user-specific	routines.

– cplr_ensmod:	is	the	set	of	programs	defined	by	the	user,	that	replace	stub_ensmod at	
compilation	(library	build	time).

23

Interfacing	user-specific	applications
Illustration	III:	gsi_enscouplermod

Actual	interface: cplr_ensmod.F90

The	only	methods	currently	needed	are:
- a	grid	definition	
- a	get	– to	retrieve	user’s	members
- a	put	to	allow	writing	of	ensemble	
perturbations

NOTE:	none	are	these	are	yet	general	enough,	in	particular,	the	get	is	tied	up	to	the	
variables	currently	participating	in	the	hybrid	covariance.	Some	time	in	the	near	
future	we’ll	make	this	general	so	the	bundle	user	to	feed	the	necessary	fields	for	
hybrid	can	carry	whatever	the	users	desires	(e.g.,	aerosol	members,	or	CO,	etc).

24

Interfacing	user-specific	applications
Illustration	III:	gsi_enscouplermod

Actual	interface: cplr_ensmod.F90

Prologues	stripped	off	for	display	only.

The	handy	put	method:		GSI_4dCoupler_putpert	allows	for	writing	of	the	
Increment	as	it	evolves	within	the	assimilation	window,	see	routine	view_st

The	PUT	from
the	coupler

25

Interfacing	user-specific	components
Illustration	IV:	set_crtm_aerosolmod

• When	having	aerosols	passed	to	CRTM	one	thing	necessary	is	specification	of	
the	particle	sizes.	This	is	done	via	a	model-specific	Mie	calculation	that	
requires	the	environment	relative	humidity	and	aerosol	type.	This	is	where	
the	aerosol	interface	comes	into	play.	

Actual	interface: set_CRTM_aerosolmod.F90
Stub	routines: stub_set_crtm_aerosol.F90

This	provides	
a	general	
interface

This	
doesn’t	do	
anything.	

Prologues	stripped	off	for	display	only. 26

Interfacing	user-specific	components
Illustration	IV:	set_crtm_aerosolmod

• Aerosols	can	be	brought	into	GSI	via	the	ChemBundle.	For	example,	to	bring
the	15	GOCART	aerosols	GMAO	sets	the	chem_guess table	as

• The	settings	above	allow	aerosols	to	be	passed	to	CRTM,	but	the	GSI	Jacobians do	
not	take	into	account	the	sensitivity	of	fields	to	the	aerosols	– only	the	radiance	
feel	the	aerosols,	but	not	the	conventional	fields.		It’s	very	simple	to	have	the	
Jacobian augmented	to	take	such	sensitivities	into	account.

In	ChemBundle
a	value	of	10	
means	aerosol.	

These	are	
the	names	
of	the	
fields	in	
file

These	are	
the	

internal	
GSI	names

27

Interfacing	user-specific	components
Illustration	IV:	set_crtm_aerosolmod

• A	user	wanting	to	exercise	the	aerosol	capability	should	provide	it’s	own	
coupler.	In	the	case	of	GMAO,	the	coupler	looks	something	like	this:	

Actual	GMAO	coupler:	cplr_set_CRTM_aerosolmod.F90

Prologues	stripped	off	for	display	only.

This	is	
where	the	
work	starts	
to	happen

f77-like	Coupler	
calls	user-
specific	f90	
routine 28

MetGuess/ChemGuess_Bundle
• Presently,	ChemGuess_Bundle allows	flexible	input	of	Chem-

related	fields	(tracers	and	aerosols)	to	GSI.
• A	desirable	similar	flexibility	to	handle	all	of	the	other	

(meteorological)	guess	fields,	motivates	introduction	of	
MetGuess_Bundle.

• A	few	surface	and	2d	fields	are	still	wired	in	GSI	and	not	
directly	handled	by	MetGuess (will	change	in	future	version).

• With	these	Bundles	GSI	is	capable	to	easily	handle	univariate
analysis	of	any	newly	defined	field,	with	minimal	user
changes.

• Just	as	with	ChemGuess,	MetGuess_Bundle is	controlled	by	a	
table	named	met_guess added	to	the	anavinfo resource	file.	

29

MetGuess/ChemGuess_Bundle
• Example:	GMAO	MetGuess table

30

met_guess::
!var					 level				crtm_use				desc										 orig_name
#	sst											1												2															sea_sfc_temperature			ts
ps				 1											-1						 surface_pressure				 ps
z															1											-1															geopotential_height	 phis
u							 64						 2														zonal_wind									 u
v							 64						 2								 meridional_wind					 v
div				 64						 -1								 zonal_wind										 div
vor				 64					 -1							 meridional_wind						 vor
dummy		35										-1													dummy															 dummy
tv							 64												2													virtial_temperature					tv
q							 64						 2								 specific_humidity				 sphu
oz						 64					 2								 ozone																 ozone
cw					 64						 10													cloud_condensate				 cw
#	ql						 64						 10													cloud_liquid																			qltot
#	qi							 64										10													cloud_ice											 qitot
#	qr						 64					 10									 rain																																		qr
#	qs						 64					 10									 snow																																qs
#	qg							 64									10													graupel																											qg
::

Guess	variables	that	
used	to	be	wired	in	
guess_grids are	now	
floating	variables	
only	defined	when	
placed	in	met_guess

table.

Dummy	var added	to	
illustrate	ability	of	
MetGuess to	handle	

variables	with	multiple	
levels,	e.g.,	35	vs 64.

MetGuess_Bundle:	Methods
• As	with	ChemGuess,	MetGuess does	not	handle	

parallelization;	e.g.,	fields	are	on	subdomains.	This	means	
filling	up	this	bundle	must	be	done	by	the	user	after	reading	
the	guess	and	distributing	it	onto	subdomains.

• Presently,	the	available	methods	in	MetGuess are:

• The	trickiest	of	the	Methods	is	the	GET.	It’s	easy	to	use	but	
has	multiple	capability.	Examples	of	the	GET	function	are	
given	in	the	ProTex documentation	available	in	the	source	
code.	Here	a	couple	of	simple	examples	follow:

31

MetGuess_Bundle:	Methods
• Examples	of	using	the	GET	Method:	

– Say	a	routine	wants	to	know	whether	or	not	the	variable	cw is	in	
MetGuess_Bundle.	This	can	be	done	simply	with	the	call

call	gsi_metguess_get ('var::cw',	ivar,	ier)
if	ivar is	grater	than	zero,	the	variable	is	present	in	the	bundle.

– Say	a	routine	wants	to	get	the	number	of	all	3d	cloud	fields	in	the						
MetGuess_Bundle,	this	can	be	done	by	use	the	tag	clouds::3d,	as	in:

call	gsi_metguess_get ('clouds::3d',n,ier)
notice	this	uses	the	same	interface	as	in	the	example	above,	but	returns
information	about	something	else.

– Say	a	routine	wants	the	name	of	all	3d	cloud-fields
call	gsi_metguess_get ('clouds::3d’,cld3dnames,ier)					

now	the	returned	variable	cld3dnames	is	a	character	array	with	the	names	of	all	
3d-cloud-guess.	Notice	it	is	important	to	inquire	before	hand	about	the	number	of	
3d-cloud	fields	available	and	to	properly	allocate	space	for	the	character	arrays		
cld3dnames,	and	only	then	make	the	call	above.

– Other	functionalities	and	inquire	modes	are	available.

32

MetGuess/Chem_Guess_Bundle
Remarks	and	Work	in	Progress

• As	ChemGuess_Bundle,	MetGuess_Bundle is	treated	as	a	
common	block.
– This	means	you	cannot,	for	the	time	being,	instantiate	it.

• As	ChemGuess_Bundle,	MetGuess_Bundle is	an	almost	
opaque	object.
– This	means	only	methods	are	available	to	the	outside	world,	and	the	

bundle	itself	(common	block,	for	now)	
• In	the	present	(upcoming,	June	2011)	version	of	the	GSI	NCEP	

trunk,	only	clouds	are	being	handled	by	MetGuess.	That	is,	
winds,	temperature,	specific	humidity,	and	all	other	
meteorological	fields	are	still	handled	in	guess_grids (as	the	
ges_X variables).	This	will	change	in	the	near	future.		

33

General	Remarks:	Others	
• Use	general	intrinsic	math	functions,	instead	of	
specific	(only)	functions,	that	is:	
– Sqrt()		rather	than		Dsqrt()	
– Abs()		rather	than		Dabs()
– Etc

• Bundle	supports	both	single	and	double	precision.	It	is	
important	to	specify	the	bundle	KIND	when	creating	a	
bundle,	as	in	for	example:

write(bname,'(a)')	'State	Vector’
call	GSI_BundleCreate(yst,grid,bname,ierror,	&													
names2d=svars2d,names3d=svars3d,edges=edges,	&	
bundle_kind=r_kind)

34

Preliminary	Closing	Remarks

• Current	MetGuess handles	upper-air	fields	
and	new	fields	(anything	being	introduced	to	
GSI).

• ChemGuess can	handle	2d	and	3d	fields;	
general	trace	gas	setting	is	under	
development.

• GSI	is	capable	of	easily	handling	univariate
analysis	of	newly	defined	fields.

• Comments	and	concerns	are	always	welcome.

35

OUTLINE
• Code	Infrastructure

– A	view	from	the	top
– Polymorphic	Observer
– Polymorphic	Guess	Interpolator	(upcoming)
– Interfacing	user-specific	components

• General	concept:	current	and	upcoming	polymorphism
• Illustration	1:	timing	routines
• Illustration	2:	4D-Var
• Illustration	3:	Hybrid	Ensemble
• Illustration	4:	Aerosols

– Basic	intrastructure:	MetGuess_Bundle &	Chem_Guess

• Connecting	Math	&	Code	

36

37

Four-dimensional Variational Approach

The general cost function of the variational formulation

J(x) =
1

2
(x0 � xb)TB�1(x0 � xb) + J

x

+
1

2

KX

k=0

[h(x
k

)� y
k

]TR�1
k

[h(x
k

)� y
k

]

+
1

2

KX

k=1

[m(x
k

)� x
k

]TQ�1
k

[m(x
k

)� x
k

]

where

. x ⌘ [x0,x1, · · · ,x
K

]T is a 4d state vector;

. h
k

and m
k

are the nonlinear observation and dynamical
model operators, respectively;

. B, Q
k

, and R
k

are the background, model, and obser-
vation error covariances, respectively.

. Strong constraint formulation: Q
k

! 1;

. Weak constraint formulation, Q 6= 0 accounts for im-
perfections in the model m;

. J

x

represents extra constraint (e.g., balance).

38

Strong Constraint Incremental 4DVAR

For simplicity consider now the strong constraint case.
In incremental 4DVAR the cost function at the j-th it-
eration is

J

j

(�x
j

) =
1

2
(�x

j

� �xb

j

)TB�1(�x
j

� �xb

j

)

+
1

2

KX

k=0

(H
j,k

M
j,k

�x
j

� d
j,k

)TR�1(H
j,k

M
j,k

�x
j

� d
j,k

)

where d
j,k

⌘ y
k

� h
k

(m
k

(xb)), �xb

j

⌘ xb � x
j�1, and

. �x
j

⌘ x
j

� x
j�1 is the control variable;

. The inner loop minimization of J

j

can be solved by

• Conjugate gradient

• Quasi-Newton (such as L-BFGS)

• Lanczos

. Conditioning of the J

j

minimization is determined by
the Hessian r2

J

j

= B�1+
P

k

MT

j,k

HT

j,k

R�1M
j,k

H
j,k

, which
spectrum is such that a good preconditioning is essen-
tial, particularly in 4DVAR.

In	3dvar,	this	calls	the	observer

Connecting	Math	and	Code	

39

Connecting	Math	&	Code:	observer

Extra Expressions

(B�1 +HT

j

R�1H
j

)�x
j

= HT

j

R�1d
j

+B�1b
j�1

d
j

= h(xj�1)� yo

b
j�1 = xb � x

j�1

(I+B1/2HT

j

R�1H
j

B1/2)z
j

= B1/2HT

j

R�1d
j

+B�1/2b
j�1

z
j

= B�1/2
�x

j

(I+BHT

j

R�1H
j

)�x
j

= BHT

j

R�1d
j

+ b
j�1

z+HT

j

R�1H
j

�x
j

= HT

j

R�1d
j

+B�1b
j�1

z
j

= B�1
�x

j

Observer	methods

40

Connecting	Math	&	Code:	glbsoiExtra Expressions

(B�1 +HT

j

R�1H
j

)�x
j

= HT

j

R�1d
j

+B�1b
j�1

d
j

= h(xj�1)� yo

b
j�1 = xb � x

j�1

Extra Expressions

(B�1 +HT

j

R�1H
j

)�x
j

= HT

j

R�1d
j

+B�1b
j�1

d
j

= h(xj�1)� yo

b
j�1 = xb � x

j�1

(I+B1/2HT

j

R�1H
j

B1/2)z
j

= B1/2HT

j

R�1d
j

+B�1/2b
j�1

z
j

= B�1/2
�x

j

Extra Expressions

(B�1 +HT

j

R�1H
j

)�x
j

= HT

j

R�1d
j

+B�1b
j�1

d
j

= h(xj�1)� yo

b
j�1 = xb � x

j�1

(I+B1/2HT

j

R�1H
j

B1/2)z
j

= B1/2HT

j

R�1d
j

+B�1/2b
j�1

z
j

= B�1/2
�x

j

(I+BHT

j

R�1H
j

)�x
j

= BHT

j

R�1d
j

+ b
j�1

Extra Expressions

(B�1 +HT

j

R�1H
j

)�x
j

= HT

j

R�1d
j

+B�1b
j�1

d
j

= h(xj�1)� yo

b
j�1 = xb � x

j�1

(I+B1/2HT

j

R�1H
j

B1/2)z
j

= B1/2HT

j

R�1d
j

+B�1/2b
j�1

z
j

= B�1/2
�x

j

(I+BHT

j

R�1H
j

)�x
j

= BHT

j

R�1d
j

+ b
j�1

z+HT

j

R�1H
j

�x
j

= HT

j

R�1d
j

+B�1b
j�1

z
j

= B�1
�x

j

Only	in	Adjoint Mode:
Replace	RHS	with	model	

sensitivity

Prepare	
RHS	of	Eq

41

42

sqrtmin

Ideal	minimization	scheme
when	running	4dvar

When	inner	loop	is	linear,
this	is	equivalent	to	default
PCGSIO	(double	CG)	min,	but
not	identical.

Adjoint minimization

43

pcgsqrt

Vanilla	CG	algorithm,	
it	reproduces	doubleCG
when	under	linearized
Inner	loop	and	proper
selection	of	options	to
within	roundoff.		

Calculating									is	at	the
core	of	the	minimization

SCRATCH PAPER

The ideal preconditioning is give by the square-root of
the inverse Hessian, which for the scaled-control vector
is

r2
Ĵ = I+ LTHTR�1HL ,

rĴ

j

= �+ LT

j

MT

j

HT

j

R�1(H
j

M
j

L�
j

� d
j

)

(I+ LTHT

j

R�1H
j

L)�
j

= LTHT

j

R�1d
j

+ b
j

R�1H
j

M
j

L�
j

rJ

�� = LT

�x

�x� �xref

�xref

�x
k�1;j = MT

k,k�1;j�xk;j

44

45

46

model_tl

j-th iteration	propagation
with	the	tangent	linear	
model

SCRATCH PAPER

The ideal preconditioning is give by the square-root of
the inverse Hessian, which for the scaled-control vector
is

r2
Ĵ = I+ LTHTR�1HL ,

rĴ

j

= �+ LT

j

MT

j

HT

j

R�1(H
j

M
j

L�
j

� d
j

)

(I+ LTHT

j

R�1H
j

L)�
j

= LTHT

j

R�1d
j

+ b
j

R�1H
j

M
j

L�
j

�� = LT

�x

�x� �xref

�xref

�x
k�1;j = MT

k,k�1;j�xk;j

�x
k;j = M

k,k�1;j�xk�1;j

✏ =
q

1
k

P
`

k=1(�xk

� [�x
k

])2

47

intjo

Each	“int”	routine
can	apply	the	full
operator:

As	well	as	simply:

The Linear 4d-Analysis Adjoint

A linear analysis system calculates:

�x = Kd = (B�1 +HTR�1H)�1HTR�1d phy-space

= BHT(HBHT +R)d obs-space

and its adjoint calculates:

�z = KTg = R�1H(B�1 +HTR�1H)�1g phy-space

= (HBHT +R)HBg obs-space

Obtaining the adjoint in practice:

. Direct, line-by-line, adjoint (Zhu & Gelaro 2007)

. Operator manipulation:

• Observation space (Baker & Daley 2000):

(HBHT +R)�z = HBg

• Physical scape (Trémolet 2008): �z = R�1H�g

(B�1 +HTR�1H)�g = g

• Approximate Hessian: Ã�1 = U⇤UT ⇠
p

B�1 +HTR�1H

�z = R�1HÃg

The Linear 4d-Analysis Adjoint

A linear analysis system calculates:

�x = Kd = (B�1 +HTR�1H)�1HTR�1d phy-space

= BHT(HBHT +R)d obs-space

and its adjoint calculates:

�z = KTg = R�1H(B�1 +HTR�1H)�1g phy-space

= (HBHT +R)HBg obs-space

Obtaining the adjoint in practice:

. Direct, line-by-line, adjoint (Zhu & Gelaro 2007)

. Operator manipulation:

• Observation space (Baker & Daley 2000):

(HBHT +R)�z = HBg

• Physical scape (Trémolet 2008): �z = R�1H�g

(B�1 +HTR�1H)�g = g

• Approximate Hessian: Ã�1 = U⇤UT ⇠
p

B�1 +HTR�1H

�z = R�1HÃg

intq

48

49

50

model_ad

j-th iteration	propagation
with	the	adjoint of	the	
tangent	linear	model

SCRATCH PAPER

The ideal preconditioning is give by the square-root of
the inverse Hessian, which for the scaled-control vector
is

r2
Ĵ = I+ LTHTR�1HL ,

rĴ

j

= �+ LT

j

MT

j

HT

j

R�1(H
j

M
j

L�
j

� d
j

)

(I+ LTHT

j

R�1H
j

L)�
j

= LTHT

j

R�1d
j

+ b
j

R�1H
j

M
j

L�
j

�� = LT

�x

�x� �xref

�xref

�x
k�1;j = MT

k,k�1;j�xk;j

�x
k;j = M

k,k�1;j�xk�1;j

✏ =
q

1
k

P
`

k=1(�xk

� [�x
k

])2

51

52

53

54

obs_sensitivity

Read	forecast	sensitivity
Convert	sensitivity	to	control	vector

Ø The	above	prepares	the	right-hand-side	of	the	equation	to	be	solved:

Ø This	is	solved	via	sqrtmin through	multiple	calls	to	evaljgrad

Ø To	finally	get	the	observation	sensitivity

we	need	to	call	evaljgrad one	more	time	without	invoking	the	adjoint option.

(I+ LTHTR�1HL)�g = Lg

�z = R�1HL�g

indicates the overall minimization to be much batter
conditioned than the original minimization since the small-
est eigenvalue of he Hessian is now the unit.

The ideal preconditioning is give by the square-root of
the inverse Hessian,

p
A�1, where A = B�1 +HTR�1H:

. In practice this can be done using the CG-Lanczos con-
nection, where the CG provides the Lanczos vectors of
the Hessian;

. The cost of this modified CG is in storing the Lanczos
vectors and in the re-orthogonalization needed to avoid
degeneracy

. Use of the Lanczos-based CG is thus only justifiable in
4dvar, where fast convergence means avoid the costly
integration of the model’s TLM and ADM.

(I+ LTHTR�1HL)�g = Lg

�z = R�1HL�g

indicates the overall minimization to be much batter
conditioned than the original minimization since the small-
est eigenvalue of he Hessian is now the unit.

The ideal preconditioning is give by the square-root of
the inverse Hessian,

p
A�1, where A = B�1 +HTR�1H:

. In practice this can be done using the CG-Lanczos con-
nection, where the CG provides the Lanczos vectors of
the Hessian;

. The cost of this modified CG is in storing the Lanczos
vectors and in the re-orthogonalization needed to avoid
degeneracy

. Use of the Lanczos-based CG is thus only justifiable in
4dvar, where fast convergence means avoid the costly
integration of the model’s TLM and ADM.

55

Hybrid	4dEnVar-ADJ	namelist settings

56

&SETUP
miter=1,niter(1)=50,
niter_no_qc(1)=999,niter_no_qc(2)=999,
write_diag(1)=.true.,write_diag(2)=.true.,
gencode=82,qoption=2,
factqmin=0.005,factqmax=0.005,deltim=300,
ifact10=0,
pseudo_q2=.true.,
use_prepb_satwnd=>>>USE_PREPB_SATWND<<<,
id_drifter=.true.,
tzr_qc=1,
crtm_coeffs_path="CRTM_Coeffs/",
print_diag_pcg=.false.,
use_compress=.true.,nsig_ext=13,gpstop=60.,
lbicg=.true.,lcongrad=.false.,ltlint=.true.,		
l4densvar=.true.,nhr_obsbin=1,iwrtinc=4,thin4d=.true.,
iorthomax=10,
ens_nstarthr=3,
…
//
&HYBRID_ENSEMBLE
l_hyb_ens=@L_HYB_ENS,

…
//

Forward	Bi-CG	Hybrid	settings
&SETUP
miter=1,niter(1)=50,
jiterstart=1,jiterend=1,
niter_no_qc(1)=999,niter_no_qc(2)=999,
write_diag(1)=.false.,write_diag(2)=.true.,
gencode=82,qoption=2,
factqmin=0.005,factqmax=0.005,deltim=300,
ifact10=0,
pseudo_q2=.true.,
use_prepb_satwnd=>>>USE_PREPB_SATWND<<<,
id_drifter=.true.,
tzr_qc=1,
crtm_coeffs_path="CRTM_Coeffs/",
print_diag_pcg=.false.,
use_compress=.true.,nsig_ext=13,gpstop=60.,
l4densvar=.true.,nhr_obsbin=1,iwrtinc=4,
lbicg=.true.,lcongrad=.false.,ltlint=.true.,
iorthomax=10,
lobsensmin=.true.,lobsensadj=.false.,iobsconv=0,
lsensrecompute=.true.,
lobsensincr=.false.,lobsensjb=.false.,lobsensfc=.true.,
lobsdiagsave=.true.,
ens_nstarthr=3,
…

//
&HYBRID_ENSEMBLE
l_hyb_ens=@L_HYB_ENS,

…
//

Backward	Bi-CG	Hybrid	settings

Closing	Remarks
• GSI	is	a	rather	capable	assimilation	system	handling	a	variety	of	

features	from	simple	3DVAR	to	4DVAR,	Hybrid	4DVar	and	Hybrid	
4DEnVar.

• GSI	assimilates	simple	and	complex	observation	types.
• GSI	is	hooked	up	to	multiple	global	and	regional	applications.
• GSI	provides	the	user	with	adjoint capabilities	needed	for	the	

evaluation	of	various	sensitivity	measures,	and	assessment	of	
observation	impact.

• GSI	provides	user	with	multiple	minimization	options.
• GSI	is	a	live	software;	always	evolving	and	presently	going	through	

considerable	refactoring	to	comply	with	modern	software	
standards	of	object-oriented	programming.

• Ultimately,	it	is	hoped	that	GSI	will	evolve	to	support	applications	
beyond	meteorological	ones,	including	ocean,	land,	&	others.

57

